Post-Fire Evolution of Soil Nitrogen in a Dahurian Larch (Larix gmelinii) Forest, Northeast China
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Soil Sampling and Analyses
2.3. Statistical Analysis
3. Results
3.1. Evolution of the Soil N Contents in the Wildfire Chronosequence
3.1.1. Soil NH4+-N Content
3.1.2. Soil NO3−-N Content
3.1.3. Soil AAN Content
3.2. Evolution of Soil N Forms in the Wildfire Chronosequence
3.2.1. Form of Soil Mineral N
3.2.2. Form of Soil-Available N
4. Discussion
4.1. Effect of Wildfire on the Evolution of the Soil Available N Content
4.1.1. Effect of Wildfire on the Evolution of the Soil NH4+-N Content
4.1.2. Effect of Wildfire on the Evolution of the Soil NO3−-N Content
4.1.3. Effect of Wildfire on the Evolution of the Soil AAN Content
4.2. Effect of Wildfire on the Evolution of Soil N Forms
4.2.1. Effect of Wildfire on the Evolution of the Soil Mineral N Form
4.2.2. Effect of Wildfire on the Evolution of the Soil Available N Form
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Camarero, J.; Carrer, M. Bridging long-term wood functioning and nitrogen deposition to better understand changes in tree growth and forest productivity. Tree Physiol. 2017, 37, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Nordin, A.; Högberg, P.; Näsholm, T. Soil nitrogen form and plant nitrogen uptake along a boreal forest productivity gradient. Oecologia 2001, 129, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Wolf, K.; Veldkamp, E.; Homeier, J.; Martinson, G.O. Nitrogen availability links forest productivity, soil nitrous oxide and nitric oxide fluxes of a tropical montane forest in southern Ecuador. Glob. Biogeochem. Cycle 2011, 25, GB4009. [Google Scholar] [CrossRef]
- Yang, H. Effects of nitrogen and phosphorus addition on leaf nutrient characteristics in a subtropical forest. Trees 2018, 32, 383–391. [Google Scholar] [CrossRef]
- Chapin, F.S. The mineral nutrition of wild plants. Annu. Rev. Ecol. Syst. 1980, 11, 233–260. [Google Scholar] [CrossRef]
- Imsande, J.; Touraine, B. N Demand and the Regulation of Nitrate Uptake. Plant Physiol. 1994, 105, 3–7. [Google Scholar] [CrossRef]
- Chapin, F.S.; Moilanen, L.; Kielland, K. Preferential use of organic nitrogen for growth by a nonmycorrhizal Arctic sedge. Nature 1993, 361, 150–153. [Google Scholar] [CrossRef]
- Inselsbacher, E.; Nasholm, T. The below-ground perspective of forest plants: Soil provides mainly organic nitrogen for plants and mycorrhizal fungi. New Phytol. 2012, 195, 329–334. [Google Scholar] [CrossRef]
- Kielland, K. Role of free amino acids in the nitrogen economy of arctic cryptogams. Ecoscience 1997, 4, 75–79. [Google Scholar] [CrossRef]
- Lim, H.; Jamtgard, S.; Oren, R.; Gruffman, L.; Kunz, S.; Nasholm, T.; Inselsbacher, E. Organic nitrogen enhances nitrogen nutrition and early growth of Pinus sylvestris seedlings. Tree Physiol. 2022, 42, 513–522. [Google Scholar] [CrossRef]
- Nasholm, T.; Kielland, K.; Ganeteg, U. Uptake of organic nitrogen by plants. New Phytol. 2009, 182, 31–48. [Google Scholar] [CrossRef] [PubMed]
- Schimel, J.P.; Bennett, J. Nitrogen mineralization: Challenges of a changing paradigm. Ecology 2004, 85, 591–602. [Google Scholar] [CrossRef]
- Bret-Harte, M.S.; Mack, M.C.; Shaver, G.R.; Huebner, D.C.; Johnston, M.; Mojica, C.A.; Pizano, C.; Reiskind, J.A. The response of Arctic vegetation and soils following an unusually severe tundra fire. Philos. Trans. R. Soc. B-Biol. Sci. 2013, 368, 20120490. [Google Scholar] [CrossRef] [PubMed]
- Homyak, P.M.; Slessarev, E.W.; Hagerty, S.; Greene, A.C.; Marchus, K.; Dowdy, K.; Iverson, S.; Schimel, J.P. Amino acids dominate diffusive nitrogen fluxes across soil depths in acidic tussock tundra. New Phytol. 2021, 231, 2162–2173. [Google Scholar] [CrossRef] [PubMed]
- Weintraub, M.N.; Schimel, J.P. The seasonal dynamics of amino acids and other nutrients in Alaskan Arctic tundra soils. Biogeochemistry 2005, 73, 359–380. [Google Scholar] [CrossRef]
- Feng, Y.; Wang, J.; Yuan, K.; Zong, W.; Guo, D. Vegetation affects pool size and composition of amino acids in Tibetan alpine meadow soils. Geoderma 2018, 310, 44–52. [Google Scholar] [CrossRef]
- Miller, A.E.; Bowman, W.D. Alpine plants show species-level differences in the uptake of organic and inorganic nitrogen. Plant Soil 2003, 250, 283–292. [Google Scholar] [CrossRef]
- Zhang, Z.; Yuan, Y.; Liu, Q.; Yin, H. Plant nitrogen acquisition from inorganic and organic sources via root and mycelia pathways in ectomycorrhizal alpine forests. Soil Biol. Biochem. 2019, 136, 107517. [Google Scholar] [CrossRef]
- Gao, L.; Cui, X.; Hill, P.W.; Guo, Y. Uptake of various nitrogen forms by co-existing plant species in temperate and cold-temperate forests in northeast China. Appl. Soil Ecol. 2020, 147, 103398. [Google Scholar] [CrossRef]
- Näsholm, T.; Ekblad, A.; Nordin, A.; Giesler, R.; Högberg, M.; Högberg, P. Boreal forest plants take up organic nitrogen. Nature 1998, 392, 914–916. [Google Scholar] [CrossRef]
- Knicker, H. How does fire affect the nature and stability of soil organic nitrogen and carbon? A review. Biogeochemistry 2007, 85, 91–118. [Google Scholar] [CrossRef]
- Fernandez-Garcia, V.; Marcos, E.; Fernandez-Guisuraga, J.M.; Taboada, A.; Suarez-Seoane, S.; Calvo, L. Impact of burn severity on soil properties in a Pinus pinaster ecosystem immediately after fire. Int. J. Wildland Fire 2019, 28, 354–364. [Google Scholar] [CrossRef]
- Guo, A.; Guo, Y.; Cui, X. Effects of Different Intensities of Fire Disturbances on Soil Nutrients in a Pinus massoniana Forest in the Greater Xing’ an Mountain. J. North-East For. Univ. 2011, 39, 69–71. [Google Scholar] [CrossRef]
- Li, B.; Liu, G.; Li, W.; Liu, X. Effects of different wildfire intensities on soil organic carbon and soil nutrients in Pinus tabulaeformis forests in Pingquan County, Hebei Province. Ecol. Sci. 2018, 37, 35–44. [Google Scholar] [CrossRef]
- Vega, J.A.; Fontúrbel, T.; Merino, A.; Fernández, C.; Ferreiro, A.; Jiménez, E. Testing the ability of visual indicators of soil burn severity to reflect changes in soil chemical and microbial properties in pine forests and shrubland. Plant Soil 2013, 369, 73–91. [Google Scholar] [CrossRef]
- Hinojosa, M.B.; Albert-Belda, E.; Gomez-Munoz, B.; Moreno, J.M. High fire frequency reduces soil fertility underneath woody plant canopies of Mediterranean ecosystems. Sci. Total Environ. 2021, 752, 141877. [Google Scholar] [CrossRef]
- Muqaddas, B.; Chen, C.R.; Lewis, T.; Wild, C. Temporal dynamics of carbon and nitrogen in the surface soil and forest floor under different prescribed burning regimes. For. Ecol. Manag. 2016, 382, 110–119. [Google Scholar] [CrossRef]
- Nichols, L.; Shinneman, D.J.; McIlroy, S.K.; de Graaff, M.-A. Fire frequency impacts soil properties and processes in sagebrush steppe ecosystems of the Columbia Basin. Appl. Soil Ecol. 2021, 165, 103967. [Google Scholar] [CrossRef]
- Mugica, L.; Canals, R.M.; San Emeterio, L. Changes in soil nitrogen dynamics caused by prescribed fires in dense gorse lands in SW Pyrenees. Sci. Total Environ. 2018, 639, 175–185. [Google Scholar] [CrossRef]
- San Emeterio, L.; Mugica, L.; Ugarte, M.D.; Goicoa, T.; Canals, R.M. Sustainability of traditional pastoral fires in highlands under global change: Effects on soil function and nutrient cycling. Agric. Ecosyst. Environ. 2016, 235, 155–163. [Google Scholar] [CrossRef]
- Bowd, E.J.; Banks, S.C.; Strong, C.L.; Lindenmayer, D.B. Long-term impacts of wildfire and logging on forest soils. Nat. Geosci. 2019, 12, 113–118. [Google Scholar] [CrossRef]
- Durán, J.; Rodríguez, A.; Fernández-Palacios, J.M.; Gallardo, A. Changes in soil N and P availability in a Pinus canariensis fire chronosequence. For. Ecol. Manag. 2008, 256, 384–387. [Google Scholar] [CrossRef]
- Prieto-Fernandez, A.; Villar, M.C.; Carballas, M.; Carballas, T.T. Short-term effects of a wildfire on the nitrogen status and its mineralization kinetics in an atlantic forest soil. Soil Biol. Biochem. 1994, 25, 1657–1664. [Google Scholar] [CrossRef]
- Prieto-Fernandez, A.; Carballas, M.; Carballas, T. Inorganic and organic N pools in soils burned or heated: Immediate alterations and evolution after forest wildfires. Geoderma 2004, 121, 291–306. [Google Scholar] [CrossRef]
- Song, L.; He, P.; Cui, X. Effects of severe forest fire on soil habitat factors in Greater Xing an Mountains. Chin. J. Ecol. 2015, 34, 1809–1814. [Google Scholar] [CrossRef]
- Kong, J.; Yang, J. Short-and long-term effects of fire on soil properties in a Dahurian larch forest in Great Xingan Mountains. Chin. J. Ecol. 2014, 33, 1445–1450. [Google Scholar] [CrossRef]
- Koyama, A.; Kavanagh, K.L.; Stephan, K. Wildfire Effects on Soil Gross Nitrogen Transformation Rates in Coniferous Forests of Central Idaho, USA. Ecosystems 2010, 13, 1112–1126. [Google Scholar] [CrossRef]
- Zhu, G.; Hu, T.; Li, F.; Zhao, B.; Sun, L. Soil nitrogen mineralization rate and its impact factors in Larix gmelinii forest after different years fire disturbance. J. Cent. South Univ. For. Technol. 2018, 38, 88–96. [Google Scholar] [CrossRef]
- Driscoll, K.G.; Arocena, J.M.; Massicotte, H.B. Post-fire soil nitrogen content and vegetation composition in Sub-Boreal spruce forests of British Columbia’s central interior, Canada. For. Ecol. Manag. 1999, 121, 227–237. [Google Scholar] [CrossRef]
- Hu, T.; Hu, H.; Li, F.; Zhao, B.; Wu, S.; Zhu, G.; Sun, L. Long-term effects of post-fire restoration types on nitrogen mineralisation in a Dahurian larch (Larix gmelinii) forest in boreal China. Sci. Total Environ. 2019, 679, 237–247. [Google Scholar] [CrossRef]
- Harrison, K.A.; Bol, R.; Bardgett, R.D. Do plant species with different growth strategies vary in their ability to compete with soil microbes for chemical forms of nitrogen? Soil Biol. Biochem. 2008, 40, 228–237. [Google Scholar] [CrossRef]
- Kielland, K.; McFarland, J.; Olson, K. Amino acid uptake in deciduous and coniferous taiga ecosystems. Plant Soil 2006, 288, 297–307. [Google Scholar] [CrossRef]
- DeBano, L.F.; Eberlein, G.E.; Dunn, P.H. Effects of Burning on Chaparral Soils: I. Soil Nitrogen. Soil Sci. Soc. Am. J. 1979, 43, 504–509. [Google Scholar] [CrossRef]
- Richards, A.E.; Brackin, R.; Lindsay, D.A.J.; Schmidt, S. Effect of fire and tree-grass patches on soil nitrogen in Australian tropical savannas. Austral. Ecol. 2012, 37, 668–677. [Google Scholar] [CrossRef]
- Sanchez, J.P.; Lazzari, M.A. Impact of Fire on Soil Nitrogen Forms in Central Semiarid Argentina. Arid. Soil Res. Rehabil. 1999, 13, 81–90. [Google Scholar] [CrossRef]
- Schmidt, S.; Stewart, G.R. Waterlogging and fire impacts on nitrogen availability and utilization in a subtropical wet heathland (wallum). Plant Cell Environ. 1997, 20, 1231–1241. [Google Scholar] [CrossRef]
- Leduc, S.D.; Rothstein, D.E. Plant-available organic and mineral nitrogen shift in dominance with forest stand age. Ecology 2010, 91, 708–720. [Google Scholar] [CrossRef]
- Lopez-Martin, M.; Nowak, K.M.; Miltner, A.; Knicker, H. Incorporation of N from burnt and unburnt N-15 grass residues into the peptidic fraction of fire affected and unaffected soils. J. Soils Sediments 2017, 17, 1554–1564. [Google Scholar] [CrossRef]
- Zhang, R.; Guo, Y.; Cui, X. Nitrogen Forms on the Growth of Larix gmelinii Seedings. J. North-East For. Univ. 2017, 45, 16–19. [Google Scholar] [CrossRef]
- Yingli, Z.; Anmin, X.; Haobo, S.; Aisheng, M. Determination study and improvement of nitrate and available phosphorus in soil by Continuous Flow Analytical System. Soil Fertil. Sci. China 2008, 26, 77–80. [Google Scholar]
- Moore, S.; Stein, W.H. A modified ninhydrin reagent for the photometric determination of amino acids and related compounds. J. Biol. Chem. 1954, 211, 907–913. [Google Scholar] [CrossRef] [PubMed]
- Wan, S.; Hui, D.; Luo, Y. Fire effects on nitrogen pools and dynamics in terrestrial ecosystems: A meta-analysis. Ecol. Appl. 2001, 11, 1349–1365. [Google Scholar] [CrossRef]
- Mataix-Solera, J.; Gómez, I.; Navarro-Pedreo, J.; Guerrero, C.; Moral, R. Soil organic matter and aggregates affected by wildfire in a Pinus halepensis forest in a Mediterranean environment. Int. J. Wildland Fire 2002, 11, 107–114. [Google Scholar] [CrossRef]
- Yildiz, O.; Esen, D.; Karaoz, O.M.; Sarginci, M.; Toprak, B.; Soysal, Y. Effects of different site preparation methods on soil carbon and nutrient removal from Eastern beech regeneration sites in Turkey’s Black Sea region. Appl. Soil Ecol. 2010, 45, 49–55. [Google Scholar] [CrossRef]
- Neary, D.G.; Klopatek, C.C.; DeBano, L.F.; Ffolliott, P.F. Fire effects on belowground sustainability: A review and synthesis. For. Ecol. Manag. 1999, 122, 51–71. [Google Scholar] [CrossRef]
- Granged, A.J.P.; Jordán, A.; Zavala, L.M.; Muñoz-Rojas, M.; Mataix-Solera, J. Short-term effects of experimental fire for a soil under eucalyptus forest (SE Australia). Geoderma 2011, 167–168, 125–134. [Google Scholar] [CrossRef]
- Heydari, M.; Rostamy, A.; Najafi, F.; Dey, D.C. Effect of fire severity on physical and biochemical soil properties in Zagros oak (Quercus brantii Lindl.) forests in Iran. J. For. Res. 2017, 28, 95–104. [Google Scholar] [CrossRef]
- Varela, M.E.; Benito, E.; Keizer, J.J. Influence of wildfire severity on soil physical degradation in two pine forest stands of NW Spain. Catena 2015, 133, 342–348. [Google Scholar] [CrossRef]
- Leiros, M.; Trasar-Cepeda, C.; Seoane, S.; Gil-Sotres, F. Dependence of mineralization of soil organic matter on temperature and moisture. Soil Biol. Biochem. 1999, 31, 327–335. [Google Scholar] [CrossRef]
- Bauhus, J.; Khanna, P.K.; Raison, R.J. The effect of fire on carbon and nitrogen mineralization and nitrification in an Australian forest soil. Aust. J. Soil Res. 1993, 31, 621–639. [Google Scholar] [CrossRef]
- Duan, W.; Zheng, W.; Yan, W.; Liang, X.; Li, S. Seasonal dynamics of nitrogen mineralization in soils of Cinnamomum camphora and Pinus massoniana plantations. J. Cent. South Univ. For. Technol. 2011, 31, 96–100. [Google Scholar] [CrossRef]
- Durán, J.; Rodríguez, A.; Fernández-Palacios, J.M.; Gallardo, A. Changes in net N mineralization rates and soil N and P pools in a pine forest wildfire chronosequence. Biol. Fertil. Soils 2009, 45, 781–788. [Google Scholar] [CrossRef]
- Xiao, H.Y.; Liu, B.; Yu, Z.P.; Wan, X.H.; Sang, C.P.; Zhou, F.W.; Huang, Z.Q. Seasonal dynamics of soil mineral nitrogen pools and nitrogen mineralization rate in different forests in subtropical China. J. Appl. Ecol. 2017, 28, 730–738. [Google Scholar] [CrossRef]
- Warren, C.R.; Taranto, M.T. Temporal variation in pools of amino acids, inorganic and microbial N in a temperate grassland soil. Soil Biol. Biochem. 2010, 42, 353–359. [Google Scholar] [CrossRef]
- Read, D.J.; Bajwa, R. Some nutritional aspects of the biology of ericaceous mycorrhizas. Proc. R. Soc. Edinburgh. Sect. B Biol. Sci. 1985, 85, 317–331. [Google Scholar] [CrossRef]
- Brzostek, E.R.; Finzi, A.C. Substrate supply, fine roots, and temperature control proteolytic enzyme activity in temperate forest soils. Ecology 2011, 92, 892–902. [Google Scholar] [CrossRef]
- Brzostek, E.R.; Finzi, A.C. Seasonal variation in the temperature sensitivity of proteolytic enzyme activity in temperate forest soils. J. Geophys. Res.-Biogeosci. 2012, 117, G01018. [Google Scholar] [CrossRef]
- Goncalves, J.L.M.; Carlyle, J.C. Modelling the influence of moisture and temperature on net nitrogen mineralization in a forested sandy soil. Soil Biol. Biochem. 1994, 26, 1557–1564. [Google Scholar] [CrossRef]
- Ladd, J.N. Properties of proteolytic enzymes extracted from soil. Soil Biol. Biochem. 1972, 4, 227–237. [Google Scholar] [CrossRef]
- Ivarson, K.C.; Sowden, F.J. Effect of frost action and storage of soil at freezing temperatures on the free amino acids, free sugars and respiratory activity of soil. Can. J. Soil Sci. 1970, 50, 191–198. [Google Scholar] [CrossRef]





| Fire Time | Fire Area (ha) | Cause of Fire | Canopy Density (%) | Mortality (%) | Community Structure | Soil Type (CST) |
|---|---|---|---|---|---|---|
| Unburned | —— | —— | 70 | 0 | Tree Larix gmelinii, Betula platyphylla Shrub Ledum palustre, Rhododendron dauricum Herb Deyeuxia angustifolia | Gleyic Umbri-Gelic Cambosols |
| 2017 | 5.1 | Lightning fire | 10 | >82 | The plot is mainly scarred trunks or their remnants | Gleyic Umbri-Gelic Cambosols |
| 2016 | 40.0 | Lightning fire | 10 | >83 | The plot is mainly scarred trunks or their remnants | Gleyic Umbri-Gelic Cambosols |
| 2008 | 473.5 | Human-caused fire | 40 | >90 | Tree Populus davidiana, Betula platyphylla Shrub Ledum palustre, Betula fruticosa var. ovalifolia Rhododendron dauricum Herb Deyeuxia angustifolia | Gleyic Umbri-Gelic Cambosols |
| 2000 | 2400.0 | Lightning fire | 50 | >90 | Tree Larix gmelinii, Betula platyphylla Shrub Ledum palustre Rhododendron dauricum Herb Deyeuxia angustifolia | Gleyic Umbri-Gelic Cambosols |
| Wildfire Chronosequence | Sampling Time a | Factors Affect Soil N Change b | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Increasing Factors | Turnover Factors | Decreasing Factors | R. Error | ||||||||||
| Deposition | Deco. DC | Deco. R | Input VR | Rele. RC | Ammonification | Nitration | Combustion | Erosion | Leach L | Absorption | |||
| NH4+-N | |||||||||||||
| The same year of burning | June: +*,/ | √ c | √+ | √− | √ | √ | |||||||
| August: +*, −* | √ | √+ | √− | √ | √ | √ | √ | ||||||
| October: +*, + | √ | √+ | √− | √ | √ | √ | √ | ||||||
| One year after burning | June: +*, −* | √ | √ | √+ | √− | √ | √ | √ | √ | ||||
| August: +*, + | √ | √+ | √− | √ | √ | √ | √ | ||||||
| October: +*,− | √ | √+ | √− | √ | √ | √ | √ | ||||||
| Nine years after burning | June: +, − | √ | √ | √ | √+ | √− | √ | √ | √ | √ | |||
| August: −, − | √ | √ | √+ | √− | √ | √ | √ | √ | |||||
| October: +, + | √ | √ | √+ | √− | √ | √ | √ | ||||||
| Seventeen years after burning | June: +, − | √ | √ | √ | √+ | √− | √ | √ | √ | √ | |||
| August: −, − | √ | √ | √+ | √− | √ | √ | √ | √ | |||||
| October: +, + | √ | √ | √+ | √− | √ | √ | √ | ||||||
| NO3−-N | |||||||||||||
| The same year of burning | June: +*,/ | √ | √+ | √ | √ | ||||||||
| August: −, − | √ | √+ | √ | √ | √ | √ | |||||||
| October: +, + | √ | √+ | √ | √ | √ | √ | |||||||
| One year after burning | June: +, − | √ | √ | √+ | √ | √ | √ | √ | |||||
| August: −, − | √ | √+ | √ | √ | √ | √ | |||||||
| October: −,+ | √ | √+ | √ | √ | √ | √ | |||||||
| Nine years after burning | June: +, − | √ | √ | √ | √+ | √ | √ | √ | √ | ||||
| August: −, + | √ | √ | √+ | √ | √ | √ | √ | ||||||
| October: −, − | √ | √ | √+ | √ | √ | √ | |||||||
| Seventeen years after burning | June: −, no | √ | √ | √ | √+ | √ | √ | √ | √ | ||||
| August: −, + | √ | √ | √+ | √ | √ | √ | √ | ||||||
| October: −, + | √ | √ | √+ | √ | √ | √ | |||||||
| AAN | |||||||||||||
| The same year of burning | June: +*,/ | √ | √− | √− | √ | √ | |||||||
| August: +*, −* | √ | √ | √ | √− | √− | √ | √ | √ | √ | ||||
| October: +*, − | √ | √ | √ | √− | √− | √ | √ | √ | √ | ||||
| One year after burning | June: −, −* | √ | √ | √ | √ | √− | √− | √ | √ | √ | √ | ||
| August: +, + | √ | √ | √ | √− | √− | √ | √ | √ | √ | ||||
| October: −*, − | √ | √ | √ | √− | √− | √ | √ | √ | √ | ||||
| Nine years after burning | June: −, + | √ | √ | √ | √ | √ | √− | √− | √ | √ | √ | √ | |
| August: −,− | √ | √ | √ | √ | √− | √− | √ | √ | √ | √ | |||
| October: −*, − | √ | √ | √ | √ | √− | √− | √ | √ | √ | ||||
| Seventeen years after burning | June: +, + | √ | √ | √ | √ | √ | √− | √− | √ | √ | √ | √ | |
| August: +, − | √ | √ | √ | √ | √− | √− | √ | √ | √ | √ | |||
| October: −*, + | √ | √ | √ | √ | √− | √− | √ | √ | √ | ||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Zhang, Y.; Kang, J.; Cui, X. Post-Fire Evolution of Soil Nitrogen in a Dahurian Larch (Larix gmelinii) Forest, Northeast China. Forests 2023, 14, 1178. https://doi.org/10.3390/f14061178
Wang J, Zhang Y, Kang J, Cui X. Post-Fire Evolution of Soil Nitrogen in a Dahurian Larch (Larix gmelinii) Forest, Northeast China. Forests. 2023; 14(6):1178. https://doi.org/10.3390/f14061178
Chicago/Turabian StyleWang, Jiaqi, Yun Zhang, Jia Kang, and Xiaoyang Cui. 2023. "Post-Fire Evolution of Soil Nitrogen in a Dahurian Larch (Larix gmelinii) Forest, Northeast China" Forests 14, no. 6: 1178. https://doi.org/10.3390/f14061178
APA StyleWang, J., Zhang, Y., Kang, J., & Cui, X. (2023). Post-Fire Evolution of Soil Nitrogen in a Dahurian Larch (Larix gmelinii) Forest, Northeast China. Forests, 14(6), 1178. https://doi.org/10.3390/f14061178
