Is the Fine Root Tensile Strength Predictable from Structural and Morphological Traits across Mycorrhizal Types in Cool-Temperate Woody Species?
Abstract
1. Introduction
2. Materials and Methods
2.1. Species Selection and Experimental Design
2.2. Root Traits
2.3. Root Tensile Strength
2.4. Statistical Analysis
3. Results
3.1. Fine Root Tr and 5 Root Traits
3.2. Relationships between Fine Root Tr and 5 Root Traits
4. Discussion
4.1. Determinants among Mycorrhizal Groups
4.2. Variation among Mycorrhizal Groups
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stokes, A.; Atger, C.; Bengough, A.G.; Fourcaud, T.; Sidle, R.C. Desirable plant root traits for protecting natural and engineered slopes against landslides. Plant Soil 2009, 324, 1–30. [Google Scholar] [CrossRef]
- Chen, Y.; Tang, H.; He, B.H.; Yan, H.; Liu, X.H.; Qiang, J.J. Root tensile strength of terrace hedgerow plants in the karst trough valleys of SW China: Relation with root morphology and fiber content. Int. Soil. Water Consev. 2022, 10, 677–686. [Google Scholar] [CrossRef]
- Abdi, E.; Majnounian, B.; Rahimi, H.; Zobeiri, M. Distribution and tensile strength of Hornbeam (Carpinus betulus) roots growing on slopes of Caspian Forests, Iran. J. For. Res. 2009, 20, 105–110. [Google Scholar] [CrossRef]
- De Baets, S.; Poesen, J.; Reubens, B.; Wemans, K.; De Baerdemaeker, J.; Muys, B. Root tensile strength and root distribution of typical Mediterranean plant species and their contribution to soil shear strength. Plant Soil 2008, 305, 207–226. [Google Scholar] [CrossRef]
- Genet, M.; Stokes, A.; Salin, F.; Mickovski, S.B.; Fourcaud, T.; Dumail, J.F.; Beek, R.V. The influence of cellulose content on tensile strength in tree roots. Plant Soil 2005, 278, 1–9. [Google Scholar] [CrossRef]
- Ghestem, M.; Cao, K.F.; Ma, W.Z.; Rowe, N.; Leclerc, R.; Gadenne, C.; Stokes, A. A framework for identifying plant species to be used as ‘ecological engineers’ for fixing soil on unstable slopes. PLoS ONE 2014, 9, e95876. [Google Scholar] [CrossRef]
- Mahannopkul, K.; Jotisankasa, A. Influence of root suction on tensile strength of Chrysopogon zizanioides roots and its implication on bioslope stabilization. J. Mt. Sci. 2019, 16, 275–284. [Google Scholar] [CrossRef]
- Giadrossich, F.; Schwarz, M.; Cohen, D.; Cislaghi, A.; Vergani, C.; Hubble, T.; Phillips, C.; Stokes, A. Methods to measure the mechanical behaviour of tree roots: A review. Ecol. Eng. 2017, 109, 256–271. [Google Scholar] [CrossRef]
- Bischetti, G.B.; Chiaradia, E.A.; Simonato, T.; Speziali, B.; Vitali, B.; Vullo, P.; Zocco, A. Root strength and root area of forest species in Lombardy (Northern Italy). Plant Soil 2005, 278, 11–22. [Google Scholar] [CrossRef]
- Zhang, C.B.; Chen, L.H.; Jiang, J. Why fine tree roots are stronger than thicker roots: The role of cellulose and lignin in relation to slope stability. Geomorphology 2014, 206, 196–202. [Google Scholar] [CrossRef]
- Burylo, M.; Rey, F.; Mathys, N.; Dutoit, T. Plant root traits affecting the resistance of soils to concentrated flow erosion. Earth Surf. Process Landf. 2012, 37, 1463–1470. [Google Scholar] [CrossRef]
- Lee, J.T.; Chu, M.Y.; Lin, Y.S.; Kung, K.N.; Lin, W.C.; Lee, M.J. Root Traits and Biomechanical Properties of Three Tropical Pioneer Tree Species for Forest Restoration in Landslide Areas. Forests 2020, 11, 179. [Google Scholar] [CrossRef]
- Zhang, C.B.; Chen, L.H.; Jiang, J.; Zhou, S. Effects of gauge length and strain rate on the tensile strength of tree roots. Trees 2012, 26, 1577–1584. [Google Scholar] [CrossRef]
- Mao, Z.; Wang, Y.; McCormack, M.L.; Rowe, N.; Deng, X.B.; Yang, X.D.; Xia, S.E.; Nespoulous, J.; Sidle, R.C.; Guo, D.L.; et al. Mechanical traits of fine roots as a function of topology and anatomy. Ann. Bot. 2018, 122, 1103–1116. [Google Scholar] [CrossRef]
- Pregitzer, K.S. Fine roots of trees-a new perspective. New Phytol. 2002, 154, 267–270. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.Q.; Liu, Z.K.; Chen, H.; Tang, M. Symbiosis of arbuscular mycorrhizal fungi and Robinia pseudoacacia L. improves root tensile strength and soil aggregate stability. PLoS ONE 2016, 11, e0153378. [Google Scholar] [CrossRef] [PubMed]
- Kubisch, P.; Hertel, D.; Leuschner, C. Do ectomycorrhizal and arbuscular mycorrhizal temperate tree species systematically differ in root order-related fine root morphology and biomass? Front. Plant Sci. 2015, 6, 64. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.L.; Koide, R.T.; Adams, T.S.; De Forest, J.L.; Cheng, L.; Eissenstat, D.M. Root morphology and mycorrhizal symbioses together shape nutrient foraging strategies of temperate trees. Proc. Natl. Acad. Sci. USA 2016, 113, 8741–8746. [Google Scholar] [CrossRef]
- Ma, Z.Q.; Guo, D.L.; Xu, X.L.; Bardgett, R.D.; Eissenstat, D.M.; McCormack, M.L.; Hedin, L.O. Evolutionary history resolves global organization of root functional traits. Nature 2018, 555, 94–97. [Google Scholar] [CrossRef]
- Karst, J.; Franklin, J.; Simeon, A.; Light, A.; Bennett, J.A.; Erbilgin, N. Assessing the dual-mycorrhizal status of a widespread tree species as a model for studies on stand biogeochemistry. Mycorrhiza 2021, 31, 313–324. [Google Scholar] [CrossRef]
- Cheng, L.; Chen, W.L.; Adams, T.S.; Wei, X.; Li, L.; McCormack, M.L.; DeForest, J.L.; Koide, R.T.; Eissenstat, D.M. Mycorrhizal fungi and roots are complementary in foraging within nutrient patches. Ecology 2016, 97, 2815–2823. [Google Scholar] [CrossRef] [PubMed]
- Püschel, D.; Bitterlich, M.; Rydlová, J.; Jansa, J. Facilitation of plant water uptake by an arbuscular mycorrhizal fungus: A Gordian knot of roots and hyphae. Mycorrhiza 2020, 30, 299–313. [Google Scholar] [CrossRef]
- Chen, X.W.; Kang, Y.; So, P.S.; Ng, C.W.W.; Wong, M.H. Arbuscular mycorrhizal fungi increase the proportion of cellulose and hemicellulose in the root stele of vetiver grass. Plant Soil 2018, 425, 309–319. [Google Scholar] [CrossRef]
- Smith, S.E.; Read, D.J. Mycorrhizal Symbiosis, 3rd ed.; Academic Press: London, UK, 2008; ISBN 978-0-12-370526-6. [Google Scholar]
- Makoto, K.; Wilson, S.D.; Sato, T.; Blume-Werry, G.; Cornelissen, J.H.C. Synchronous and asynchronous root and shoot phenology in temperate woody seedlings. Oikos 2020, 129, 643–650. [Google Scholar] [CrossRef]
- Nakamura, Y.; Fujikawa, T.; Fujita, M. Long-term changes in the soil properties and the soil macrofauna and mesofauna of an agricultural field in northern Japan during transition from chemical-intensive farming to nature farming. J. Crop Prod. 2001, 3, 63–75. [Google Scholar] [CrossRef]
- Freschet, G.T.; Pagès, L.; Iversen, C.M.; Comas, L.H.; Rewald, B.; Roumet, C.; Klimešová, J.; Zadworny, M.; Poorter, H.; Postma, J.A.; et al. A starting guide to root ecology: Strengthening ecological concepts and standardising root classification, sampling, processing and trait measurements. New Phytol. 2021, 232, 973–1122. [Google Scholar] [CrossRef] [PubMed]
- McCormack, M.L.; Dickie, I.A.; Eissenstat, D.M.; Fahey, T.J.; Fernandez, C.W.; Guo, D.L.; Helmisaari, H.S.; Hobbie, E.A.; Iversen, C.M.; Jackson, R.B.; et al. Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes. New Phytol. 2015, 207, 505–518. [Google Scholar] [CrossRef] [PubMed]
- Hales, T.C.; Cole-Hawthorne, C.; Lovell, L.; Evans, S. Assessing the accuracy of simple field based root strength measurements. Plant Soil 2013, 372, 553–565. [Google Scholar] [CrossRef]
- Böhm, W. Methods of Studying Root Systems; Durham, V.D.B., Athens, F.G., Wtirzburg, O.L.L., Oak Ridge, J.S.O., Eds.; Springer: Berlin/Heidelberg, Germany, 1979; ISBN 978-3-642-67284-2. [Google Scholar]
- Mattia, C.; Bischetti, G.B.; Gentile, F. Biotechnical characteristics of root systems of typical Mediterranean species. Plant Soil 2005, 278, 23–32. [Google Scholar] [CrossRef]
- Docker, B.B.; Hubble, T.C.T. Quantifying root-reinforcement of river bank soils by four Australian tree species. Geomorphology 2008, 100, 401–418. [Google Scholar] [CrossRef]
- Ji, J.N.; Kokutse, N.; Genet, M.; Fourcaud, T.; Zhang, Z.Q. Effect of spatial variation of tree root characteristics on slope stability. A case study on Black Locust (Robinia pseudoacacia) and Arborvitae (Platycladus orientalis) stands on the Loess Plateau, China. Catena 2012, 92, 139–154. [Google Scholar] [CrossRef]
- Gao, J.; Zhou, M.Y.; Shao, J.J.; Zhou, G.Y.; Liu, R.Q.; Zhou, L.G.; Liu, H.T.; He, Y.H.; Chen, Y.; Zhou, X.H.; et al. Fine root trait-function relationships affected by mycorrhizal type and climate. Geoderma 2021, 394, 115011. [Google Scholar] [CrossRef]
- Ma, X.M.; Zhu, B.; Nie, Y.X.; Liu, Y.; Kuzyakov, Y. Root and mycorrhizal strategies for nutrient acquisition in forests under nitrogen deposition: A meta-analysis. Soil. Biol. Biochem. 2021, 163, 108418. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, Z.C.; Ma, X.H.; Jin, G.Q. Foraging ability and growth performance of four subtropical tree species in response to heterogeneous nutrient environments. J. For. Res. 2010, 15, 91–98. [Google Scholar] [CrossRef]
- Zhao, J.J.; Gong, L. Response of fine root carbohydrate content to soil nitrogen addition and its relationship with soil factors in a Schrenk (Picea schrenkiana) forest. J. Plant Growth Regul. 2021, 40, 1210–1221. [Google Scholar] [CrossRef]
- Teste, F.P.; Jones, M.D.; Dickie, I.A. Dual-mycorrhizal plants: Their ecology and relevance. New Phytol. 2020, 225, 1835–1851. [Google Scholar] [CrossRef] [PubMed]
- Craig, M.E.; Turner, B.L.; Liang, C.; Clay, K.; Johnson, D.J.; Phillips, R.P. Tree mycorrhizal type predicts within-site variability in the storage and distribution of soil organic matter. Glob. Chang. Biol. 2018, 24, 3317–3330. [Google Scholar] [CrossRef]
- Graf, F.; Frei, M. Soil aggregate stability related to soil density, root length, and mycorrhiza using site-specific Alnus incana and Melanogaster variegatus s.l. Ecol. Eng. 2013, 57, 314–323. [Google Scholar] [CrossRef]
- Bast, A.; Wilcke, W.; Graf, F.; Lüscher, P.; Gärtner, H. Does mycorrhizal inoculation improve plant survival, aggregate stability, and fine root development on a coarse-grained soil in an alpine eco-engineering field experiment? J. Geophys. Res.-Biogeo. 2016, 121, 2158–2171. [Google Scholar] [CrossRef]
- Berta, G.; Trotta, A.; Fusconi, A.; Hooker, J.E.; Munro, M.; Atkinson, D.; Giovannetti, M.; Morini, S.; Fortuna, P.; Tisserant, B.; et al. Arbuscular mycorrhizal induced changes to plant growth and root system morphology in Prunus cerasifera. Tree Phys. 1995, 15, 281–293. [Google Scholar] [CrossRef]
- Caesar-Ton That, T.C.; Shelver, W.L.; Thorn, R.G.; Cochran, V.L. Generation of antibodies for soil aggregating basidiomycete detection as an early indicator of trends in soil quality. Appl. Soil. Ecol. 2001, 18, 99–116. [Google Scholar] [CrossRef]
- Mankel, A.; Krause, K.; Kothe, E. Identification of a hydrophobin gene that is developmentally regulated in the ectomycorrhizal fungus Tricholoma terreum. Appl. Environ. Microbiol. 2002, 68, 1408–1413. [Google Scholar] [CrossRef] [PubMed]
- Tagu, D.; De Bellis, R.; Balestrini, R.; De Vries, O.M.H.; Piccoli, G.; Stocchi, V.; Bonfante, P.; Martin, F. Immunolocalization of hydrophobin HYDPt-1 from the ectomycorrhizal basidiomycete Pisolithus tinctorius during colonization of Eucalyptus globulus roots. New Phytol. 2008, 149, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Caravaca, F.; Barea, J.M.; Palenzuela, J.; Figueroa, D.; Alguacil, M.M.; Roldán, A. Establishment of shrub species in a degraded semiarid site after inoculation with native or allochthonous arbuscular mycorrhizal fungi. Appl. Soil. Ecol. 2003, 22, 103–111. [Google Scholar] [CrossRef]
- Chaudhary, V.B.; Bowker, M.A.; O’Dell, T.E.; Grace, J.B.; Redman, A.E.; Rillig, M.C.; Johnson, N.C. Untangling the biological contributions to soil stability in semiarid shrublands. Ecol. Appl. 2009, 19, 110–122. [Google Scholar] [CrossRef]
- King, E.G.; Hobbs, R.J. Identifying linkages among conceptual models of ecosystem degradation and restoration: Towards an integrative framework. Restor. Ecol. 2006, 14, 369–378. [Google Scholar] [CrossRef]
Species | Family | Mycorrhizal |
---|---|---|
Abies sachalinensis | Pinaceae | EM |
Picea genii | Pinaceae | EM |
Quercus crispula | Fagaceae | EM |
Tilia japonica | Malvaceae | EM |
Aralia elata | Araliaceae | AM |
Cercidiphyllum japonicum | Cercidiphyllaceae | AM |
Fraxinus mandshurica var. Japonica | Oleaceae | AM |
Ulmus davidiana var. japonica | Ulmaceae | AM |
Lespedeza bicolor | Fabaceae | AM |
Magnolia obovata | Magnoliaceae | AM |
Alnus hirsuta | Betulaceae | AEM |
Cerasus sargentii | Rosaceae | AEM |
Morus australis | Moraceae | AEM |
Salix caprea | Salicaceae | AEM |
Sorbus commixta | Rosaceae | AEM |
Tensile Strength (MPa) | Average Fine Root Diameter (mm) | Root Tissue Density (g/cm3) | Total Fine Root Biomass(g) | Maximum Root Depth (cm) | Specific Root Length (cm/g) | |
---|---|---|---|---|---|---|
ANOVA between species | F = 11.779 *** | F = 14.31 *** | F = 3.66 *** | F = 11.21 *** | F = 3.58 *** | F = 2.27 * |
ANOVA between groups | F = 7.088 ** | F = 6.97 ** | F = 6.32 ** | F = 4.94 ** | F = 0.095 ns | F = 0.067 ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, R.; Makoto, K. Is the Fine Root Tensile Strength Predictable from Structural and Morphological Traits across Mycorrhizal Types in Cool-Temperate Woody Species? Forests 2023, 14, 1542. https://doi.org/10.3390/f14081542
Zeng R, Makoto K. Is the Fine Root Tensile Strength Predictable from Structural and Morphological Traits across Mycorrhizal Types in Cool-Temperate Woody Species? Forests. 2023; 14(8):1542. https://doi.org/10.3390/f14081542
Chicago/Turabian StyleZeng, Ruiqi, and Kobayashi Makoto. 2023. "Is the Fine Root Tensile Strength Predictable from Structural and Morphological Traits across Mycorrhizal Types in Cool-Temperate Woody Species?" Forests 14, no. 8: 1542. https://doi.org/10.3390/f14081542
APA StyleZeng, R., & Makoto, K. (2023). Is the Fine Root Tensile Strength Predictable from Structural and Morphological Traits across Mycorrhizal Types in Cool-Temperate Woody Species? Forests, 14(8), 1542. https://doi.org/10.3390/f14081542