Spatial Prediction Models for Soil Stoichiometry in Complex Terrains: A Case Study of Schrenk’s Spruce Forest in the Tianshan Mountains
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Sampling and Laboratory Analysis
2.3. Independent Variables
2.4. Actual Distribution of the Schrenk’s Spruce Forest and Spatial Estimation of C, N, P Concentration and C:N:P Ratio
3. Results
3.1. Statistics of Soil C, N and P Concentrations and C:N:P Stoichiometric at Sampling Sites
3.2. Principal Components of Predictors
3.3. Model Performance and Correlation between C:N:P Stoichiometrics and Environmental Variables
3.4. Spatial Patterns of Soil C, N and P Concentrations and C:N:P Ratios
3.5. Comparison between Measured and Modeled Values
4. Discussion
4.1. Spatial Patterns of C, N and P Concentrations and C:N:P Stoichiometry in the Schrenk’s Spruce Forest
4.2. Reliability of MLR Models
4.3. Advantages and Limitations of MLR
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Allison, S.D.; Treseder, K.K. Warming and drying suppress microbial activity and carbon cycling in boreal forest soils. Glob. Chang. Biol. 2008, 14, 2898–2909. [Google Scholar] [CrossRef]
- Huang, W.; Schoenau, J. Forms, amounts and distribution of carbon, nitrogen, phosphorus and sulfur in a boreal aspen forest soil. Can. J. Soil Sci. 1996, 76, 373–385. [Google Scholar] [CrossRef]
- Cao, Y.; Chen, Y. Ecosystem C: N: P stoichiometry and carbon storage in plantations and a secondary forest on the Loess Plateau, China. Ecol. Eng. 2017, 105, 125–132. [Google Scholar] [CrossRef]
- Ouyang, S.; Xiang, W.; Gou, M.; Lei, P.; Chen, L.; Deng, X.; Zhao, Z. Variations in soil carbon, nitrogen, phosphorus and stoichiometry along forest succession in southern China. Biogeosci. Disc. 2017, 1–27. [Google Scholar] [CrossRef]
- Lie, G.; Xue, L. Biomass allocation patterns in forests growing different climatic zones of China. Trees 2016, 30, 639–646. [Google Scholar] [CrossRef]
- Niinemets, Ü. Responses of forest trees to single and multiple environmental stresses from seedlings to mature plants: Past stress history, stress interactions, tolerance and acclimation. For. Ecol. Manag. 2010, 260, 1623–1639. [Google Scholar] [CrossRef]
- Buchkowski, R.W.; Shaw, A.N.; Sihi, D.; Smith, G.R.; Keiser, A.D. Constraining carbon and nutrient flows in soil with ecological stoichiometry. Front. Ecol. Evol. 2019, 382. [Google Scholar] [CrossRef]
- Elser, J.; Sterner, R.; Gorokhova, E.a.; Fagan, W.; Markow, T.; Cotner, J.; Harrison, J.; Hobbie, S.; Odell, G.; Weider, L. Biological stoichiometry from genes to ecosystems. Ecol. Lett. 2000, 3, 540–550. [Google Scholar] [CrossRef]
- Sterner, R.W.; Elser, J.J. Ecological stoichiometry. In Ecological Stoichiometry; Princeton University Press: Princeton, NJ, USA, 2017. [Google Scholar]
- McGroddy, M.E.; Daufresne, T.; Hedin, L.O. Scaling of C: N: P stoichiometry in forests worldwide: Implications of terrestrial redfield-type ratios. Ecology 2004, 85, 2390–2401. [Google Scholar] [CrossRef]
- Feller, I.C.; McKee, K.L.; Whigham, D.F.; O’neill, J.P. Nitrogen vs. phosphorus limitation across an ecotonal gradient in a mangrove forest. Biogeochemistry 2003, 62, 145–175. [Google Scholar] [CrossRef]
- Högberg, P.; Näsholm, T.; Franklin, O.; Högberg, M.N. Tamm Review: On the nature of the nitrogen limitation to plant growth in Fennoscandian boreal forests. For. Ecol. Manag. 2017, 403, 161–185. [Google Scholar] [CrossRef]
- Johnson, M.T.; Agrawal, A.A. Plant genotype and environment interact to shape a diverse arthropod community on evening primrose (Oenothera biennis). Ecology 2005, 86, 874–885. [Google Scholar] [CrossRef]
- Qi, K.; Pang, X.; Yang, B.; Bao, W. Soil carbon, nitrogen and phosphorus ecological stoichiometry shifts with tree species in subalpine plantations. PeerJ 2020, 8, e9702. [Google Scholar] [CrossRef]
- Hill, B.H.; Elonen, C.M.; Seifert, L.R.; May, A.A.; Tarquinio, E. Microbial enzyme stoichiometry and nutrient limitation in US streams and rivers. Ecol. Indic. 2012, 18, 540–551. [Google Scholar] [CrossRef]
- Mariotte, P.; Canarini, A.; Dijkstra, F.A. Stoichiometric N: P flexibility and mycorrhizal symbiosis favour plant resistance against drought. J. Ecol. 2017, 105, 958–967. [Google Scholar] [CrossRef]
- He, W.-M.; Yu, F.-H.; Zhang, L.-L. Physiological integration impacts nutrient use and stoichiometry in three clonal plants under heterogeneous habitats. Ecol. Res. 2010, 25, 967–972. [Google Scholar] [CrossRef]
- Di Palo, F.; Fornara, D.A. Plant and soil nutrient stoichiometry along primary ecological successions: Is there any link? PLoS ONE 2017, 12, e0182569. [Google Scholar]
- Schmidt, S.; Porazinska, D.; Concienne, B.-L.; Darcy, J.; King, A.; Nemergut, D. Biogeochemical stoichiometry reveals P and N limitation across the post-glacial landscape of Denali National Park, Alaska. Ecosystems 2016, 19, 1164–1177. [Google Scholar] [CrossRef]
- Midgley, M.G.; Phillips, R.P. Resource stoichiometry and the biogeochemical consequences of nitrogen deposition in a mixed deciduous forest. Ecology 2016, 97, 3369–3378. [Google Scholar] [CrossRef]
- Rahman, M.; Zhang, K.; Wang, Y.; Ahmad, B.; Ahmad, A.; Zhang, Z.; Khan, D.; Muhammad, D.; Ali, A. Variations in soil physico-chemical properties, soil stocks, and soil stoichiometry under different soil layers, the major forest region Liupan Mountains of Northwest China. Braz. J. Biol. 2022, 84. [Google Scholar] [CrossRef]
- Feng, M.; Zhang, D.; He, B.; Liang, K.; Xi, P.; Bi, Y.; Huang, Y.; Liu, D.; Li, T. Characteristics of soil C, N, and P stoichiometry as affected by land use and slope position in the Three Gorges Reservoir Area, southwest China. Sustainability 2021, 13, 9845. [Google Scholar] [CrossRef]
- Leroux, S.J.; Wal, E.V.; Wiersma, Y.F.; Charron, L.; Ebel, J.D.; Ellis, N.M.; Hart, C.; Kissler, E.; Saunders, P.W.; Moudrá, L. Stoichiometric distribution models: Ecological stoichiometry at the landscape extent. Ecol. Lett. 2017, 20, 1495–1506. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Fan, J.; Harris, W.; Li, Y. Relationships between below-ground biomass and foliar N: P stoichiometry along climatic and altitudinal gradients of the Chinese grassland transect. Plant Ecol. 2017, 218, 661–671. [Google Scholar] [CrossRef]
- Sardans, J.; Alonso, R.; Janssens, I.A.; Carnicer, J.; Vereseglou, S.; Rillig, M.C.; Fernández-Martínez, M.; Sanders, T.G.; Penuelas, J. Foliar and soil concentrations and stoichiometry of nitrogen and phosphorous across European Pinus sylvestris forests: Relationships with climate, N deposition and tree growth. Funct. Ecol. 2016, 30, 676–689. [Google Scholar] [CrossRef]
- Feng, D.; Bao, W.; Pang, X. Consistent profile pattern and spatial variation of soil C/N/P stoichiometric ratios in the subalpine forests. J. Soils Sed. 2017, 17, 2054–2065. [Google Scholar] [CrossRef]
- Ågren, G.I.; Wetterstedt, J.M.; Billberger, M.F. Nutrient limitation on terrestrial plant growth–modeling the interaction between nitrogen and phosphorus. New Phytol. 2012, 194, 953–960. [Google Scholar] [CrossRef]
- Zinke, P.J.; Stangenberger, A.G. Elemental storage of forest soil from local to global scales. For. Ecol. Manag. 2000, 138, 159–165. [Google Scholar] [CrossRef]
- Liu, Z.-P.; Shao, M.-A.; Wang, Y.-Q. Spatial patterns of soil total nitrogen and soil total phosphorus across the entire Loess Plateau region of China. Geoderma 2013, 197, 67–78. [Google Scholar] [CrossRef]
- Lek, S.; Guégan, J.-F. Artificial neural networks as a tool in ecological modelling, an introduction. Ecol. Model. 1999, 120, 65–73. [Google Scholar] [CrossRef]
- De’ath, G.; Fabricius, K.E. Classification and regression trees: A powerful yet simple technique for ecological data analysis. Ecology 2000, 81, 3178–3192. [Google Scholar] [CrossRef]
- Asner, G.P.; Anderson, C.B.; Martin, R.E.; Tupayachi, R.; Knapp, D.E.; Sinca, F. Landscape biogeochemistry reflected in shifting distributions of chemical traits in the Amazon forest canopy. Nat. Geosci. 2015, 8, 567–573. [Google Scholar] [CrossRef]
- Li, L.; Chang, Y.; Li, X.; Qiao, X.; Luo, Q.; Xu, Z.; Xu, Z. Carbon sequestration potential of cropland reforestation on the northern slope of the Tianshan Mountains. Can. J. Soil Sci. 2016, 96, 461–471. [Google Scholar] [CrossRef]
- Wang, H.; Chang, S.; Zhang, Y.; Xie, J.; He, P.; Song, C.; Sun, X. Density-dependent effects in Picea schrenkiana forests in Tianshan Mountains. Biodivers. Sci. 2016, 24, 252. [Google Scholar] [CrossRef]
- Yeomans, J.C.; Bremner, J.M. A rapid and precise method for routine determination of organic carbon in soil. Commun. Soil Sci. Plant Anal. 1988, 19, 1467–1476. [Google Scholar] [CrossRef]
- Bremner, J.; Tabatabai, M. Use of an ammonia electrode for determination of ammonium in Kjeldahl analysis of soils. Commun. Soil Sci. Plant Anal. 1972, 3, 159–165. [Google Scholar] [CrossRef]
- Sherman, M. Colorimetric determination of phosphorus in soils. Provision for eliminating the interference of arsenic. Ind. Eng. Chem. Anal. Ed. 1942, 14, 182–185. [Google Scholar] [CrossRef]
- Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. J. R. Meteorol. Soc. 2005, 25, 1965–1978. [Google Scholar] [CrossRef]
- Fick, S.; Hijmans, R. New 1 km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2021, 5086. [Google Scholar] [CrossRef]
- Feng, X.; Park, D.S.; Liang, Y.; Pandey, R.; Papeş, M. Collinearity in ecological niche modeling: Confusions and challenges. Ecol. Evol. 2019, 9, 10365–10376. [Google Scholar] [CrossRef]
- Leiblein-Wild, M.C.; Tackenberg, O. Phenotypic variation of 38 European Ambrosia artemisiifolia populations measured in a common garden experiment. Biol. Invasions 2014, 16, 2003–2015. [Google Scholar] [CrossRef]
- Hengl, T.; Mendes de Jesus, J.; Heuvelink, G.B.; Ruiperez Gonzalez, M.; Kilibarda, M.; Blagotić, A.; Shangguan, W.; Wright, M.N.; Geng, X.; Bauer-Marschallinger, B. SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE 2017, 12, e0169748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hou, X. Vegetation Atlas of China; Science Press: Beijing, China, 2001; pp. 113–124. [Google Scholar]
- Guisan, A.; Edwards Jr, T.C.; Hastie, T. Generalized linear and generalized additive models in studies of species distributions: Setting the scene. Ecol. Model. 2002, 157, 89–100. [Google Scholar] [CrossRef]
- Team, R.C. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013. [Google Scholar]
- Dai, L.; Li, Y.; Luo, G.; Xu, W.; Lu, L.; Li, C.; Feng, Y. The spatial variation of alpine timberlines and their biogeographical characteristics in the northern Tianshan Mountains of China. Environ. Earth Sci. 2013, 68, 129–137. [Google Scholar] [CrossRef]
- Cui, W.; Li, Z.; Chang, Z.; Wang, J.; Hou, Z.; Ding, Q. Soils in Xinjiang; Science Press: Beijing, China, 1996. [Google Scholar]
- Prater, C.; Frost, P.C.; Howell, E.T.; Watson, S.B.; Zastepa, A.; King, S.S.; Vogt, R.J.; Xenopoulos, M.A. Variation in particulate C: N: P stoichiometry across the Lake Erie watershed from tributaries to its outflow. Limnol. Oceanogr. 2017, 62, S194–S206. [Google Scholar] [CrossRef]
- Rial, M.; Cortizas, A.M.; Rodríguez-Lado, L. Mapping soil organic carbon content using spectroscopic and environmental data: A case study in acidic soils from NW Spain. Sci. Total Environ. 2016, 539, 26–35. [Google Scholar] [CrossRef]
- Martiny, A.; Vrugt, J.A.; Primeau, F.W.; Lomas, M.W. Regional variation in the particulate organic carbon to nitrogen ratio in the surface ocean. Glob. Biogeochem. Cycles 2013, 27, 723–731. [Google Scholar] [CrossRef]
- Hamblin, S. On the practical usage of genetic algorithms in ecology and evolution. Methods Ecol. Evol. 2013, 4, 184–194. [Google Scholar] [CrossRef]
Sampling Site | Average Altitude (m) | Average Slope (°) | Longitude Range (°) | Latitude Range (°) |
---|---|---|---|---|
Zhaosu | 2176.65 | 10.25 | 80.24–80.49 | 42.59–42.69 |
Jinghe | 1999.25 | 16.71 | 83.17–83.17 | 44.34–44.35 |
Qiaoerma | 2474.25 | 9.07 | 84.28–84.32 | 43.64–43.64 |
Shuixigou | 2100.63 | 2.76 | 87.33–87.34 | 43.41–43.63 |
Baiyanggou | 2087.09 | 7.21 | 87.37–87.39 | 43.41–43.63 |
Banfanggou | 2018.92 | 13.01 | 87.44–87.46 | 43.43–43.44 |
Tianchi | 2021.20 | 10.83 | 88.12–88.12 | 43.89–43.90 |
Variable | Abbreviation | Factor Loading | |||
---|---|---|---|---|---|
PC-1 | PC-2 | PC-3 | PC-4 | ||
Elevation | ELE | −0.66 | |||
Max temperature of warmest month | TWM | 0.99 | |||
Mean temperature of warmest quarter | TWMQ | 0.99 | |||
Mean annual temperature | MAT | 0.96 | |||
Min temperature of coldest month | TCM | 0.93 | |||
Mean temperature of wettest quarter | TWEQ | 0.93 | |||
Mean temperature of driest quarter | TDQ | 0.90 | 0.34 | ||
Mean temperature of coldest quarter | TCQ | 0.90 | 0.34 | ||
Precipitation seasonality | PS | −0.83 | −0.41 | ||
Precipitation of warmest quarter | PWQ | −0.73 | 0.63 | ||
Mean diurnal range | MDR | 0.72 | 0.65 | ||
Precipitation of wettest month | PWM | −0.71 | 0.63 | ||
Precipitation of wettest quarter | PWQ | −0.70 | 0.66 | ||
Soil pH | pH | 0.64 | −0.44 | 0.41 | |
Temperature annual range | TAR | 0.63 | 0.55 | ||
Coarse fragments percentage | CRF | −0.60 | 0.51 | −0.34 | |
Cation exchange capacity | CEC | −0.60 | 0.36 | ||
Mean annual precipitation | MAP | −0.33 | 0.90 | ||
Precipitation of driest quarter | PDQ | 0.88 | 0.36 | ||
Precipitation of coldest quarter | PCQ | 0.88 | 0.36 | ||
Precipitation of driest month | PDM | 0.85 | 0.39 | ||
Temperature seasonality | TS | −0.38 | −0.78 | 0.45 | |
Isothermality | ISO | 0.60 | 0.73 | −0.30 | |
Sand content | SDC | 0.47 | −0.84 | ||
Clay content | CLC | −0.39 | 0.77 | ||
Silt content | STC | −0.42 | 0.74 | ||
Bulk density | BD | 0.52 | |||
Available soil water capacity | AWC | 0.41 | −0.36 | −0.31 | 0.34 |
Sample Sites | C (g kg−1) | N (g kg−1) | P (g kg−1) | C:N | C:P | N:P | |
---|---|---|---|---|---|---|---|
Zhaosu | Min | 48.28 | 3.10 | 0.42 | 7.50 | 42.83 | 6.05 |
Max | 122.59 | 12.22 | 1.13 | 15.89 | 161.71 | 19.39 | |
Mean | 71.80 | 6.19 | 0.74 | 12.40 | 104.45 | 11.48 | |
Jinghe | Min | 3.12 | 1.83 | 0.46 | 1.34 | 3.26 | 2.00 |
Max | 54.57 | 5.42 | 1.20 | 14.17 | 84.26 | 11.39 | |
Mean | 33.57 | 3.48 | 0.81 | 9.64 | 45.65 | 5.25 | |
Qiaoerma | Min | 24.89 | 2.64 | 0.38 | 7.02 | 32.39 | 3.92 |
Max | 79.30 | 5.74 | 1.25 | 20.65 | 129.43 | 11.59 | |
Mean | 64.20 | 4.69 | 0.83 | 14.02 | 80.64 | 7.16 | |
Shuixigou | Min | 32.44 | 3.10 | 0.37 | 8.62 | 60.29 | 7.16 |
Max | 139.94 | 16.23 | 1.10 | 14.73 | 150.66 | 13.25 | |
Mean | 72.81 | 6.06 | 0.66 | 12.65 | 108.27 | 10.56 | |
Baiyanggou | Min | 20.49 | 2.03 | 0.37 | 6.07 | 41.84 | 4.10 |
Max | 84.20 | 6.69 | 0.93 | 14.21 | 140.49 | 11.16 | |
Mean | 50.11 | 4.31 | 0.69 | 11.50 | 71.72 | 7.06 | |
Banfanggou | Min | 10.42 | 1.78 | 0.38 | 4.20 | 17.12 | 2.85 |
Max | 79.46 | 7.64 | 1.06 | 12.41 | 90.68 | 28.17 | |
Mean | 51.38 | 4.73 | 0.71 | 10.64 | 68.84 | 9.86 | |
Tianchi | Min | 24.16 | 2.00 | 0.38 | 7.96 | 37.13 | 3.35 |
Max | 77.29 | 6.09 | 0.80 | 17.36 | 119.86 | 10.57 | |
Mean | 48.16 | 3.90 | 0.57 | 12.44 | 84.09 | 7.29 |
Component | Initial Eigenvalues | ||
---|---|---|---|
Total | % of Variance | Cumulative % | |
Elevation | 12.900 | 42.999 | 42.999 |
Max temperature of warmest month | 7.724 | 25.748 | 68.746 |
Mean temperature of warmest quarter | 3.014 | 10.048 | 78.794 |
Mean annual temperature | 2.142 | 7.140 | 85.934 |
Min temperature of coldest month | 1.395 | 4.649 | 90.583 |
Mean temperature of wettest quarter | 1.151 | 3.838 | 94.421 |
Mean temperature of driest quarter | 0.509 | 1.696 | 96.117 |
Mean temperature of coldest quarter | 0.355 | 1.183 | 97.300 |
Precipitation seasonality | 0.299 | 0.998 | 98.298 |
Precipitation of warmest quarter | 0.134 | 0.446 | 98.744 |
Mean diurnal range | 0.119 | 0.396 | 99.140 |
Precipitation of wettest month | 0.079 | 0.264 | 99.404 |
Precipitation of wettest quarter | 0.068 | 0.225 | 99.629 |
Soil pH | 0.043 | 0.142 | 99.771 |
Temperature annual range | 0.024 | 0.081 | 99.852 |
Coarse fragments percentage | 0.016 | 0.055 | 99.907 |
Cation exchange capacity | 0.011 | 0.036 | 99.943 |
Mean annual precipitation | 0.009 | 0.029 | 99.972 |
Precipitation of driest quarter | 0.004 | 0.015 | 99.987 |
Precipitation of coldest quarter | 0.002 | 0.008 | 99.995 |
Precipitation of driest month | 0.001 | 0.002 | 99.997 |
Temperature seasonality | 0.000 | 0.001 | 99.998 |
Isothermality | 0.000 | 0.001 | 99.998 |
Sand content | 0.000 | 0.001 | 99.999 |
Clay content | 0.000 | 0.000 | 99.999 |
Silt content | 7.261 × 10−5 | 0.000 | 100.000 |
Bulk density | 6.221 × 10−5 | 0.000 | 100.000 |
Available soil water capacity | 4.683 × 10−5 | 0.000 | 100.000 |
Model | Independent Variables | Performance of Models with Original 28 Variables | Performance of Models with PCs | ||||||
---|---|---|---|---|---|---|---|---|---|
Adjusted R2 | F | MAE (%) | RMSE | Adjusted R2 | F | MAE (%) | RMSE | ||
MLR | C | 0.20 | 1.93 * | 41.69 | 21.60 | 0.09 | 2.54 * | 44.27 | 22.64 |
N | 0.31 | 2.58 ** | 97.72 | 0.17 | 0.32 | 8.58 ** | 86.98 | 0.17 | |
P | 0.39 | 3.05 ** | 33.50 | 0.04 | 0.21 | 4.92 ** | 46.96 | 0.06 | |
C:N | 0.51 | 4.01 ** | 80.40 | 13.51 | 0.04 | 1.62 | 49.70 | 12.92 | |
C:P | 0.12 | 1.26 | 21.67 | 47.64 | 0.03 | 1.02 | 21.69 | 45.00 | |
N:P | 0.15 | 1.61 | 42.36 | 1.89 | 0.14 | 4.35 ** | 34.90 | 1.86 | |
STR | C | 0.13 | 12.77 ** | 56.92 | 23.17 | 0.05 | 5.12 * | 45.18 | 22.06 |
N | 0.34 | 14.25 ** | 77.87 | 0.16 | 0.31 | 19.04 ** | 90.95 | 0.17 | |
P | 0.29 | 16.30 ** | 86.64 | 0.09 | 0.22 | 8.04 ** | 43.77 | 0.06 | |
C:N | 0.12 | 9.02 ** | 45.87 | 12.59 | 0.03 | 1.96 | 43.29 | 13.37 | |
C:P | 0.05 | 4.91 * | 22.29 | 46.62 | 0.02 | 1.01 | 21.71 | 45.05 | |
N:P | 0.21 | 10.17 ** | 43.49 | 1.53 | 0.13 | 13.18 ** | 49.25 | 1.80 | |
RDR | C | 0.22 | 2.44 ** | 54.54 | 22.53 | 0.06 | 2.19 | 44.11 | 22.12 |
N | 0.26 | 2.73 ** | 66.94 | 0.19 | 0.33 | 10.65 ** | 94.77 | 0.17 | |
P | 0.38 | 3.71 ** | 65.89 | 0.07 | 0.17 | 4.71 ** | 41.11 | 0.05 | |
C:N | 0.37 | 3.47 ** | 75.64 | 18.74 | 0.04 | 1.77 | 43.61 | 13.28 | |
C:P | 0.10 | 1.10 | 20.60 | 44.63 | 0.02 | 0.98 | 22.40 | 46.17 | |
N:P | 0.20 | 2.29 ** | 48.81 | 1.79 | 0.15 | 5.84 ** | 55.35 | 1.72 | |
LSR | C | 0.20 | 1.93 * | 66.97 | 22.50 | 0.10 | 3.17 * | 47.95 | 26.62 |
N | 0.32 | 2.77 ** | 72.21 | 0.18 | 0.10 | 3.15 * | 90.14 | 0.17 | |
P | 0.39 | 3.14 ** | 71.06 | 0.08 | 0.22 | 6.09 ** | 45.91 | 0.06 | |
C:N | 0.51 | 4.14 ** | 72.48 | 13.78 | 0.04 | 1.90 | 52.19 | 12.97 | |
C:P | 0.13 | 1.29 | 22.28 | 49.15 | 0.03 | 1.02 | 23.04 | 47.22 | |
N:P | 0.13 | 1.61 | 69.31 | 1.78 | 0.14 | 5.76 ** | 45.63 | 1.77 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Zheng, Y.; Liu, Y.; Huang, J.; Mamtimin, A. Spatial Prediction Models for Soil Stoichiometry in Complex Terrains: A Case Study of Schrenk’s Spruce Forest in the Tianshan Mountains. Forests 2022, 13, 1407. https://doi.org/10.3390/f13091407
Wang Y, Zheng Y, Liu Y, Huang J, Mamtimin A. Spatial Prediction Models for Soil Stoichiometry in Complex Terrains: A Case Study of Schrenk’s Spruce Forest in the Tianshan Mountains. Forests. 2022; 13(9):1407. https://doi.org/10.3390/f13091407
Chicago/Turabian StyleWang, Yao, Yi Zheng, Yan Liu, Jian Huang, and Ali Mamtimin. 2022. "Spatial Prediction Models for Soil Stoichiometry in Complex Terrains: A Case Study of Schrenk’s Spruce Forest in the Tianshan Mountains" Forests 13, no. 9: 1407. https://doi.org/10.3390/f13091407
APA StyleWang, Y., Zheng, Y., Liu, Y., Huang, J., & Mamtimin, A. (2022). Spatial Prediction Models for Soil Stoichiometry in Complex Terrains: A Case Study of Schrenk’s Spruce Forest in the Tianshan Mountains. Forests, 13(9), 1407. https://doi.org/10.3390/f13091407