Commercial Eucalyptus Plantations with Taungya System: Analysis of Tree Root Biomass
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Design of the Study
2.3. Collection of Root Samples
2.4. Statistical Analysis
3. Results
3.1. Overview of Root System Architecture
3.2. Effects of Intercropping and Distance from the Tree Base on Root Dry Mass
3.3. Effects of Spacing and Distance from the Tree Base on Root Dry Mass
3.4. Effects of Stand Age and Distance from the Tree Base on Root Dry Mass
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. Global Forest Resource Assessment 2015: How Are the World’s Forests Changing? Food and the Agricultural Organization: Rome, Italy, 2015; p. 47. [Google Scholar]
- Shepherd, M.; Bartle, J.; Lee, D.J.; Brawner, J.; Bush, D.; Turnbull, P.; Macdonel, P.; Brown, T.R.; Simmons, B.; Henry, R. Eucalypts as a biofuel feedstock: Review. Biofuels 2011, 2, 639–657. [Google Scholar] [CrossRef]
- Payn, T.; Carnus, J.-M.; Freer-Smith, P.; Kimberley, M.; Kollert, W.; Liu, S.; Orazio, C.; Rodriguez, L.; Silva, L.N.; Wingfield, M.J. Changes in planted forests and future global implications. For. Ecol. Manag. 2015, 352, 57–67. [Google Scholar] [CrossRef]
- Del Lungo, A.; Ball, J.; Carle, J. Global Planted Forests Thematic Study: Results and Analysis; Planted Forests and Trees Working Paper 38; Food and Agricultural organization: Rome, Italy, 2006; p. 174. [Google Scholar]
- Kanowski, P.; Murray, H. Intensively Managed Planted Forests: Toward Best Practice; A TFD Publication: New Haven, CT, USA, 2008; pp. 1–64. [Google Scholar]
- Kuyah, S.; Whitney, C.W.; Jonsson, M.; Sileshi, G.W.; Öborn, I.; Muthuri, C.W.; Luedeling, E. Agroforestry delivers a win-win solution for ecosystem services in sub-Saharan Africa. A meta-analysis. Agron. Sustain. Dev. 2019, 39, 47. [Google Scholar] [CrossRef]
- Alexander, T.G.; Sobhana, K.; Balagopalan, M.; Mary, M.V. Taungya in relation to soil properties, soil erosion and soil management. In KFRI Research Report; Kerala Forest Research Institute: Kerala, India, 1980; Volume 4, p. 24. [Google Scholar]
- Jordan, J.; Gajaseni, J.; Watanabe, H. Taungya: Forest Plantations with Agriculture in Southeast Asia; CAB International: Wallingford, UK, 1992. [Google Scholar]
- Victor, A.J.; Bakare, Y. Rural Livelihood Benefits from Participation in the Taungya Agroforestry System in Ondo State, Nigeria. Small-Scale For. Econ. Manag. Policy 2004, 3, 131–138. [Google Scholar]
- Schlonvoigt, A.; Beer, J. Initial growth of pioneer timber tree species in a Taungya system in the humid lowlands of Costa Rica. Agrofor. Syst. 2001, 51, 97–108. [Google Scholar] [CrossRef]
- Kalame, F.B.; Aidoo, R.; Nkem, J.; Ajayie, O.C.; Kanninen, M.; Luukkanen, O.; Idinoba, M. Modified taungya system in Ghana: A win-win practice for forestry and adaptation to climate change? Environ. Sci. Policy 2011, 14, 519–530. [Google Scholar] [CrossRef]
- Garrity, D.P. Agroforestry and the achievement of the Millennium Development Goals. Agrofor. Syst. 2004, 61, 5–17. [Google Scholar]
- Soto-Pinto, L.; Armijo-Florentino, C. Changes in Agroecosystem Structure and Function along a Chronosequence of Taungya System in Chiapas, Mexico. J. Agric. Sci. 2014, 6, 43–57. [Google Scholar] [CrossRef]
- Anonymous. Growing Food & Planting Trees; Annual Report 2007; Stora Enso Report: Stockholm, Finland, 2007. [Google Scholar]
- Anonymous. Environmental Impact Assessment of Stora Enso’s Commercial Plantations in Savannakhet and Saravanh Provinces, Lao PDR; Swedish University of Agricultural Sciences, Department of Soil and Environment: Uppsala, Sweden, 2008. [Google Scholar]
- Imo, M.; Timmer, V.R. Vector competition analysis of a Leucaena—maize alley cropping system in western Kenya. For. Ecol. Manag. 2000, 126, 255–268. [Google Scholar] [CrossRef]
- Young, A. Agroforestry for Soil Management; CABI: Wallingford, UK; ICRAF: Nairobi, Kenya, 1997; p. 320. [Google Scholar]
- Reyes, T.; Quiroz, R.; Luukkanen, O.; De Mendiburu, F. Spice crops agroforestry systems in the East Usambara Mountains, Tanzania: Growth analysis. Agrofor. Syst. 2009, 76, 513–523. [Google Scholar] [CrossRef]
- Bieluczyk, W.; de Cassia Piccolo, M.; Pereira, M.G.; Lambais, G.R.; de Moraes, M.T.; Soltangheisi, A.; de Campos Bernardi, A.C.; Pezzopane, J.R.M.; Bosi, C.; Cherubin, M.R. Eucalyptus tree influence on spatial and temporal dynamics of fine-root growth in an integrated crop-livestock-forestry system in southeastern Brazil. Rhizosphere 2021, 19, 100415. [Google Scholar] [CrossRef]
- Schaller, M.; Schroth, G.; Beer, J.; Jiménez, F. Species and site characteristics that permit the association of fast.growing trees with crops: The case of Eucalyptus deglupta as coffee shade in Costa Rica. For. Ecol. Manag. 2003, 175, 205–215. [Google Scholar] [CrossRef]
- Chamshama, S.A.O.; Mugasha, A.G.; Klovstad, A.; Haveraaen, O.; Maliondo, S.M.S. Growth and yield of maize alley cropped with Leucaena leucocephala and Faidherbia albida in Morogoro, Tanzan. Agrofor. Syst. 1998, 40, 215–225. [Google Scholar] [CrossRef]
- Rao, M.R.; Sharma, M.M.; Ong, C.K. A tree-crop interface design and its use for evaluating the potential of hedge row intercropping. Agrofor. Syst. 1991, 13, 143–158. [Google Scholar] [CrossRef]
- Atkinson, C.; Webster, A. The influence of the development of temperate fruit tree species on the potential for their uptake of radionuclides. J. Environ. Radioact. 2001, 52, 131–146. [Google Scholar] [CrossRef]
- Marziliano, P.A.; Coletta, V.; Menguzzato, G.; Nicolaci, A.; Pellicone, G.; Veltri, A. Effects of planting density on the distribution of biomass in a Douglas-fir plantation in southern Italy. Iforest 2015, 8, 368. [Google Scholar] [CrossRef]
- Bernardo, A.L.; Reis, M.G.F.; Reis, G.G.; Harrison, R.B.; Firme, D.J. Effect of spacing on growth and biomass distribution in Eucalyptus camaldulensis, E. pellita and E. urophylla plantations in southeastern Brazil. For. Ecol. Manag. 1998, 104, 1–13. [Google Scholar]
- Fabião, A.; Madeira, M.; Steen, E. Effect of Water and Nutrient Supply on Root Distribution in an Eucalyptus Globulus Plantation. In Management of Nutrition in Forests under Stress; Zöttl, H.W., Hüttl, R.F., Eds.; Springer: Dordrecht, The Netherland, 1991. [Google Scholar] [CrossRef]
- Laclau, J.-P.; Arnaud, M.; Bouillet, J.-P.; Ranger, J. Spatial distribution of Eucalyptus roots in a deep sandy soil in the Congo: Relationships with the ability of the stand to take up water and nutrients. Tree Physiol. 2001, 21, 129–136. [Google Scholar] [CrossRef]
- Nadir, S.W.; Ng’etich, W.K.; Kebeney, S.J. Performance of crops under Eucalyptus tree-crop mixtures and its potential for adoption in agroforestry systems. Aust. J. Crop Sci. 2018, 12, 1231–1240. [Google Scholar] [CrossRef]
- Ahlawat, K.S.; Daneva, V.; Sirohi, C.; Dalal, V. Production Potential of Agricultural Crops under Eucalyptus tereticornis Based Agrisilviculture System in Semi-Arid Region of Haryana. Int. J. Curr. Microbiol. Appl. Sci. 2019, 8, 2319–7706. [Google Scholar] [CrossRef]
- Hodge, A.; Berta, G.; Doussan, C.; Merchan, F.; Crespi, M. Plant root growth, architecture and function. Plant Soil 2009, 321, 15–187. [Google Scholar] [CrossRef]
- Poorter, L.; Bongers, L.; Bongers, F. Architecture of 54 moist-forest tree species: Traits, trade-offs, and functional groups. Ecology 2006, 87, 1289–1301. [Google Scholar] [CrossRef]
- Zanetti, C.; Vennetier, M.; Mériaux, P.; Provansal, M. Plasticity of tree root system structure in contrasting soil materials and environmental conditions. Plant Soil 2015, 387, 21–35. [Google Scholar] [CrossRef]
- Kuuluvainen, T.; Syrjänen, K.; Kalliola, R. Structure of a pristine Picea abies forest in northeastern Europe. J. Veg. Sci. 1998, 9, 563–574. [Google Scholar] [CrossRef]
- Madsen, C.; Potvin, C.; Hall, J.; Katherine, S.; Turner, B.L.; Schnabel, F. Coarse root architecture: Neighbourhood and abiotic environmental effects on five tropical tree species growing in mixtures and monocultures. For. Ecol. Manag. 2020, 460, 117851. [Google Scholar] [CrossRef]
- Begon, M.; Harper, J.L.; Townsend, C.R. Ecology, Individuals, Populations and Communities, 3rd ed.; Blackwell Science: London, UK, 1996. [Google Scholar]
- Belter, P.R.; Cahill, J.F. Disentangling root system responses to neighbours: Identification of novel root behavioural strategies. AoB PLANTS 2015, 7, plv059. [Google Scholar] [CrossRef]
- Homulle, Z.; George, T.S.; Karley, A.J. Root traits with team benefits: Understanding belowground interactions in intercropping systems. Plant Soil 2022, 471, 1–26. [Google Scholar] [CrossRef]
- Li, L.; Sun, J.; Zhang, F.; Guo, T.; Bao, X.; Smith, F.A.; Smith, S.E. Root distribution and interactions between intercropped species. Oecologia 2006, 147, 280–290. [Google Scholar] [CrossRef]
- Hodge, A. The plastic plant: Root responses to heterogeneous supplies of nutrients. New Phytol. 2004, 162, 9–24. [Google Scholar] [CrossRef]
- Rowe, E.C.; van Noordwijk, M.; Suprayogo, D.; Hairiah, K.; Giller, K.E.; Cadisch, G. Root distributions partially explain 15N uptake patterns in Gliricidia and Peltophorum hedgerow intercropping systems. Plant Soil 2001, 235, 167–179. [Google Scholar] [CrossRef]
- Robinson, N.; Harper, R.J.; Smettem, K.R.J. Soil water depletion by Eucalyptus spp. Integrated into dryland agricultural systems. Plant Soil 2006, 286, 141–151. [Google Scholar]
- Goss, M.J. Effects of mechanical impedance on root growth in barley (Hordeum vulgare L.): I. Effects of the elongation and branching of seminal root axes. J. Exp. Bot. 1977, 28, 96–111. [Google Scholar] [CrossRef]
- Hebblethwaite, P.D.; McGowan, M. The effects of soil compaction on the emergence, growth and yield of sugar beet and peas. J. Sci. Food Agric. 1980, 31, 1131–1142. [Google Scholar] [CrossRef]
- Kozlowski, T.T. Soil compaction and growth of woody plants. Scand. J. For. Res. 1999, 14, 596–619. [Google Scholar] [CrossRef]
- Azam, G.; Grant, D.C.; Murray, S.R.; Nuberg, K.I.; Misra, K.R. Comparison of the penetration of primary and lateral roots of pea and different tree seedlings growing in hard soils. Soil Res. 2014, 52, 87–96. [Google Scholar] [CrossRef]
- Montani, T.; Fernandez, O.A.; Busso, C.A.; Flemmer, A.C. Root growth, appearance and disappearance in perennial grasses: Effects of the timing of water stress with or without defoliation. Can. J. Plant Sci. 2002, 82, 539–547. [Google Scholar]
- Savadogo, P.; Santi, S.; Dayamba, S.D.; Nacro, H.B.; Sawadogo, L. Seasonal variation in fire temperature and influence on soil CO2 efflux, root biomass, and soil water properties in a Sudanian savanna–woodland, West Africa. Soil Res. 2012, 50, 195–206. [Google Scholar] [CrossRef]
- Carbon, B.A.; Bartle, G.A.; Murray, A.M.; Macpherson, D.K. The distribution of root length, and the limits to flow of soil water to roots in a dry sclerophyll forest. For. Sci. 1980, 26, 656–664. [Google Scholar]
- Nambiar, E.K.S. Root development and configuration in intensively managed radiate pine plantations. Plant Soil 1983, 71, 37–47. [Google Scholar] [CrossRef]
- Livesley, S.J.; Gregory, P.J.; Buresh, R.J. Competition in tree row agroforestry systems. 1. Distribution and dynamics of fine root length and biomass. Plant Soil 2000, 227, 149–161. [Google Scholar] [CrossRef]
- Bouillet, J.P.; Laclau, J.P.; Arnaud, M.; Thongo M’Bou, A.; Laurent, S.A.; Jourand, C. Changes with age in the spatial distribution of roots in Eucalyptus clone in Congo. Impact on water and nutrient uptake. For. Ecol. Manag. 2002, 171, 43–57. [Google Scholar] [CrossRef]
- Macinnis-Ng, C.M.O.; Fuentes, S.; O’Grady, A.P.; Palmer, A.R.; Taylor, D.; Whitley, R.J.; Yunusa, I.; Zeppel, M.J.B.; Hardie, M.; Eamus, D. Root biomass distribution and soil properties of an open woodland on a duplex soil. Plant Soil 2010, 327, 377–388. [Google Scholar] [CrossRef]
- Gwenzi, W.; Veneklaas, E.J.; Holmes, K.W.; Bleby, T.M.; Phillips, I.R.; Hinz, C. Spatial analysis of fine root distribution on a recently constructed ecosystem in a water-limited environment. Plant Soil 2011, 348, 471–489. [Google Scholar] [CrossRef]
- Levillain, J.; Thongo M’Bou, A.; Deleporte, P.; Saint-André, L.; Jourdan, C. Is the simple auger coring method reliable for below-ground standing biomass estimation in Eucalyptus forest plantations? Ann. Bot. 2011, 108, 221–230. [Google Scholar] [CrossRef]
- Van Noordwijk, M.; Lawson, G.; Hairiah, K.; Wilson, J. Root Distribution of Trees and Crops: Competition and/or Complementarity Tree–Crop Interactions: Agroforestry in a Changing Climate; CABI: Wallingford, UK, 2015; pp. 221–257. [Google Scholar]
- Farooq, T.H.; Wu, W.; Tigabu, M.; Ma, X.; He, Z.; Rashid, M.H.U.; Gilani, M.M.; Wu, P. Growth, Biomass Production and Root Development of Chinese fir in Relation to Initial Planting Density. Forests 2019, 10, 236. [Google Scholar] [CrossRef] [Green Version]
- Johnson, H.A.; Biondini, M.E. Root morphological plasticity and nitrogen uptake of 59 plant species from the Great Plains grasslands, U.S.A. Basic Appl. Ecol. 2001, 2, 127–143. [Google Scholar] [CrossRef]
- Nie, Y.P.; Chen, H.S.; Wang, K.L.; Ding, Y.L. Rooting characteristics of two widely distributed woody plant species growing in different karst habitats of southwest China. Plant Ecology 2014, 215, 1099–1109. [Google Scholar] [CrossRef]
- Wijesing, D.K.; John, E.A.; Beurskens, S.; Hutchings, M.J. Root system size and precision in nutrient foraging: Responses to spatial pattern of nutrient supply in six herbaceous species. J. Ecol. 2001, 89, 972–983. [Google Scholar] [CrossRef]
- He, Y.; Liao, H.; Yan, X. Localized supply of phosphorus induces root morphological and architectural changes of rice in split and stratified soil cultures. Plant Soil 2003, 248, 247–256. [Google Scholar] [CrossRef]
- Mou, P.; Jones, R.H.; Tan, Z.; Bao, Z.; Chen, H. Morphological and physiological plasticity of plant roots when nutrients are both spatially and temporally heterogeneous. Plant Soil 2013, 364, 373–384. [Google Scholar] [CrossRef]
Stand | Sources of Variation | DF | MS | F | p |
---|---|---|---|---|---|
7 years old stand with 5 m × 2 m spacing | Distance | 2 | 0.605 | 4.87 | 0.010 * |
Depth | 2 | 0.992 | 7.98 | 0.001* | |
Distance × Depth | 4 | 0.499 | 4.01 | 0.005 * | |
Intercropping × Distance × Depth | 4 | 0.330 | 2.65 | 0.038 * | |
Error | 90 | 0.124 | |||
Total | 107 | ||||
7 years old stand with 9 m × 1 m spacing | Distance | 2 | 0.502 | 3.46 | 0.036 * |
Intercropping × Depth | 2 | 1.212 | 8.36 | 0.000 * | |
Intercropping × Distance × Depth | 4 | 0.466 | 3.22 | 0.016 * | |
Error | 90 | 0.145 | |||
Total | 107 | ||||
2 years old stand with 9 m × 1 m spacing | Distance | 2 | 0.786 | 5.00 | 0.009 * |
Depth | 2 | 0.416 | 2.65 | 0.076 ** | |
Intercropping × Distance | 2 | 0.511 | 3.25 | 0.044 * | |
Intercropping × Depth | 2 | 0.791 | 5.02 | 0.009 * | |
Error | 90 | 0.157 | |||
Total | 107 |
Sources of Variation | DF | MS | F | p |
---|---|---|---|---|
Distance | 2 | 0.570 | 3.20 | 0.045 * |
Spacing × Depth | 2 | 1.293 | 7.26 | 0.001 * |
Spacing × Distance × Depth | 4 | 0.850 | 4.77 | 0.002 * |
Error | 90 | 0.178 | ||
Total | 107 |
Sources of Variation | DF | MS | F | p | |
---|---|---|---|---|---|
Intercropping | Stand age | 1 | 1.56 | 7.92 | 0.006 * |
Distance | 2 | 1.06 | 5.41 | 0.006 * | |
Stand age × Distance | 2 | 0.61 | 3.09 | 0.050 ** | |
Stand age × Depth | 2 | 0.70 | 3.57 | 0.032 * | |
Error | 90 | 0.20 | |||
Total | 107 | ||||
Monoculture | Stand age | 1 | 1.57 | 14.84 | 0.000 * |
Distance | 2 | 0.26 | 2.48 | 0.090 ** | |
Depth | 2 | 0.89 | 8.40 | 0.000 * | |
Stand age × Depth | 2 | 0.85 | 8.08 | 0.001 * | |
Stand age × Distance × Depth | 4 | 0.29 | 2.75 | 0.033 * | |
Error | 90 | 0.11 | |||
Total | 107 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Edberg, S.; Tigabu, M.; Odén, P.C. Commercial Eucalyptus Plantations with Taungya System: Analysis of Tree Root Biomass. Forests 2022, 13, 1395. https://doi.org/10.3390/f13091395
Edberg S, Tigabu M, Odén PC. Commercial Eucalyptus Plantations with Taungya System: Analysis of Tree Root Biomass. Forests. 2022; 13(9):1395. https://doi.org/10.3390/f13091395
Chicago/Turabian StyleEdberg, Simon, Mulualem Tigabu, and Per Christer Odén. 2022. "Commercial Eucalyptus Plantations with Taungya System: Analysis of Tree Root Biomass" Forests 13, no. 9: 1395. https://doi.org/10.3390/f13091395
APA StyleEdberg, S., Tigabu, M., & Odén, P. C. (2022). Commercial Eucalyptus Plantations with Taungya System: Analysis of Tree Root Biomass. Forests, 13(9), 1395. https://doi.org/10.3390/f13091395