The Determinants of Forest Products Footprint: A New Fourier Cointegration Approach
Abstract
:1. Introduction
2. Materials and Methods
3. Econometric Methodology
4. Results
5. Discussion
6. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Size and Power Properties
- -
- we let the persistent measure change in the range {0, 0.9};
- -
- we set , while letting the vary along with ; and,
- -
- we also evaluated two sets of , and as and .
Model with a Constant | Model with a Constant and a Trend | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
T = 100 | T = 300 | T = 100 | T = 300 | ||||||||
0 | 1 | 0 | 0 | 0.053 | 0.233 | 0.053 | 0.761 | 0.048 | 0.101 | 0.053 | 0.609 |
0 | 16 | 0 | 0 | 0.052 | 0.234 | 0.051 | 0.758 | 0.051 | 0.099 | 0.049 | 0.607 |
0.9 | 1 | 0 | 0 | 0.045 | 0.175 | 0.039 | 0.755 | 0.049 | 0.096 | 0.045 | 0.594 |
0.9 | 16 | 0 | 0 | 0.046 | 0.173 | 0.038 | 0.753 | 0.050 | 0.095 | 0.043 | 0.598 |
0 | 1 | 3 | 0 | 0.066 | 0.214 | 0.053 | 0.816 | 0.048 | 0.097 | 0.053 | 0.646 |
0 | 16 | 3 | 0 | 0.066 | 0.217 | 0.051 | 0.815 | 0.051 | 0.098 | 0.049 | 0.646 |
0.9 | 1 | 3 | 0 | 0.060 | 0.219 | 0.039 | 0.807 | 0.049 | 0.089 | 0.045 | 0.634 |
0.9 | 16 | 3 | 0 | 0.059 | 0.220 | 0.038 | 0.807 | 0.050 | 0.091 | 0.043 | 0.640 |
0 | 1 | 0 | 5 | 0.053 | 0.677 | 0.053 | 1 | 0.048 | 0.163 | 0.053 | 1 |
0 | 16 | 0 | 5 | 0.052 | 0.677 | 0.051 | 1 | 0.051 | 0.164 | 0.049 | 1 |
0.9 | 1 | 0 | 5 | 0.045 | 0.638 | 0.039 | 1 | 0.049 | 0.166 | 0.045 | 1 |
0.9 | 16 | 0 | 5 | 0.046 | 0.640 | 0.038 | 1 | 0.050 | 0.172 | 0.043 | 1 |
0 | 1 | 3 | 5 | 0.053 | 0.517 | 0.053 | 1 | 0.048 | 0.117 | 0.053 | 1 |
0 | 16 | 3 | 5 | 0.052 | 0.521 | 0.051 | 1 | 0.051 | 0.117 | 0.049 | 1 |
0.9 | 1 | 3 | 5 | 0.045 | 0.429 | 0.039 | 1 | 0.049 | 0.105 | 0.045 | 1 |
0.9 | 16 | 3 | 5 | 0.046 | 0.430 | 0.038 | 1 | 0.050 | 0.109 | 0.043 | 1 |
Appendix B. Critical Values
Model with a Constant | Model with a Constant and Trend | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n | k | T = 100 | t = 500 | t = 1000 | T = 100 | t = 500 | t = 1000 | ||||||||||||
1% | 5% | 10% | 1% | 5% | 10% | 1% | 5% | 10% | 1% | 5% | 10% | 1% | 5% | 10% | 1% | 5% | 10% | ||
1 | 1 | −4.906 | −4.302 | −3.988 | −4.756 | −4.198 | −3.898 | −4.738 | −4.175 | −3.886 | −5.354 | −4.731 | −4.423 | −5.128 | −4.576 | −4.293 | −5.074 | −4.555 | −4.274 |
2 | −4.665 | −3.995 | −3.648 | −4.517 | −3.912 | −3.589 | −4.503 | −3.898 | −3.579 | −5.243 | −4.582 | −4.250 | −4.995 | −4.433 | −4.136 | −4.973 | −4.410 | −4.119 | |
3 | −4.437 | −3.743 | −3.380 | −4.333 | −3.685 | −3.349 | −4.314 | −3.686 | −3.342 | −5.002 | −4.340 | −3.997 | −4.801 | −4.230 | −3.910 | −4.804 | −4.208 | −3.901 | |
4 | −4.285 | −3.599 | −3.252 | −4.183 | −3.554 | −3.231 | −4.172 | −3.546 | −3.221 | −4.849 | −4.175 | −3.827 | −4.697 | −4.092 | −3.767 | −4.693 | −4.088 | −3.769 | |
5 | −4.190 | −3.520 | −3.187 | −4.091 | −3.478 | −3.165 | −4.081 | −3.477 | −3.165 | −4.774 | −4.086 | −3.739 | −4.634 | −3.997 | −3.683 | −4.593 | −3.994 | −3.677 | |
2 | 1 | −5.282 | −4.655 | −4.337 | −5.067 | −4.511 | −4.220 | −5.048 | −4.487 | −4.205 | −5.641 | −5.026 | −4.705 | −5.404 | −4.855 | −4.571 | −5.367 | −4.826 | −4.550 |
2 | −5.168 | −4.526 | −4.189 | −4.969 | −4.394 | −4.085 | −4.949 | −4.371 | −4.065 | −5.598 | −4.954 | −4.633 | −5.329 | −4.772 | −4.480 | −5.295 | −4.748 | −4.460 | |
3 | −4.958 | −4.283 | −3.938 | −4.804 | −4.183 | −3.870 | −4.778 | −4.172 | −3.852 | −5.450 | −4.781 | −4.436 | −5.199 | 4.620 | −4.313 | −5.167 | −4.597 | −4.292 | |
4 | −4.805 | −4.122 | −3.767 | −4.647 | −4.048 | −3.722 | −4.657 | −4.040 | −3.716 | −5.294 | −4.622 | −4.271 | −5.089 | −4.487 | −4.183 | −5.065 | −4.469 | −4.158 | |
5 | −4.708 | −4.033 | −3.689 | −4.587 | −3.964 | −3.633 | −4.536 | −3.935 | −3.629 | −5.203 | −4.508 | −4.164 | −5.006 | −4.404 | −4.086 | −4.945 | −4.370 | −4.063 | |
3 | 1 | −5.596 | −4.957 | −4.640 | −5.354 | −4.796 | −4.512 | −5.315 | −4.786 | −4.497 | −5.941 | −5.294 | −4.971 | −5.638 | −5.094 | −4.814 | −5.602 | −5.070 | −4.795 |
2 | −5.573 | −4.918 | −4.593 | −5.330 | −4.752 | −4.460 | −5.286 | −4.727 | −4.435 | −5.926 | −5.278 | −4.961 | −5.635 | −5.078 | −4.791 | −5.590 | −5.048 | −4.762 | |
3 | −5.393 | −4.733 | −4.394 | −5.177 | −4.597 | −4.285 | −5.150 | −4.582 | −4.277 | −5.792 | −5.141 | −4.806 | −5.515 | −4.964 | −4.659 | −5.504 | −4.940 | −4.643 | |
4 | −5.271 | −4.605 | −4.252 | −5.071 | −4.468 | −4.148 | −5.035 | −4.134 | −4.455 | −5.698 | −5.023 | −4.681 | −5.441 | −4.843 | −4.534 | −5.404 | −4.835 | −4.529 | |
5 | −5.155 | −4.478 | −4.127 | −4.976 | −4.378 | −4.056 | −4.959 | −4.352 | −4.042 | −5.601 | −4.905 | −4.560 | −5.361 | −4.752 | −4.436 | −5.332 | −4.743 | −4.435 |
References
- FAO. Global Forest Resources Assessment 2020: Main Report; UN Food and Agriculture Organization: Rome, Italy, 2020. [Google Scholar]
- FAO. Global Forest Sector Outlook 2050: Assessing Future Demand and Sources of Timber for a Sustainable Economy—Background Paper for the State of the World’s Forests 2022; FAO Forestry Working Paper, No. 31.; UN Food and Agriculture Organization: Rome, Italy, 2022. [Google Scholar] [CrossRef]
- Arias, E. Brazil: Market Profil; The South Carolina Forestry Commission: Columbia, SC, USA, 2022.
- Ulucak, R.; Lin, D. Persistence of policy shocks to ecological footprint of the USA. Ecol. Indic. 2017, 80, 337–343. [Google Scholar] [CrossRef]
- Solarin, S.A.; Bello, M.O. Persistence of policy shocks to an environmental degradation index: The case of ecological footprint in 128 developed and developing countries. Ecol. Indic. 2018, 89, 35–44. [Google Scholar] [CrossRef]
- Yilanci, V.; Gorus, M.S.; Aydin, M. Are shocks to ecological footprint in OECD countries permanent or temporary? J. Clean. Prod. 2019, 212, 270–301. [Google Scholar] [CrossRef]
- Eren, A.E.; Alper, F.Ö. Persistence of Policy Shocks to the Ecological Footprint of MINT Countries. Ege Acad. Rev. 2021, 21, 427–440. [Google Scholar] [CrossRef]
- Bello, M.O.; Erdogan, S.; Ch’Ng, K.S. On the convergence of ecological footprint in African countries: New evidences from panel stationarity tests with factors and gradual shifts. J. Environ. Manag. 2022, 322, 116061. [Google Scholar] [CrossRef]
- Yilanci, V.; Ulucak, R.; Ozgur, O. Insights for a sustainable environment: Analysing the persistence of policy shocks to ecological footprints of Mediterranean countries. Spat. Econ. Anal. 2022, 17, 47–66. [Google Scholar] [CrossRef]
- Yilanci, V.; Pata, U.K.; Cutcu, I. Testing the persistence of shocks on ecological footprint and sub-accounts: Evidence from the big ten emerging markets. Int. J. Environ. Res. 2022, 16, 10. [Google Scholar] [CrossRef]
- Ulucak, R.; Apergis, N. Does convergence really matter for the environment? An application based on club convergence and on the ecological footprint concept for the EU countries. Environ. Sci. Policy 2018, 80, 21–27. [Google Scholar] [CrossRef]
- Solarin, S.A.; Tiwari, A.K.; Bello, M.O. A multi-country convergence analysis of ecological footprint and its components. Sustain. Cities Soc. 2019, 46, 101422. [Google Scholar] [CrossRef]
- Yilanci, V.; Pata, U.K. Convergence of per capita ecological footprint among the ASEAN-5 countries: Evidence from a non-linear panel unit root test. Ecol. Indic. 2020, 113, 106178. [Google Scholar] [CrossRef]
- Işık, C.; Ahmad, M.; Ongan, S.; Ozdemir, D.; Irfan, M.; Alvarado, R. Convergence analysis of the ecological footprint: Theory and empirical evidence from the USMCA countries. Environ. Sci. Pollut. Res. 2021, 28, 32648–32659. [Google Scholar] [CrossRef]
- Tillaguango, B.; Alvarado, R.; Dagar, V.; Murshed, M.; Pinzón, Y.; Méndez, P. Convergence of the ecological footprint in Latin America: The role of the productive structure. Environ. Sci. Pollut. Res. 2021, 28, 59771–59783. [Google Scholar] [CrossRef] [PubMed]
- Yilanci, V.; Gorus, M.S.; Solarin, S.A. Convergence in per capita carbon footprint and ecological footprint for G7 countries: Evidence from panel Fourier threshold unit root test. Energy Environ. 2022, 33, 527–545. [Google Scholar] [CrossRef]
- Yilanci, V.; Ursavaş, U.; Ursavaş, N. Convergence in ecological footprint across the member states of ECOWAS: Evidence from a novel panel unit root test. Environ. Sci. Pollut. Res. 2022, 29, 79241–79252. [Google Scholar] [CrossRef] [PubMed]
- Ursavaş, U.; Yilanci, V. Convergence analysis of ecological footprint at different time scales: Evidence from Southern Common Market countries. Energy Environ. 2023, 34, 429–442. [Google Scholar] [CrossRef]
- Alper, A.E.; Alper, F.O.; Cil, A.B.; Iscan, E.; Eren, A.A. Stochastic convergence of ecological footprint: New insights from a unit root test based on smooth transitions and nonlinear adjustment. Environ. Sci. Pollut. Res. 2023, 30, 22100–22114. [Google Scholar] [CrossRef]
- Arogundade, S.; Hassan, A.; Akpa, E.; Mduduzi, B. Closer together or farther apart: Are there club convergence in ecological footprint? Environ. Sci. Pollut. Res. 2023, 30, 15293–15310. [Google Scholar] [CrossRef]
- Al-Mulali, U.; Weng-Wai, C.; Sheau-Ting, L.; Mohammed, A.H. Investigating the environmental Kuznets curve (EKC) hypothesis by utilizing the ecological footprint as an indicator of environmental degradation. Ecol. Indic. 2015, 48, 315–323. [Google Scholar] [CrossRef]
- Ozturk, I.; Al-Mulali, U.; Saboori, B. Investigating the environmental Kuznets curve hypothesis: The role of tourism and ecological footprint. Environ. Sci. Pollut. Res. 2016, 23, 1916–1928. [Google Scholar] [CrossRef]
- Ulucak, R.; Bilgili, F. A reinvestigation of EKC model by ecological footprint measurement for high, middle and low income countries. J. Clean. Prod. 2018, 188, 144–157. [Google Scholar] [CrossRef]
- Destek, M.A.; Ulucak, R.; Dogan, E. Analyzing the environmental Kuznets curve for the EU countries: The role of ecological footprint. Environ. Sci. Pollut. Res. 2018, 25, 29387–29396. [Google Scholar] [CrossRef] [PubMed]
- Destek, M.A.; Sarkodie, S.A. Investigation of environmental Kuznets curve for ecological footprint: The role of energy and financial development. Sci. Total Environ. 2019, 650, 2483–2489. [Google Scholar] [CrossRef] [PubMed]
- Altıntaş, H.; Kassouri, Y. Is the environmental Kuznets Curve in Europe related to the per-capita ecological footprint or CO2 emissions? Ecol. Indic. 2020, 113, 106187. [Google Scholar] [CrossRef]
- Dogan, E.; Ulucak, R.; Kocak, E.; Isik, C. The use of ecological footprint in estimating the environmental Kuznets curve hypothesis for BRICST by considering cross-section dependence and heterogeneity. Sci. Total Environ. 2020, 723, 138063. [Google Scholar] [CrossRef]
- Ansari, M.A. Re-visiting the Environmental Kuznets curve for ASEAN: A comparison between ecological footprint and carbon dioxide emissions. Renew. Sustain. Energy Rev. 2022, 168, 112867. [Google Scholar] [CrossRef]
- Balsalobre-Lorente, D.; Gokmenoglu, K.K.; Taspinar, N.; Cantos-Cantos, J.M. An approach to the pollution haven and pollution halo hypotheses in MINT countries. Environ. Sci. Pollut. Res. 2019, 26, 23010–23026. [Google Scholar] [CrossRef]
- Destek, M.A.; Okumus, I. Does pollution haven hypothesis hold in newly industrialized countries? Evidence from ecological footprint. Environ. Sci. Pollut. Res. 2019, 26, 23689–23695. [Google Scholar] [CrossRef]
- Nathaniel, S.; Aguegboh, E.; Iheonu, C.; Sharma, G.; Shah, M. Energy consumption, FDI, and urbanization linkage in coastal Mediterranean countries: Re-assessing the pollution haven hypothesis. Environ. Sci. Pollut. Res. 2020, 27, 35474–35487. [Google Scholar] [CrossRef]
- Chaudhry, I.S.; Yin, W.; Ali, S.A.; Faheem, M.; Abbas, Q.; Farooq, F.; Ur Rahman, S. Moderating role of institutional quality in validation of pollution haven hypothesis in BRICS: A new evidence by using DCCE approach. Environ. Sci. Pollut. Res. 2022, 29, 9193–9202. [Google Scholar] [CrossRef]
- Solarin, S.A.; Gil-Alana, L.A.; Lafuente, C. Persistence and sustainability of fishing grounds footprint: Evidence from 89 countries. Sci. Total Environ. 2021, 751, 141594. [Google Scholar] [CrossRef] [PubMed]
- Kassouri, Y. Exploring the dynamics of fishing footprints in the Gulf of Guinea and Congo Basin region: Current status and future perspectives. Mar. Policy 2021, 133, 104739. [Google Scholar] [CrossRef]
- Solarin, S.A. Towards sustainable development: A multi-country persistence analysis of forest products footprint using a stationarity test with smooth shifts. Sustain. Dev. 2020, 28, 1465–1476. [Google Scholar] [CrossRef]
- Solarin, S.A.; Gil-Alana, L.A.; Lafuente, C. Persistence and non-stationarity in the built-up land footprint across 89 countries. Ecol. Indic. 2021, 123, 107372. [Google Scholar] [CrossRef]
- Karimi, M.S.; Khezri, M.; Khan, Y.A.; Razzaghi, S. Exploring the influence of economic freedom index on fishing grounds footprint in environmental Kuznets curve framework through spatial econometrics technique: Evidence from Asia-Pacific countries. Environ. Sci. Pollut. Res. 2022, 29, 6251–6266. [Google Scholar] [CrossRef] [PubMed]
- Farooq, U.; Dar, A.B. Is there a Kuznets curve for forest product footprint?—Empirical evidence from India. For. Policy Econ. 2022, 144, 102850. [Google Scholar] [CrossRef]
- Yilanci, V.; Cutcu, I.; Cayir, B. Is the environmental Kuznets curve related to the fishing footprint? Evidence from China. Fish. Res. 2022, 254, 106392. [Google Scholar] [CrossRef]
- Yilanci, V.; Cutcu, I.; Cayir, B.; Saglam, M.S. Pollution haven or pollution halo in the fishing footprint: Evidence from Indonesia. Mar. Pollut. Bull. 2023, 188, 114626. [Google Scholar] [CrossRef]
- Gregory, A.W.; Hansen, B.E. Residual-based tests for cointegration in models with regime shifts. J. Econom. 1996, 70, 99–126. [Google Scholar] [CrossRef]
- Engle, R.; Granger, C. Co-integration and error correction: Representation, estimation, and testing. Econometrica 1987, 55, 251–276. [Google Scholar] [CrossRef]
- Hatemi-j, A. Tests for cointegration with two unknown regime shifts with an application to financial market integration. Empir. Econ. 2008, 35, 497–505. [Google Scholar] [CrossRef]
- Becker, R.; Enders, W.; Lee, J. A stationarity test in the presence of an unknown number of smooth breaks. J. Time Ser. Anal. 2006, 27, 381–409. [Google Scholar] [CrossRef]
- Gallant, R. On the basis in flexible functional form and an essentially unbiased form: The flexible Fourier form. J. Econom. 1981, 15, 211–353. [Google Scholar] [CrossRef]
- Perron, P. The great crash, the oil price shock, and the unit root hypothesis. Econometrica 1989, 57, 1361–1401. [Google Scholar] [CrossRef]
- Enders, W.; Lee, J. The flexible Fourier form and Dickey–Fuller type unit root tests. Econ. Lett. 2012, 117, 196–199. [Google Scholar] [CrossRef]
- Rodrigues, P.M.; Robert Taylor, A.M. The Flexible Fourier Form and Local Generalised Least Squares De-trended Unit Root Tests. Oxf. Bull. Econ. Stat. 2012, 74, 736–759. [Google Scholar] [CrossRef]
- BP 2022, Statistical Review of World Energy—2022, The Brazilian Energy System in 2021. 2022. Available online: https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2022-brazil-insights.pdf (accessed on 15 February 2023).
- Arouri, M.E.H.; Youssef, A.B.; M’henni, H.; Rault, C. Energy consumption, economic growth and CO2 emissions in Middle East and North African countries. Energy Policy 2012, 45, 342–349. [Google Scholar] [CrossRef]
- Ilham, M.I. Economic development and environmental degradation in ASEAN. Signifikan J. Ilmu Ekon. 2018, 7, 103–112. [Google Scholar] [CrossRef]
- Chen, S.; Saud, S.; Saleem, N.; Bari, M.W. Nexus between financial development, energy consumption, income level, and ecological footprint in CEE countries: Do human capital and biocapacity matter? Environ. Sci. Pollut. Res. 2019, 26, 31856–31872. [Google Scholar]
- Lu, W.C. The interplay among ecological footprint, real income, energy consumption, and trade openness in 13 Asian countries. Environ. Sci. Pollut. Res. 2020, 27, 45148–45160. [Google Scholar] [CrossRef]
- Adekoya, O.B.; Oliyide, J.A.; Fasanya, I.O. Renewable and non-renewable energy consumption–Ecological footprint nexus in net-oil exporting and net-oil importing countries: Policy implications for a sustainable environment. Renew. Energy 2022, 189, 524–534. [Google Scholar] [CrossRef]
- Chandran, V.G.R.; Tang, C.F. The impacts of transport energy consumption, foreign direct investment and income on CO2 emissions in ASEAN-5 economies. Renew. Sustain. Energy Rev. 2013, 24, 445–453. [Google Scholar] [CrossRef]
- Dogan, E.; Turkekul, B. CO2 emissions, real output, energy consumption, trade, urbanization and financial development: Testing the EKC hypothesis for the USA. Environ. Sci. Pollut. Res. 2016, 23, 1203–1213. [Google Scholar] [CrossRef]
- Osuntuyi, B.V.; Lean, H.H. Economic growth, energy consumption and environmental degradation nexus in heterogeneous countries: Does education matter? Environ. Sci. Eur. 2022, 34, 1–16. [Google Scholar] [CrossRef]
- Jahanger, A.; Usman, M.; Murshed, M.; Mahmood, H.; Balsalobre-Lorente, D. The linkages between natural resources, human capital, globalization, economic growth, financial development, and ecological footprint: The moderating role of technological innovations. Resour. Policy 2022, 76, 102569. [Google Scholar] [CrossRef]
- Dada, J.T.; Adeiza, A.; Noor, A.I.; Marina, A. Investigating the link between economic growth, financial development, urbanization, natural resources, human capital, trade openness and ecological footprint: Evidence from Nigeria. J. Bioeconomics 2022, 24, 153–179. [Google Scholar] [CrossRef]
- Destek, M.A.; Sinha, A. Renewable, non-renewable energy consumption, economic growth, trade openness and ecological footprint: Evidence from organisation for economic Co-operation and development countries. J. Clean. Prod. 2020, 242, 118537. [Google Scholar] [CrossRef]
- Liu, Y.; Sadiq, F.; Ali, W.; Kumail, T. Does tourism development, energy consumption, trade openness and economic growth matters for ecological footprint: Testing the Environmental Kuznets Curve and pollution haven hypothesis for Pakistan. Energy 2022, 245, 123208. [Google Scholar] [CrossRef]
- Khan, M.T.I.; Yaseen, M.R.; Ali, Q. Dynamic relationship between financial development, energy consumption, trade and greenhouse gas: Comparison of upper middle income countries from Asia, Europe, Africa and America. J. Clean. Prod. 2017, 161, 567–580. [Google Scholar] [CrossRef]
- Yao, X.; Yasmeen, R.; Hussain, J.; Shah, W.U.H. The repercussions of financial development and corruption on energy efficiency and ecological footprint: Evidence from BRICS and next 11 countries. Energy 2021, 223, 120063. [Google Scholar] [CrossRef]
- Kongbuamai, N.; Zafar, M.W.; Zaidi, S.A.H.; Liu, Y. Determinants of the ecological footprint in Thailand: The influences of tourism, trade openness, and population density. Environ. Sci. Pollut. Res. 2020, 27, 40171–40186. [Google Scholar] [CrossRef]
- Banerjee, A.; Dolado, J.J.; Hendry, D.F.; Smith, G.W. Exploring equilibrium relationships in econometrics through static models: Some Monte Carlo evidence. Oxf. Bull. Econ. Stat. 1986, 48, 253–277. [Google Scholar] [CrossRef]
- Lee, H.; Lee, J.; Im, K. More powerful cointegration tests with non-normal errors. Stud. Nonlinear Dyn. Econom. 2015, 19, 397–413. [Google Scholar] [CrossRef]
- Banerjee, P.; Arčabić, V.; Lee, H. Fourier ADL cointegration test to approximate smooth breaks with new evidence from crude oil market. Econ. Model. 2017, 67, 114–124. [Google Scholar] [CrossRef]
Mean | Median | Maximum | Minimum | Std. Dev. | Skewness | Kurtosis | Jarque-Bera | |
---|---|---|---|---|---|---|---|---|
LEC | 3.585 | 3.650 | 4.139 | 2.470 | 0.448 | −1.009 | 3.234 | 9.278 (0.010) ** |
LFPF | −0.545 | −0.544 | −0.392 | −0.788 | 0.100 | −0.670 | 2.806 | 4.119 (0.127) |
LGDP | 8.712 | 8.768 | 9.129 | 7.918 | 0.310 | −1.044 | 3.608 | 10.635 (0.005) * |
LTO | −1.918 | −2.048 | −1.246 | −2.768 | 0.448 | 0.075 | 1.667 | 4.050 (0.132) |
Series | ADF Unit Root Test | Zivot-Andrews Unit Root Test | |
---|---|---|---|
Test Statistics | Test Statistics | Break Date | |
LEC | −2.231 (0.198) [7] | −4.267 [1] | 1976 |
LFPF | −0.363 (0.908) [2] | −3.242 [2] | 1978 |
LGDP | −2.598 (0.1) [5] | −3.974 [2] | 1981 |
LTO | −1.211 (0.664) [0] | −3.734 [0] | 1992 |
Variable | Coefficient |
---|---|
C | 2.219 (1.501) |
LEC | 0.835 (4.626) * |
LGDP | −0.753 (−3.138) * |
LTO | −0.418 (−7.961) * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yilanci, V. The Determinants of Forest Products Footprint: A New Fourier Cointegration Approach. Forests 2023, 14, 875. https://doi.org/10.3390/f14050875
Yilanci V. The Determinants of Forest Products Footprint: A New Fourier Cointegration Approach. Forests. 2023; 14(5):875. https://doi.org/10.3390/f14050875
Chicago/Turabian StyleYilanci, Veli. 2023. "The Determinants of Forest Products Footprint: A New Fourier Cointegration Approach" Forests 14, no. 5: 875. https://doi.org/10.3390/f14050875
APA StyleYilanci, V. (2023). The Determinants of Forest Products Footprint: A New Fourier Cointegration Approach. Forests, 14(5), 875. https://doi.org/10.3390/f14050875