Study on Soil Moisture Characteristics in Southern China Karst Plant Community Structure Types
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Moisture Monitoring
2.3. Research Method
2.3.1. Experimental Design
2.3.2. Calculation Formula and Data Processing
3. Analysis of Results
3.1. Plant Community Structure Composition
3.1.1. Vegetation Composition of the Sample Plots
3.1.2. Species Diversity Characteristics of Different Plant Community Structure Types
3.2. Soil Moisture Characteristics of Plant Community Structure Types
3.2.1. Vertical Distribution Characteristics of Soil Moisture
3.2.2. Temporal Distribution Characteristics of Soil Moisture
3.2.3. Relationship between Species Diversity and Soil Moisture in Different Plant Community Structure Types
3.3. Response of Dynamic Soil Moisture Content to Rainfall
3.3.1. Precipitation Patterns
3.3.2. Response of Soil Moisture to Rainfall
4. Discussion
4.1. Effects of Plant Community Structure Types on Soil Moisture
4.2. Temporal–Spatial Variability for Soil Moisture for the Four Plant Community Structure Types
4.3. Differences in Responding Soil Moisture of Four Plant Community Structure Types to Rainfall
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jia, Y.H.; Shao, M.A. Temporal stability of soil water storage under four types of revegetation on the northern Loess Plateau of China. Agric. Water Manag. 2013, 117, 33–42. [Google Scholar] [CrossRef]
- Yang, J.; Chen, H.S.; Nie, Y.P.; Wang, K.L. Dynamic variations in profile soil water on karst hillslopes in Southwest China. Catena 2019, 172, 655–663. [Google Scholar] [CrossRef]
- Lin, P.F.; Zhu, X.; He, Z.B.; Du, J.; Chen, L.F. Research progress on soil moisture temporal stability. Acta Ecol. Sin. 2018, 38, 3403–3413. [Google Scholar]
- Xiong, K.N.; Li, J.; Long, M.Z. Features of soil and water loss and key issues in demonstration areas for combating karst rocky desertification. Acta Geogr. Sin. 2012, 67, 878–888. [Google Scholar]
- Yang, M.D. Environmental assessment of karst landscapes (Taking karst areas of Guizhou as an example). Environ. Prot. Technol. 1983, Z1, 22–28. [Google Scholar]
- Yuan, D.X. On the environmental and geologic problems of karst mountains and rocks in the south-west China. World Sci-Tech R D 1997, 19, 41–43. [Google Scholar] [CrossRef]
- Entin, J.K.; Robock, A.; Vinnikov, K.Y.; Hollinger, S.E.; Liu, S.X.; Namkhai, A. Temporal and spatial scales of observed soil moisture variations in the extratropics. J. Geophys. Res.-Atmos. 2000, 105, 11865–11877. [Google Scholar] [CrossRef]
- Zhu, Q.; Lin, H.S. Simulation and validation of concentrated subsurface lateral flow paths in an agricultural landscape. Hydrol. Earth Syst. Sci. 2009, 13, 1503–1518. [Google Scholar] [CrossRef]
- Bao, E.W.; Xiong, K.N.; Liu, Z.Q.; Li, Y.; Wang, J. Particle size distribution and erodibility of soil under different erosion sites in karst. J. For. Environ. 2020, 40, 156–163. [Google Scholar] [CrossRef]
- Fu, B.J.; Wang, J.; Chen, L.D.; Qiu, Y. The effects of land use on soil moisture variation in the Danangou catchment of the Loess Plateau, China. Catena 2003, 54, 197–213. [Google Scholar] [CrossRef]
- Schmidt, J.P.; Sripada, R.P.; Beegle, D.B.; Rotz, C.A.; Hong, N. Within-Field Variability in Optimum Nitrogen Rate for Corn Linked to Soil Moisture Availability. Soil Sci. Soc. Am. J. 2011, 75, 306–316. [Google Scholar] [CrossRef]
- Xie, Y.Q.; Yuan, D.X. Relationship between land resources and water resources in underground river system. J. Soil Water Conserv. 2002, 16, 50–53. [Google Scholar] [CrossRef]
- Vepraskas, M.J.; Heitman, J.L.; Austin, R.E. Future directions for hydropedology: Quantifying impacts of global change on land use. Hydrol. Earth Syst. Sci. 2009, 13, 1427–1438. [Google Scholar] [CrossRef] [Green Version]
- Kull, O.; Aan, A.; Soelsepp, T. Light interception, Nitrogen and leaf mass-distribution in a multilayer plant community. Funct. Ecol. 1995, 9, 589–595. [Google Scholar] [CrossRef]
- Wang, J. The Response of Vegetation Community Structure to Environment Gradients in Yanhe River Basin. Master’s Thesis, Northwest A & F University, Shanxi, China, 2011. [Google Scholar]
- Si, J.H.; Feng, Q.; Chang, Z.Q.; Wang, Y.B.; Tian, Y.Z.; Xie, Z.C.; Gao, L.P. Community structure and species diversity of desert plants in the wind-sand area of Yabulai. Acta Bot. Boreali-Occident. Sin. 2011, 31, 602–608. [Google Scholar]
- Gou, Q.P.; Zhu, Q.K. Response of deep soil moisture to different vegetation types in the Loess Plateau of northern Shannxi, China. Sci. Rep. 2021, 11, 15098. [Google Scholar] [CrossRef] [PubMed]
- Hou, G.R.; Bi, H.X.; Wei, X.; Kong, L.X.; Wang, N.; Zhou, Q.Z. Response of Soil Moisture to Single-Rainfall Events under Three Vegetation Types in the Gully Region of the Loess Plateau. Sustainability 2018, 10, 3793. [Google Scholar] [CrossRef]
- Yang, L.; Wei, W.; Chen, L.D.; Mo, B.R. Response of deep soil moisture to land use and afforestation in the semi-arid Loess Plateau, China. J. Hydrol. 2012, 475, 111–122. [Google Scholar] [CrossRef]
- Qiang, F.; Wei, T.X.; Liu, W. Relationship between soil moisture dynamics and vegetation community in the Loess area of western Shanxi province. Bull. Bot. Res. 2019, 39, 61–68. [Google Scholar]
- Wang, S.; Fu, B.J.; Gao, G.Y.; Liu, Y.; Zhou, J. Responses of soil moisture in different land cover types to rainfall events in a re-vegetation catchment area of the Loess Plateau, China. Catena 2013, 101, 122–128. [Google Scholar] [CrossRef]
- Cheng, R.R.; Chen, Q.W.; Zhang, J.G.; Shi, W.Y.; Li, G.Q.; Du, S. Soil moisture variations in response to precipitation in different vegetation types: A multi-year study in the loess hilly region in China. Ecohydrology 2020, 13, e2196. [Google Scholar] [CrossRef]
- Qin, J.; Si, J.H.; Jia, B.; Zhao, C.Y.; Li, R.; Luo, H.; Ren, L.X. Study on the relationship between vegetation community characteristics and soil moisture in Badain Jaran Desert. Arid Zone Res. 2021, 38, 207–222. [Google Scholar] [CrossRef]
- Zhang, Z.N.; Wu, G.L.; Wang, D.; Deng, L.; Hao, H.M.; Yang, Z.; Shangguan, Z. Plant community structure and soil moisture in the semi-arid natural grassland of the Loess Plateau. Acta Pratacult. Sin. 2014, 23, 313–319. [Google Scholar]
- Chen, H.S.; Zhang, W.; Wang, K.L.; Fu, W. Soil moisture dynamics under different land uses on karst hillslope in northwest Guangxi, China. Environ. Earth Sci. 2010, 61, 1105–1111. [Google Scholar] [CrossRef]
- Li, X.Z.; Xu, X.L.; Liu, W.; He, L.; Zhang, R.F.; Xu, C.H.; Wang, K.L. Similarity of the temporal pattern of soil moisture across soil profile in karst catchments of southwestern China. J. Hydrol. 2017, 555, 659–669. [Google Scholar] [CrossRef]
- Zhang, J.G.; Chen, H.S.; Su, Y.R.; Kong, X.L.; Zhang, W.; Shi, Y.; Liang, H.B.; Shen, G.M. Spatial variability and patterns of surface soil moisture in a field plot of karst area in southwest China. Plant Soil Environ. 2011, 57, 409–417. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.; Xiao, H.; Chen, H. Temporal and spatial evolution characteristics of rocky desertification control landscape pattern in Salaxi demonstration area in Bijie city. Southwest China J. Agric. Sci. 2020, 33, 2316–2324. [Google Scholar] [CrossRef]
- Lang, P.; Wang, Y.H.; Xu, H.L.; Zhao, W.Y.; Liu, X.H.; Jinesibieke, M.; Hlehashi, S.; Kulishayila, W. Effects of grazing prohibition years on community characteristics and soil factors in temperate desert grassland. Pratacult. Sci. 2022, 39, 431–442. [Google Scholar]
- Zhang, B.W.; Qin, J.; Ren, Z.M.; Chen, Z.Q.; Yao, S.J.; Liu, Y.; Song, Y. Effects of slope aspect on understory plant diversity of Pinus massoniana pure forest and different coniferous and broad-leaved mixed forest types in North subtropical region. Ecol. Environ. Sci. 2022, 31, 1091–1100. [Google Scholar] [CrossRef]
- Zhang, S.H.; Xiong, K.N.; Zhang, Y.; Lai, J.L.; Yu, Y.H.; Min, X.Y. Relationship between community spatial structure of different slope directions and environmental factors in rocky desertification forest conservancy area. J. Sichuan Agric. Univ. 2019, 37, 676–684. [Google Scholar] [CrossRef]
- Zhang, H.M.; Chen, H.; Chen, J.; Guo, C.; Huang, J. Study on Wild Plant Resources and Flora in Bijie Karst Rocky Desertification Area. Acta Bot. Boreali-Occident. Sin. 2020, 40, 1768–1777. [Google Scholar]
- Zhu, W.X.; Niu, J.J.; Liu, G.; Liang, H.B. The influence of vegetation types on the soil moistures during growing season in Loess area. J. Arid. Land Resour. Environ. 2016, 30, 152–156. [Google Scholar] [CrossRef]
- Yang, Y.G.; Fu, B.J. Soil water migration in the unsaturated zone of semiarid region in China from isotope evidence. Hydrol. Earth Syst. Sci. 2017, 21, 1757–1767. [Google Scholar] [CrossRef]
- Guo, X.J.; Gong, X.P.; Yuan, D.X.; Tang, Q.J.; Chen, C.J.; Li, X. Stratification of soil profile moisture and its influence factors in typical karst stone hillslope. J. South. Agric. 2017, 48, 1196–1203. [Google Scholar]
- Wang, J.F.; Han, D.Y.; Wang, J.B.; Fu, X.L.; Zhu, D.G.; Liu, Y.N.; Cao, H.J.; Huang, Q.Y.; Xie, L.H.; Zhong, H.X.; et al. Variations in plant species composition and diversity of Calamagrostis angustifolia community along soil water level gradient in the Sanjiang Plain. Acta Ecol. Sin. 2017, 37, 3515–3524. [Google Scholar]
- Yang, L.; Wei, W.; Chen, L.; Jia, F.; Mo, B. Spatial variations of shallow and deep soil moisture in the semi-arid Loess Plateau, China. Hydrol. Earth Syst. Sci. 2012, 16, 3199–3217. [Google Scholar] [CrossRef]
- Dai, L.C.; Fu, R.Y.; Guo, X.W.; Du, Y.G.; Zhang, F.W.; Cao, G.M. Soil Moisture Variations in Response to Precipitation Across Different Vegetation Types on the Northeastern Qinghai-Tibet Plateau. Front. Plant Sci. 2022, 13, 854152. [Google Scholar] [CrossRef] [PubMed]
- Jing, J.S.; Liu, Z.Q.; Li, Y.; Wang, J.; Luo, D.; Cai, L. Vegetation Types Affect Responsive Change in Soil Moisture to Rainfall in under Karst Rocky Desertification Control Areas. J. Irrig. Drain. 2020, 39, 100–109. [Google Scholar] [CrossRef]
- Tiedemann, A.R.; Klemmedson, J.O. Effect of mesquite trees on vegetation and soils in desert grassland. J. Range Manag. 1977, 30, 361–367. [Google Scholar] [CrossRef]
- Peng, X.D.; Dai, Q.H.; Ding, G.J.; Shi, D.M.; Li, C.L. The role of soil water retention functions of near-surface fissures with different vegetation types in a rocky desertification area. Plant Soil 2019, 441, 587–599. [Google Scholar] [CrossRef]
- Sun, Y.L.; Zhou, J.X.; Pang, D.B.; Liu, Y.G.; Xiao, G.Y.; Zhang, Q. Soil Moisture Dynamic Change of Different Vegetation Restoration Patterns in Karst Faulted Basins. For. Res. 2018, 31, 104–112. [Google Scholar] [CrossRef]
- Zhang, J.M.; Xu, Z.M.; Li, F.; Li, Q.K. Multi-scale features of macropore structures in soil of well vegetated slopes. Mt. Res. 2019, 37, 717–727. [Google Scholar] [CrossRef]
- Albertson, J.D.; Kiely, G. On the structure of soil moisture time series in the context of land surface models. J. Hydrol. 2001, 243, 101–119. [Google Scholar] [CrossRef]
- Zhang, Q.D.; Wei, W.; Chen, L.D.; Yang, L. Spatial variation of soil moisture and species diversity patterns along a precipitation gradient in the grasslands of the Loess Plateau. J. Nat. Resour. 2018, 33, 1351–1362. [Google Scholar]
Sample Site | Vegetation Coverage/% | Altitude/m | Soil Bulk Density (g/cm3) | Structure Type | Dominant Species | Porosity (g/cm3) |
---|---|---|---|---|---|---|
H | 85 | 1870 | 1.44 | Herb | Lolium perenne, Trifolium repens | 46.43 |
AH | 83 | 1865 | 1.42 | Arbor + Herb | Juglans regia, Artemisia argyi | 47.18 |
SH | 70 | 1872 | 1.41 | Shrub + Herb | Ribes burejense, Lolium perenne | 47.42 |
ASH | 78 | 1890 | 1.30 | Arbor + Shrub + herb | Hypericum monogynum, Pyracantha fortuneana, Lolium perenne | 51.19 |
Index | Formula |
---|---|
Shannon–Wiener Diversity Index | |
Margalef Richness Index | |
Pielou Evenness Index | |
Simpson Diversity Index |
Families | Genera | Species | Community Structure Type | Life Form |
---|---|---|---|---|
Compositae | Artemisia | Artemisia argyi | H/SH/SH/ASH | perennial herbaceous |
Cirsium | Cirsium japonicum Fisch | H/SH | perennial herbaceous | |
Carpesium | Carpesium abrotanoides | H/AH/ASH | perennial herbaceous | |
Arctium | Arctium lappa | H/AH/SH | biennial herbs | |
Erigeron | Erigeron annuus | H/SH/ASH | annual herbaceous | |
Conyza | Conyza canadensis | AH/SH/ASH | annual herbaceous | |
Gramineae | Secale | Lolium perenne | H/SH/SH/ASH | perennial herbaceous |
Imperata | Imperata cylindrica | H/SH/ASH | perennial herbaceous | |
Setaria | Setaria viridis | H/AH/SH/ASH | annual herbaceous | |
Pogonatherum | Pogonatherum crinitum | H/SH/ASH | perennial herbaceous | |
Rosaceae | Agrimonia | Agrimonia pilosa | H/AH/SH/ASH | perennial herbaceous |
Fragaria | Fragaria nilgerrensis Schlecht | AH/ASH | perennial herbaceous | |
Rosa | Ribes burejense | SH | shrub | |
Pyracanth | Pyracantha fortuneana | SH/ASH | shrub | |
Urticaceae | Urtica | Urtica fissa | H/SH/ASH | perennial herbaceous |
Boehmeria | Boehmeria spicata | AH/ASH | perennial herbaceous | |
Rubiaceae | Galium | Trifolium repens | H/SH/SH/ASH | perennial herbaceous |
Borreria | Borreria latifolia | H/AH/ASH | perennial herbaceous | |
Pteridaceae | Pteris | Pteris cretica | H/SH | perennial herbaceous |
Thelypteridaceae | Parathelypteris | Parathelypteris glanduligera | H | perennial herbaceous |
Geraniaceae | Geranium | Geranium wilfordii Maxim | H/AH/ASH | perennial herbaceous |
Caryophyllaceae | Stellaria | Stellaria vestita | H/SH/SH/ASH | perennial herbaceous |
Leguminosae | Vicia | Vicia sepium | H/SH/SH/ASH | perennial herbaceous |
Coriariaceae | Coriaria | Coriaria nepalensis | SH/ASH | shrub |
Hamamelidaceae | Corylopsis | Corylopsis sinensis | ASH | shrub |
Alangiaceae | Alangium | Alangium chinense | ASH | shrub |
Juglandaceae | Juglans | Juglans regia | AH/ASH | arbor |
Salicaceae | Populus | Populus sp. | AH | arbor |
Anacardiaceae | Toxicodendron | Toxicodendron vernicifluum | AH/ASH | arbor |
Clusiaceae | Hypericum | Hypericum monogynum | ASH | arbor |
Pinaceae | Pinus | Pinus massoniana | ASH | arbor |
Index | Margalef Index | Pielou Index | Shannon–Wiener Index | Simpson Index | Soil Moisture Content | ||||
---|---|---|---|---|---|---|---|---|---|
0–10 cm | 10–20 cm | 20–30 cm | 30–50 cm | ||||||
Pielou index | 0.477 | ||||||||
Shannon–Wiener index | 0.981 * | 0.298 | |||||||
Simpson index | 0.998 ** | 0.468 | 0.983 * | ||||||
Soil moisture content | 0–10 cm | −0.791 | −0.182 | −0.799 | −0.757 | ||||
10–20 cm | −0.337 | −0.640 | −0.200 | −0.284 | 0.583 | ||||
20–30 cm | −0.996 ** | −0.556 | −0.959 * | −0.993 ** | 0.763 | 0.380 | |||
30–50 cm | −0.592 | 0.426 | −0.736 | −0.599 | 0.648 | −0.240 | 0.516 | ||
50–70 cm | −0.727 | 0.066 | −0.787 | −0.699 | 0.965 * | 0.374 | 0.677 | 0.809 |
Type of Rainfall Event | Rain Frequency | Proportion/% | Rainfall/mm | Contribution Rate/% |
---|---|---|---|---|
Light rain | 64 | 87.67 | 109.8 | 30.15 |
Moderate rain | 5 | 6.85 | 96.4 | 26.47 |
Heavy rain | 4 | 5.48 | 158 | 43.38 |
Rainstorm | 0 | 0 | 0 | 0 |
Total | 73 | 100 | 364.2 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, X.; Xiong, K.; Wu, C.; Luo, D. Study on Soil Moisture Characteristics in Southern China Karst Plant Community Structure Types. Forests 2023, 14, 384. https://doi.org/10.3390/f14020384
Gu X, Xiong K, Wu C, Luo D. Study on Soil Moisture Characteristics in Southern China Karst Plant Community Structure Types. Forests. 2023; 14(2):384. https://doi.org/10.3390/f14020384
Chicago/Turabian StyleGu, Xing, Kangning Xiong, Chenxu Wu, and Ding Luo. 2023. "Study on Soil Moisture Characteristics in Southern China Karst Plant Community Structure Types" Forests 14, no. 2: 384. https://doi.org/10.3390/f14020384