Towards Forest Conservation Planning: How Temperature Fluctuations Determine the Potential Distribution and Extinction Risk of Cupressus funebris Conifer Trees in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Species Distribution Data
2.2. Bioclimatic Predictor Variables and Multicollinearity
2.3. Ensemble Model Building
2.4. Extinction Risk under Climate and Dispersal Scenarios
3. Results
3.1. Model Performance and Potential Response to Bioclimatic Variables
3.2. Potential Suitability and Projected Area of Occupancy (AOO) under Climate Change Scenarios and Dispersal Scenarios
3.3. Potential Changes in Conservation Status under Climate Change Scenarios
4. Discussion
4.1. Distribution Modelling and Conservation Assessment
4.2. Impact of Climate Change on Habitat Suitability and AOO Loss
4.3. Status under Future Scenarios and Conservation Implications
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xie, D.; Du, H.; Xu, W.H.; Ran, J.H.; Wang, X.Q. Effects of climate change on richness distribution patterns of threatened conifers endemic to China. Ecol. Indic. 2022, 136, 108594. [Google Scholar] [CrossRef]
- Farjon, A. A Handbook of the World’s Conifers; Brill: Boston, MA, USA, 2017. [Google Scholar]
- Shi, G.; Zhou, Z.; Xie, Z. Cupressus foliage shoots and associated seed cones from the Oligocene Ningming Formation of Guangxi, South China. Rev. Palaeobot. Palynol. 2011, 166, 325–334. [Google Scholar] [CrossRef]
- Duquesnoy, E.; Dinh, N.H.; Castola, V.; Casanova, J. Composition of a pyrolytic oil from Cupressus funebris Endl. of Vietnamese origin. Flavour Fragr. J. 2006, 21, 453–457. [Google Scholar] [CrossRef]
- Zhong, S.Y.; Jiang, H.Y.; Wu, L.P.; Liu, M.Y.; Yu, Y.R.; Li, C.R.; Huang, J. A new neolignan and a new biphenylpropanoid from the leaves of Cupressus funebris Endl. S. Afr. J. Bot. 2021, 139, 140–147. [Google Scholar] [CrossRef]
- Anonis, D.P. Woody notes in perfumery: Cedarwood and cedarwood derivatives, Part I. In Fragrance for Personal Care; Allured Publishing: Carol Stream, IL, USA, 2008; pp. 91–98. ISBN 9781932633337. [Google Scholar]
- Adams, R.P.; Li, S. The botanical source of Chinese cedarwood oil: Cupressus funebris or Cupressaceae species? J. Essent. Oil Res. 2008, 20, 235–242. [Google Scholar] [CrossRef]
- Kuiate, J.R.; Bessière, J.M.; Zollo, P.H.A.; Kuate, S.P. Chemical composition and antidermatophytic properties of volatile fractions of hexanic extract from leaves of Cupressus lusitanica Mill. from Cameroon. J. Ethnopharmacol. 2006, 103, 160–165. [Google Scholar] [CrossRef]
- Xiang, Q.; Christian, T.; Zhang, D. Cupressus funebris. In The IUCN Red List of Threatened Species; e.T42218A2962455; International Union for Conservation of Nature (IUCN): Gland, Switzerland, 2013. [Google Scholar] [CrossRef]
- Sung, W.; Yan, X. China Species Red List; Red List Higher Education Press: Beijing, China, 2004; Volume 1. [Google Scholar]
- Oliver, T.H.; Smithers, R.J.; Beale, C.M.; Watts, K. Are existing biodiversity conservation strategies appropriate in a changing climate? Biol. Conserv 2016, 193, 17–26. [Google Scholar] [CrossRef]
- Yi, Y.j.; Cheng, X.; Yang, Z.F.; Zhang, S.H. Maxent modeling for predicting the potential distribution of endangered medicinal plant (H. riparia Lour) in Yunnan, China. Ecol. Eng. 2016, 92, 260–269. [Google Scholar] [CrossRef]
- Harris, R.M.B.; Grose, M.R.; Lee, G.; Bindoff, N.L.; Porfirio, L.L.; Fox-Hughes, P. Climate projections for ecologists. Wiley Interdiscip. Rev. Clim. Chang. 2014, 5, 621–637. [Google Scholar] [CrossRef]
- Dyderski, M.K.; Pa´z, S.; Frelich, L.E.; Jagodzi´nski, A.M. How much does climate change threaten European forest tree species distributions? Global Chang. Biol. 2018, 24, 1150–1163. [Google Scholar] [CrossRef]
- Dakhil, M.A.; Xiong, Q.; Farahat, E.A.; Zhang, L.; Pan, K.; Pandey, B.; Huang, D. Past and future climatic indicators for distribution patterns and conservation planning of temperate coniferous forests in southwestern China. Ecol. Indic. 2019, 107, 105559. [Google Scholar] [CrossRef]
- Chen, Y.; LÜ, Y.; Yin, X. Predicting habitat suitability of 12 coniferous forest tree species in southwest China based on climate change. J. Nanjing For. Univ. 2019, 43, 113–120. [Google Scholar]
- Dakhil, M.A.; Halmy, M.W.A.; Liao, Z.; Pandey, B.; Zhang, L.; Pan, K.; El-Barougy, R.F. Potential risks to endemic conifer montane forests under climate change: Integrative approach for conservation prioritization in southwestern China. Landsc. Ecol. 2021, 36, 3137–3151. [Google Scholar] [CrossRef]
- Li, G.; Xiao, N.; Luo, Z.; Liu, D.; Zhao, Z.; Guan, X.; Zang, C.; Li, J.; Shen, Z. Identifying conservation priority areas for gymnosperm species under climate changes in China. Biol. Conserv. 2021, 253, 108914. [Google Scholar] [CrossRef]
- Bellard, C.; Bertelsmeier, C.; Leadley, P.; Thuiller, W.; Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 2012, 15, 365–377. [Google Scholar] [CrossRef]
- Guo, F.; Lenoir, J.; Bonebrake, T.C. Land-use change interacts with climate to determine elevational species redistribution. Nat. Commun. 2018, 9, 1315. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Wang, L.; Chen, W. A CMIP5 multimodel projection of future temperature, precipitation, and climatological drought in China. Int. J. Climatol. 2014, 34, 2059–2078. [Google Scholar] [CrossRef]
- IUCN Guidelines for Using the IUCN Red List Categories and Criteria.2022, Ver. 15.1. Available online: https://www.iucnredlist.org/resources/redlistguidelines (accessed on 1 January 2023).
- Naimi, B. USDM: Uncertainty Analysis for Species Distribution Models; R Foundation for Statistical Computing: Vienna, Austria, 2015; 12p. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2012. [Google Scholar]
- Guisan, A.; Thuiller, W.; Zimmermann, N.E. Habitat Suitability and Distribution Models: With Applications in R; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Thuiller, W.; Guéguen, M.; Renaud, J.; Karger, D.N.; Zimmermann, N.E. Uncertainty in ensembles of global biodiversity scenarios. Nat. Commun. 2019, 10, 1446. [Google Scholar] [CrossRef]
- Naimi, B.; Araújo, M.B. sdm: A reproducible and extensible R platform for species distribution modelling. Ecography 2016, 39, 368–375. [Google Scholar] [CrossRef]
- Liu, C.; Newell, G.; White, M. On the selection of thresholds for predicting species occurrence with presence-only data. Ecol. Evol. 2016, 6, 337–348. [Google Scholar] [CrossRef] [PubMed]
- Keith, D.A.; Akçakaya, H.R.; Murray, N.J. Scaling range sizes to threats for robust predictions of risks to biodiversity. Conserv. Biol. 2018, 32, 322–332. [Google Scholar] [CrossRef] [PubMed]
- Dauby, G.; Stévart, T.; Droissart, V.; Cosiaux, A.; Deblauwe, V.; Simo-Droissart, M.; Sosef, M.S.M.; Lowry, I.I.P.P.; Schatz, G.E.; Gereau, R.E.; et al. ConR: An R package to assist large-scale multispecies preliminary conservation assessments using distribution data. Ecol. Evol. 2017, 7, 11292–11303. [Google Scholar] [CrossRef]
- Kaky, E.; Gilbert, F. Assessment of the extinction risks of medicinal plants in Egypt under climate change by integrating species distribution models and IUCN Red List criteria. J. Arid Environ. 2018, 170, 103988. [Google Scholar]
- Xie, C.; Yu, X.; Liu, D.; Fang, Y. Modelling suitable habitat and ecological characteristics of old trees using DIVA-GIS in Anhui Province, China. Pol. J. Environ. Stud. 2020, 29, 1931–1943. [Google Scholar] [CrossRef]
- Wu, B.; Qi, S. Effects of underlay on hill-slope surface runoff process of Cupressus funebris Endl. plantations in southwestern China. Forests 2021, 12, 644. [Google Scholar] [CrossRef]
- Evans, B.J.; Lyons, T. Bioclimatic extremes drive forest mortality in southwest, Western Australia. Climate 2013, 1, 28–52. [Google Scholar] [CrossRef]
- Bannister, P.; Neuner, G. Frost resistance and the distribution of conifers. In Conifer Cold Hardiness; Springer: Berlin/Heidelberg, Germany, 2001; pp. 3–21. [Google Scholar]
- He, W.; Luo, C.; Wang, Y.; Wen, X.; Wang, Y.; Li, T.; Chen, G.; Zhao, K.; Li, X.; Fan, C. Response strategies of root system architecture to soil environment: A case study of single-species Cupressus funebris plantations. Front. Plant Sci. 2022, 13, 965. [Google Scholar] [CrossRef]
- Lindenmayer, D.B.; Laurance, W.F.; Franklin, J.F. Global decline in large old trees. Science 2012, 338, 1305–1306. [Google Scholar] [CrossRef]
- Årevall, J.; Early, R.; Estrada, A.; Wennergren, U.; Eklöf, A.C. Conditions for successful range shifts under climate change: The role of species dispersal and landscape configuration. Divers. Distrib. 2018, 24, 1598–1611. [Google Scholar] [CrossRef]
- Bateman, B.L.; Murphy, H.T.; Reside, A.E.; Mokany, K.; VanDerWal, J. Appropriateness of full-, partial-and no-dispersal scenarios in climate change impact modelling. Divers. Distrib. 2013, 19, 1224–1234. [Google Scholar] [CrossRef]
- Rojas, I.M.; Jennings, M.K.; Conlisk, E.; Syphard, A.D.; Mikesell, J.; Kinoshita, A.M.; West, K.; Stow, D.; Storey, E.; De Guzman, M.E. A landscape-scale framework to identify refugia from multiple stressors. Conserv. Biol. 2022, 36, e13834. [Google Scholar] [CrossRef] [PubMed]
Code | Description | Relative Importance (%) | VIF | Range | |
---|---|---|---|---|---|
Min. | Max. | ||||
Bio2 | mean diurnal range (°C) | 59.7 | 1.41 | 6.02 | 15.13 |
Bio4 | temperature seasonality (SD × 100) | 10.6 | 1.94 | 413.7 | 1141 |
Bio8 | mean temperatures of the wettest quarter (°C) | 3.9 | 1.36 | 8.7 | 28.81 |
Bio14 | precipitation of the driest month (mm) | 5.0 | 1.27 | 1.041 | 51.3 |
Bio18 | precipitation of the warmest quarter (mm) | 5.5 | 1.94 | 184.2 | 1021.7 |
Ensemble Model Summary | |||||
AUC | 0.94 ± 0.05 | ||||
TSS | 0.84 ± 0.14 | ||||
MTSS Threshold | 0.47 ± 0.10 |
Climate Change Scenario | AOO Loss % | Proposed IUCN Status | |
---|---|---|---|
Full Dispersal | Limited Dispersal | ||
SSP126 (2021–2040) | 11.33 | 13.50 | LC |
(2081–2100) | 10.23 | 12.29 | LC |
SSP585 (2021–2040) | 12.18 | 15.11 | NT |
(2081–2100) | 11.48 | 13.61 | LC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Wu, Q.; Dakhil, M.A.; Halmy, M.W.A.; Bedair, H.; Fouad, M.S. Towards Forest Conservation Planning: How Temperature Fluctuations Determine the Potential Distribution and Extinction Risk of Cupressus funebris Conifer Trees in China. Forests 2023, 14, 2234. https://doi.org/10.3390/f14112234
Yang J, Wu Q, Dakhil MA, Halmy MWA, Bedair H, Fouad MS. Towards Forest Conservation Planning: How Temperature Fluctuations Determine the Potential Distribution and Extinction Risk of Cupressus funebris Conifer Trees in China. Forests. 2023; 14(11):2234. https://doi.org/10.3390/f14112234
Chicago/Turabian StyleYang, Jingtian, Qinggui Wu, Mohammed A. Dakhil, Marwa Waseem A. Halmy, Heba Bedair, and Mai Sayed Fouad. 2023. "Towards Forest Conservation Planning: How Temperature Fluctuations Determine the Potential Distribution and Extinction Risk of Cupressus funebris Conifer Trees in China" Forests 14, no. 11: 2234. https://doi.org/10.3390/f14112234
APA StyleYang, J., Wu, Q., Dakhil, M. A., Halmy, M. W. A., Bedair, H., & Fouad, M. S. (2023). Towards Forest Conservation Planning: How Temperature Fluctuations Determine the Potential Distribution and Extinction Risk of Cupressus funebris Conifer Trees in China. Forests, 14(11), 2234. https://doi.org/10.3390/f14112234