Quercus suber L. Genetic Resources: Variability and Strategies for Its Conservation
Abstract
:1. Introduction
1.1. Characterization
1.2. Distribution and Ecology
2. Socio-Economic Relevance
2.1. Products and Sub-Products
2.2. Cork Production and Industry
3. Genetic Diversity
3.1. Genetic and Trait Variation
3.2. Genetic Conservation Programs
3.3. Genome Sequencing
4. Molecular Mechanisms of Stress Responses and Cork Formation
4.1. Pests and Diseases
4.2. Temperature and Drought Stress
4.3. Salinity Stress
4.4. Cork Quality and Sustainability
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Denk, T.; Grimm, G.W.; Manos, P.S.; Deng, M.; Hipp, A.L. An Updated Infrageneric Classification of the Oaks: Review of Previous Taxonomic Schemes and Synthesis of Evolutionary Patterns. In Oaks Physiological Ecology. Exploring the Functional Diversity of Genus Quercus L.; Gil-Pelegrín, E., Peguero-Pina, J.J., Sancho-Knapik, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 13–38. [Google Scholar] [CrossRef]
- Gil, L.; Varela, M. Guidelines for Genetic Conservation and Use for Cork Oak (Quercus Suber); Bioversity International: Rome, Italy, 2008. [Google Scholar]
- San-Miguel-Ayanz, J.; De Rigo, D.; Caudullo, G.; Durrant, T.H.; Mauri, A. European Atlas of Forest Tree Species; European Commission: Ispra, Italy, 2016. [Google Scholar] [CrossRef]
- Aronson, J.; Pereira, J.S.; Pausas, J.G. Cork Oak Woodlands on the Edge: Ecology, Adaptive Management, and Restoration; Island Press: Washington, DC, USA, 2012. [Google Scholar]
- Silva, S.P.; Sabino, M.A.; Fernandes, E.M.; Correlo, V.M.; Boesel, L.F.; Reis, R.L. Cork: Properties, Capabilities and Applications. Int. Mater. Rev. 2005, 50, 345–365. [Google Scholar] [CrossRef]
- Singh, M.K.; Yee, B.-M. Reactive Processing of Environmentally Conscious, Biomorphic Ceramics from Natural Wood Precursors. J. Eur. Ceram. Soc. 2004, 24, 209–217. [Google Scholar] [CrossRef]
- Mislata, A.M.; Puxeu, M.; Ferrer-Gallego, R. Aromatic Potential and Bioactivity of Cork Stoppers and Cork By-Products. Foods 2020, 9, 133. [Google Scholar] [CrossRef] [PubMed]
- Rego, L.; Mota, S.; Torres, A.; Pinto, C.; Cravo, S.; Silva, J.R.E.; Páscoa, R.N.M.J.; Almeida, A.; Amaro, F.; De Pinho, P.G.; et al. Quercus suber Bark as a Sustainable Source of Value-Added Compounds: Experimental Studies with Cork By-Products. Forests 2023, 14, 543. [Google Scholar] [CrossRef]
- Pereira-Leal, J.B.; Abreu, I.A.; Alabaça, C.S.; Almeida, M.A.; Almeida, P.S.; Almeida, T.; Amorim, M.H.C.; De Sousa Araújo, S.; Azevedo, H.; Badia, A.; et al. A Comprehensive Assessment of the Transcriptome of Cork Oak (Quercus suber) through EST Sequencing. BMC Genom. 2014, 15, 371. [Google Scholar] [CrossRef] [PubMed]
- Pereira, J.S.; Chaves, M.M.; Caldeira, M.; Correia, A.V. Water availability and productivity. In Plant Growth and Climate Change; Morison, J.I.L., Morecroft, M.D., Eds.; Blackwell: London, UK, 2006; pp. 118–145. [Google Scholar] [CrossRef]
- Pereira, J.S.; Kurz-Bensson, C.; Chaves, M.M. Coping with drought. In Cork Oak Woodlands on the Edge: Ecology, Adaptive management, and Restoration; Aronson, J., Pereira, J.S., Pausas, J.G., Eds.; Island Press: Washington, DC, USA, 2009; pp. 73–80. [Google Scholar]
- Da Vinha, A.F.; Carvalho, A.M.; Costa, A.S.G.; Oliveira, M.B.P.P. A New Age for Quercus Spp. Fruits: Review on Nutritional and Phytochemical Composition and Related Biological Activities of Acorns. Compr. Rev. Food Sci. Food Saf. 2016, 15, 947–981. [Google Scholar] [CrossRef] [PubMed]
- Caudullo, G.; Welk, E.; San-Miguel-Ayanz, J. Chorological Maps for the Main European Woody Species. Data Brief 2017, 12, 662–666. [Google Scholar] [CrossRef]
- Environmental Sustainability. APCOR—Associação Portuguesa Da Cortiça. Available online: https://www.apcor.pt/en/montado/sustainability/environmental-sustainability/ (accessed on 29 May 2023).
- Serrasolses, I.; Pérez-Devesa, M.; Vilagrosa, A.; Pausas, J.G.; Sauras, T.; Cortina, J.; Vallejo, V.R. Soil properties constraining Cork Oak distribution. In Cork Oak Woodlands on the Edge: Ecology, Adaptive Management, and Restoration; Aronson, J., Pereira, J.S., Pausas, J.G., Eds.; Island Press: Washington, DC, USA, 2009; pp. 89–99. [Google Scholar]
- Castro, E.B. Los Bosques Ibéricos: Una Interpretación Geobotánica; Planeta: Barcelona, Spain, 1997; ISBN 9788408058205. [Google Scholar]
- Instituto da Conservação da Natureza e das Florestas. 6° Inventário Florestal Nacional (IFN6)—2015 Relatório Final; Instituto da Conservação da Natureza e das Florestas: Lisboa, Portugal, 2019. [Google Scholar]
- Moreira, F.; Duarte, I.; Catry, F.X.; Acácio, V. Cork Extraction as a Key Factor Determining Post-Fire Cork Oak Survival in a Mountain Region of Southern Portugal. For. Ecol. Manag. 2007, 253, 30–37. [Google Scholar] [CrossRef]
- Pausas, J.G. Resprouting of Quercus suber in NE Spain after Fire. J. Veg. Sci. 1997, 8, 703–706. [Google Scholar] [CrossRef]
- Teixeira, R.T. Cork Development: What Lies Within. Plants 2022, 11, 2671. [Google Scholar] [CrossRef]
- Pereira, H. Cork: Biology, Production and Uses, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2007; ISBN 978-008-047-686-5. [Google Scholar]
- Faustino, A.; Pires, R.C.; Marum, L. Periderm Differentiation: A Cellular and Molecular Approach to Cork Oak. Trees 2023, 37, 627–639. [Google Scholar] [CrossRef]
- Pereira, H. Variability of the Chemical Composition of Cork. Bioresources 2013, 8, 2246–2256. [Google Scholar] [CrossRef]
- Observatório—Ordenamento do Território e Urbanismo. Uso e Ocupação do Solo em Portugal Continental; Direção Geral do Território: Lisboa, Portugal, 2020.
- Direção Geral de Atividades Económicas (DGAE). 2023. Available online: https://www.dgae.gov.pt/ (accessed on 26 May 2023).
- APCOR. APCOR’s Cork Yearbook; APCOR: Santa Maria de Lamas, Portugal, 2020. [Google Scholar]
- AGRO.GES. Available online: https://www.agroges.pt/ (accessed on 26 May 2023).
- APCOR. Boletim Estatístico Mercados da Cortiça—3° Trimestre; APCOR: Santa Maria de Lamas, Portugal, 2022. [Google Scholar]
- Filcork. Boletim Estatístico da Fileira da Cortiça; Filcork: Santa Maria de Lamas, Portugal, 2021. [Google Scholar]
- Ministério da Agricultura, Desenvolvimento Rural e Pescas. Decreto-Lei nº 155/2004, de 30 de Junho. Available online: diariodarepublica.pt/dr/detalhe/decreto-lei/155-2004-517471 (accessed on 24 June 2023).
- Assembleia da República. Resolução da Assembleia da República nº 15/2012, de 10 de Fevereiro. Available online: https://diariodarepublica.pt/dr/detalhe/resolucao-assembleia-republica/15-2012-543062 (accessed on 24 June 2023).
- Dumolin, S.; Demesure, B.; Petit, R.J. Inheritance of Chloroplast and Mitochondrial Genomes in Pedunculate Oak Investigated with an Efficient PCR Method. Theor. Appl. Genet. 1995, 91, 1253–1256. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, G.; Varela, M.C.; Lumaret, R.; Gil, L. Genetic Conservation and Management of Quercus Suber; Bioversity International: Rome, Italy, 2017; pp. 1–43. [Google Scholar]
- Jiménez, P.; de Heredia, U.L.; Collada, C.; Lorenzo, Z.; Gil, L. High Variability of Chloroplast DNA in Three Mediterranean Evergreen Oaks Indicates Complex Evolutionary History. Heredity 2004, 93, 510–515. [Google Scholar] [CrossRef] [PubMed]
- Magri, D.; Fineschi, S.; Bellarosa, R.; Buonamici, A.; Sebastiani, F.; Schirone, B.; Simeone, M.C.; Vendramin, G.G. The Distribution of Quercus suber Chloroplast Haplotypes Matches the Palaeogeographical History of the Western Mediterranean. Mol. Ecol. 2007, 16, 5259–5266. [Google Scholar] [CrossRef]
- De Heredia, U.L.; Jiménez, P.; Díaz-Fernández, P.; Gil, L. The Balearic Islands: A Reservoir of cpDNA Genetic Variation for Evergreen Oaks. J. Biogeogr. 2005, 32, 939–949. [Google Scholar] [CrossRef]
- Lumaret, R.; Jabbour-Zahab, R. Ancient and Current Gene Flow between Two Distantly Related Mediterranean Oak Species, Quercus suber and Q. ilex. Ann. Bot. 2009, 104, 725–736. [Google Scholar] [CrossRef]
- Varela, M.C.; Brás, R.; Barros, I.M.; Oliveira, P.J.; Meierrose, C. Opportunity for Hybridization between Two Oak Species in Mixed Stands as Monitored by the Timing and Intensity of Pollen Production. For. Ecol. Manag. 2008, 256, 1546–1551. [Google Scholar] [CrossRef]
- Burgarella, C.; Lorenzo, Z.; Jabbour-Zahab, R.; Lumaret, R.; Guichoux, E.; Petit, R.J.; Soto, A.; Gil, L. Detection of Hybrids in Nature: Application to Oaks (Quercus suber and Q. ilex). Heredity 2009, 102, 442–452. [Google Scholar] [CrossRef]
- De Heredia, U.L.; Carrión, J.A.; Jiménez, P.; Collada, C.; Gil, L. Molecular and Palaeoecological Evidence for Multiple Glacial Refugia for Evergreen Oaks on the Iberian Peninsula. J. Biogeogr. 2007, 34, 1505–1517. [Google Scholar] [CrossRef]
- Vila-Viçosa, C.; Capelo, J.; Alves, P.; Almeida, R.S.; Vázquez, F.A.R. New Annotated Checklist of the Portuguese Oaks (Quercus L., Fagaceae). Mediterr. Bot. 2023, 44, e79286. [Google Scholar] [CrossRef]
- Colmeiro, M.; Boutelou, E. Exámen de Las Encinas y Demás árboles de la Península Que Producen Bellotas, Con la Designación de Los Que se Llaman Mestos; Imprenta de José M. Geofrin: Sevilla, Spain, 1854. [Google Scholar]
- Baonza-Díaz, J. El sorprendentemente híbrido inédito de Quercus coccifera y Quercus suber. In Notas Taxonómicas y Corológicas para la Florade la Península Ibérica y el Magreb; Lagascalia: Sevilla, Spain, 2007; pp. 364–366. [Google Scholar]
- Vázquez, F.M. Híbridos de Quercus faginea subsp. broteroi (Coutinho) A. Camus en el suroeste de la Península Ibérica. An. Jard. Bot. Madr. 1995, 53, 247251. [Google Scholar]
- Sousa, F.; Mafra, I.; Ribeiro, C.; Varandas, M.B.; Pina-Martins, F.; Simões, F.; Matos, J.C.; Glushkova, M.; Miguel, C.; Veloso, M.A.F.; et al. Population Structure in Quercus suber L. Revealed by Nuclear Microsatellite Markers. PeerJ 2022, 10, e13565. [Google Scholar] [CrossRef]
- Mendes, B.C.; Sampaio, T.; Vaughn, B.E.; Magalhães, H.; Silva, F.C.E.C.E.; Borges, C.M.; Simões, F.; Usié, A.; Almeida, M.A.; Ramos, A.M.P. Kinship Analysis and Pedigree Reconstruction of a Natural Regenerated Cork Oak (Quercus suber) Population. Forests 2022, 13, 226. [Google Scholar] [CrossRef]
- Prats, K.A.; Brodersen, C.R.; Ashton, M.W. Influence of Dry Season on Quercus suber L. Leaf Traits in the Iberian Peninsula. Am. J. Bot. 2019, 106, 656–666. [Google Scholar] [CrossRef] [PubMed]
- Lumaret, R.; Tryphon-Dionnet, M.; Michaud, H.; Sanuy, A.; Ipotesi, E.; Born, C.; Mir, C. Phylogeographical Variation of Chloroplast DNA in Cork Oak (Quercus suber). Ann. Bot. 2005, 96, 853–861. [Google Scholar] [CrossRef]
- Ramírez-Valiente, J.A.; Alía, R.; Aranda, I. Geographical Variation in Growth Form Traits in Quercus suber and Its Relation to Population Evolutionary History. Evol. Ecol. 2013, 28, 55–68. [Google Scholar] [CrossRef]
- Gandour, M.; Khouja, M.L.; Toumi, L.; Triki, S. Morphological Evaluation of Cork Oak (Quercus suber): Mediterranean Provenance Variability in Tunisia. Ann. For. Sci. 2007, 64, 549–555. [Google Scholar] [CrossRef]
- Ramírez-Valiente, J.A.; Sánchez-Gómez, D.; Aranda, I.; Valladares, F. Phenotypic Plasticity and Local Adaptation in Leaf Ecophysiological Traits of 13 Contrasting Cork Oak Populations under Different Water Availabilities. Tree Physiol. 2010, 30, 618–627. [Google Scholar] [CrossRef]
- Varela, M.C. Reproductive behaviour and clonal stump/root propagation and consequences for sustainable genetic variability in cork oak and holm oak in Portugal. In Proceedings of the Second International Congress of Silviculture, Florence, Italy, 26–29 November 2014; Accademia Italiana di Scienze Forestali: Florence, Italy, 2015; pp. 74–80, ISBN 978-88-87553-21-5. [Google Scholar] [CrossRef]
- European Forest Genetic Resources Programme. Available online: https://www.euforgen.org/ (accessed on 16 May 2023).
- De Vries, S.M.G.; Alan, M.; Bozzano, M.; Burianek, V.; Collin, E.; Cottrell, J.; Ivankovic, M.; Kelleher, C.T.; Koskela, J.; Rotach, P.; et al. Pan-European Strategy for Genetic Conservation of Forest Trees and Establishment of a Core Network of Dynamic Conservation Units; Bioversity International: Rome, Italy, 2015. [Google Scholar]
- EUFGIS. Available online: http://www.eufgis.org/ (accessed on 28 July 2023).
- Kelleher, C.T.; de Vries, S.M.G.; Baliuckas, V.; Bozzano, M.; Frýdl, J.; Gonzalez Goicoechea, P.; Ivankovic, M.; Kandemir, G.; Koskela, J.; Kozioł, C.; et al. Approaches to the Conservation of Forest Genetic Resources in Europe in the Context of Climate Change; Bioversity International: Rome, Italy, 2015. [Google Scholar]
- Vidal, N.; Vieitez, A.M.; Fernandez, M.; Cuenca, B.; Ballester, A. Establishment of Cryopreserved Gene Banks of European Chestnut and Cork Oak. Eur. J. For. Res. 2010, 129, 635–643. [Google Scholar] [CrossRef]
- Ramos, A.M.P.; Usié, A.; Barbosa, P.; Barros, P.P.; Capote, T.; Chaves, I.; Simões, F.; Abreu, I.A.; Carrasquinho, I.; Faro, C.; et al. The Draft Genome Sequence of Cork Oak. Sci. Data 2018, 5, 180069. [Google Scholar] [CrossRef]
- Zoldoš, V.; Papeš, D.; Brown, S.C.; Panaud, O.; Siljak-Yakovlev, S. Genome Size and Base Composition of Seven Quercus Species: Inter- and Intra-Population Variation. Genome 1998, 41, 162–168. [Google Scholar] [CrossRef]
- Genosuber Consortium|CorkOakDB. Available online: https://corkoakdb.org/genosuber (accessed on 28 June 2023).
- Arias-Baldrich, C.; Silva, M.A.I.; Bergeretti, F.; Chaves, I.; Miguel, C.; Saibo, N.J.M.; Sobral, D.; Faria, D.; Barros, P.P. CorkOakDB—The Cork Oak Genome Database Portal. Database 2020, 2020, baaa114. [Google Scholar] [CrossRef] [PubMed]
- Lindner, M. How to adapt forest management in response to the challenges of climate change? In Climate Change and Forest Genetic Diversity: Implications for Sustainable Forest Management in Europe; Koskela, J., Buck, A., Teissier du Cros, E., Eds.; Bioversity International: Rome, Italy, 2007; pp. 31–42. [Google Scholar]
- Kim, H.J.; Cha, H.J.; Kwak, M.J.; Khaine, I.; You, H.N.; Lee, T.H.; Ahn, T.Y.; Woo, S.Y. Why Does Quercus suber Species Decline in Mediterranean Areas? J. Asia Pac. Biodivers. 2017, 10, 337–341. [Google Scholar] [CrossRef]
- Moricca, S.; Linaldeddu, B.T.; Ginetti, B.; Scanu, B.; Franceschini, A.; Ragazzi, A. Endemic and Emerging Pathogens Threatening Cork Oak Trees: Management Options for Conserving a Unique Forest Ecosystem. Plant Dis. 2016, 100, 2184–2193. [Google Scholar] [CrossRef]
- Tiberi, R.; Gossner, M.M.; Bracalini, M.; Croci, F.; Panzavolta, T. Cork Oak Pests: A Review of Insect Damage and Management. Ann. For. Sci. 2016, 73, 219–232. [Google Scholar] [CrossRef]
- Branco, M.; Ramos, P. Coping with pests and diseases. In Cork Oak Woodlands on the Edge: Ecology, Adaptive Management, and Restoration; Aronson, J., Pereira, J.S., Pausas, J.G., Eds.; Island Press: Washington, DC, USA, 2012; pp. 103–111. [Google Scholar]
- Thomas, F.M. Recent Advances in Cause-Effect Research on Oak Decline in Europe. CABI Rev. 2008, 37, 1–12. [Google Scholar] [CrossRef]
- Sallé, A.; Nageleisen, L.; Lieutier, F. Bark and Wood Boring Insects Involved in Oak Declines in Europe: Current Knowledge and Future Prospects in a Context of Climate Change. For. Ecol. Manag. 2014, 328, 79–93. [Google Scholar] [CrossRef]
- Inácio, M.L.; Marcelino, J.M.; Lima, A.; Sousa, E.; Nóbrega, F. Ceratocystiopsis quercina Sp. Nov. Associated with Platypus cylindrus on Declining Quercus Suber in Portugal. Biology 2022, 11, 750. [Google Scholar] [CrossRef]
- Luque, J.L.; Parladé, J.; Pera, J. Pathogenicity of Fungi Isolated from Quercus suber in Catalonia (NE Spain). For. Pathol. 2000, 30, 247–263. [Google Scholar] [CrossRef]
- Brasier, C.M. Phytophthora cinnamomi and Oak Decline in Southern Europe. Environmental Constraints Including Climate Change. Ann. For. Sci. 1996, 53, 347–358. [Google Scholar] [CrossRef]
- Saiz-Fernández, I.; Đorđević, B.; Kerchev, P.; Černý, M.; Jung, T.; Berka, M.; Fu, C.-H.; Jung, M.H.; Brzobohatý, B. Differences in the Proteomic and Metabolomic Response of Quercus suber and Quercus variabilis During the Early Stages of Phytophthora cinnamomi Infection. Front. Microbiol. 2022, 13, 894533. [Google Scholar] [CrossRef] [PubMed]
- Ebadzad, G.; Cravador, A. Quantitative RT-PCR Analysis of Differentially Expressed Genes in Quercus suber in Response to Phytophthora cinnamomi Infection. SpringerPlus 2014, 3, 613. [Google Scholar] [CrossRef]
- Correia, B.; Valledor, L.; Meijón, M.; Rodriguez, J.; Dias, M.I.; Santos, C.; Cañal, M.J.; Rodriguez, R.; Pinto, G. Is the Interplay between Epigenetic Markers Related to the Acclimation of Cork Oak Plants to High Temperatures? PLoS ONE 2013, 8, e53543. [Google Scholar] [CrossRef] [PubMed]
- Ghouil, H.; Montpied, P.; Epron, D.; Ksontini, M.; Hanchi, B.; Dreyer, E. Thermal Optima of Photosynthetic Functions and Thermostability of Photochemistry in Cork Oak Seedlings. Tree Physiol. 2003, 23, 1031–1039. [Google Scholar] [CrossRef] [PubMed]
- Chaves, I.; Passarinho, J.; Capitão, C.G.; Chaves, M.M.N.; Fevereiro, P.; Ricardo, C.P. Temperature Stress Effects in Quercus suber Leaf Metabolism. J. Plant Physiol. 2011, 168, 1729–1734. [Google Scholar] [CrossRef]
- Seo, P.J.; Xiang, F.; Qiao, M.; Park, J.Y.; Lee, Y.H.; Kim, S.; Lee, Y.H.; Park, W.Y.; Park, C.M. The MYB96 Transcription Factor Mediates Abscisic Acid Signaling during Drought Stress Response in Arabidopsis. Plant Physiol. 2009, 151, 275–289. [Google Scholar] [CrossRef]
- Cominelli, E.; Galbiati, M.; Vavasseur, A.; Conti, L.; Sala, T.; Vuylsteke, M.; Leonhardt, N.; Dellaporta, S.L.; Tonelli, C. A Guard-Cell-Specific MYB Transcription Factor Regulates Stomatal Movements and Plant Drought Tolerance. Curr. Biol. 2005, 15, 1196–1200. [Google Scholar] [CrossRef]
- Feng, C.P.; Andreasson, E.; Maslak, A.; Mock, H.P.; Mattsson, O.; Mundy, J. Arabidopsis MYB68 in Development and Responses to Environmental Cues. Plant Sci. 2004, 167, 1099–1107. [Google Scholar] [CrossRef]
- Almeida, T.; Menéndez, E.; Capote, T.; Ribeiro, T.; Santos, C.; Gonçalves, S. Molecular Characterization of Quercus suber MYB1, a Transcription Factor up-Regulated in Cork Tissues. J. Plant Physiol. 2013, 170, 172–178. [Google Scholar] [CrossRef]
- Almeida, T.; Pinto, G.; Correia, B.; Santos, C.; Gonçalves, S. QsMYB1 Expression is Modulated in Response to Heat and Drought Stresses and during Plant Recovery in Quercus suber. Plant Physiol. Biochem. 2013, 73, 274–281. [Google Scholar] [CrossRef] [PubMed]
- Magalhães, A.L.; Verde, N.; Reis, F.; Martins, I.C.B.; Costa, D.C.; Lino-Neto, T.; Castro, P.M.; Tavares, R.M.; Azevedo, H. RNA-Seq and Gene Network Analysis Uncover Activation of an ABA-Dependent Signalosome During the Cork Oak Root Response to Drought. Front. Plant Sci. 2016, 6, 1195. [Google Scholar] [CrossRef]
- Morillas, L.; Leiva, M.J.; Pérez-Ramos, I.M.; Cambrollé, J.; Matías, L. Latitudinal Variation in the Functional Response of Quercus suber Seedlings to Extreme Drought. Sci. Total Environ. 2023, 887, 164122. [Google Scholar] [CrossRef]
- Dias, M.I.; Santos, C.; Araújo, M.; Barros, P.P.; Oliveira, M.; De Oliveira, J.P.M. Quercus suber Roots Activate Antioxidant and Membrane Protective Processes in Response to High Salinity. Plants 2022, 11, 557. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, J.P.M.; Santos, C.; Araújo, M.; Oliveira, M.B.P.P.; Dias, M.I. High-Salinity Activates Photoprotective Mechanisms in Quercus suber via Accumulation of Carbohydrates and Involvement of Non-Enzymatic and Enzymatic Antioxidant Pathways. New For. 2021, 53, 285–300. [Google Scholar] [CrossRef]
- Hernández, J.A. Salinity Tolerance in Plants: Trends and Perspectives. Int. J. Mol. Sci. 2019, 20, 2408. [Google Scholar] [CrossRef] [PubMed]
- Capote, T.; Barbosa, P.; Usié, A.; Ramos, A.M.P.; Inácio, V.; Ordás, R.J.; Gonçalves, S.; Morais-Cecílio, L. ChIP-Seq Reveals That QsMYB1 Directly Targets Genes Involved in Lignin and Suberin Biosynthesis Pathways in Cork Oak (Quercus suber). BMC Plant Biol. 2018, 18, 198. [Google Scholar] [CrossRef]
- Teixeira, R.T.; Fortes, A.M.; Pinheiro, C.; Pereira, H. Comparison of Good- and Bad-Quality Cork: Application of High-Throughput Sequencing of Phellogenic Tissue. J. Exp. Bot. 2014, 65, 4887–4905. [Google Scholar] [CrossRef]
- Boher, P.; Soler, M.; Sanchez, A.L.R.; Hoede, C.; Noirot, C.; Paiva, J.A.P.; Serra, O.; Figueras, M. A Comparative Transcriptomic Approach to Understanding the Formation of Cork. Plant Mol. Biol. 2017, 96, 103–118. [Google Scholar] [CrossRef]
- Azevedo, J.; Lopes, P.S.; Mateus, N.; De Freitas, V. Cork, a Natural Choice to Wine? Foods 2022, 11, 2638. [Google Scholar] [CrossRef]
- Leite, C.D.; Oliveira, V.; Miranda, I.; Pereira, H. Cork Oak and Climate Change: Disentangling Drought Effects on Cork Chemical Composition. Sci. Rep. 2020, 10, 7800. [Google Scholar] [CrossRef] [PubMed]
Hybrid | Parental Species | Reference | Observations |
---|---|---|---|
Quercus × avellaniformis | Quercus rotundifolia Lam. × Q. suber | [42] | Present near cork oak and round-leaf oak trees, where their flowering and pollination periods overlap |
Quercus × capeloana | Quercus pseudococcifera Desf. × Q. suber | [41] | Present in Portugal in coaster hyperoceanic areas. Has totally free cup scales, while Q. coscojosuberiformis has more appressed scales |
Quercus × celtica | Quercus lusitanica Lam. × Q. suber | [41] | Present in the undergrowth of Q. suber in Portugal |
Quercus × coscojosuberiformis | Quercus coccifera L. × Q. suber | [43] | Present in Spain; can exist in nature as a great area of parents overlap |
Quercus × pacensis | Quercus faginea Lam. × Q. suber | [44] | Rare in Southern Portugal, pure Q. faginea can develop a corky bark thanks to secondary growth |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, J.; Araújo, S.d.S.; Sales, H.; Pontes, R.; Nunes, J. Quercus suber L. Genetic Resources: Variability and Strategies for Its Conservation. Forests 2023, 14, 1925. https://doi.org/10.3390/f14091925
Silva J, Araújo SdS, Sales H, Pontes R, Nunes J. Quercus suber L. Genetic Resources: Variability and Strategies for Its Conservation. Forests. 2023; 14(9):1925. https://doi.org/10.3390/f14091925
Chicago/Turabian StyleSilva, Joana, Susana de Sousa Araújo, Hélia Sales, Rita Pontes, and João Nunes. 2023. "Quercus suber L. Genetic Resources: Variability and Strategies for Its Conservation" Forests 14, no. 9: 1925. https://doi.org/10.3390/f14091925
APA StyleSilva, J., Araújo, S. d. S., Sales, H., Pontes, R., & Nunes, J. (2023). Quercus suber L. Genetic Resources: Variability and Strategies for Its Conservation. Forests, 14(9), 1925. https://doi.org/10.3390/f14091925