Effects of AM Fungi and Grass Strips on Soil Erosion Characteristics in Red Sandstone Erosion Areas in Southern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Area
2.2. Experimental Design
2.3. Statistical Analyses
3. Results
3.1. Hydraulic Characteristics of Runoff Generation in Four Grass Strips
3.2. Variation in Runoff and Sediment Production in Four Grass Strips
3.3. Variation in Ammonium Nitrogen Loss Concentration in Four Grass Strips
3.4. Particle Size Distribution of the Produced Sediment in Four Grass Strips
3.5. Mean Weight Diameter (MWD) and Fractal Dimension (D) of Sediments in Grass Strips
4. Discussion
4.1. Effects of AMF and Grass Strips on the Hydraulic Characteristics of Runoff
4.2. Effects of AMF and Grass Strips on Runoff and Sediment Yield
4.3. Effects of AMF and Grass Strips on Ammonium Nitrogen Loss Concentrations in Runoff and Sediment
4.4. Effects of AMF and Grass Strips on the Particle Size Distribution of Sediments
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahmad, N.N.S.B.; Mustafa, F.B.; Yusoff, S.Y.M.; Didams, G. A systematic review of soil erosion control practices on the agri-cultural land in Asia. Int. Soil Water Conserv. Res. 2020, 8, 103–115. [Google Scholar] [CrossRef]
- Li, N.; Zhang, Y.; Wang, T.W.; Li, J.W.; Yang, J.W.; Luo, M.Y. Have anthropogenic factors mitigated or intensified soil erosion over the past three decades in South China? J. Environ. Manag. 2022, 302, 114093. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Li, D.; Lu, X.X.; Yang, X.; Pan, X.; Mu, H.; Shi, D.; Zhang, B. Soil erosion changes over the past five decades in the red soil region of Southern China. J. Mt. Sci. 2010, 7, 92–99. [Google Scholar] [CrossRef]
- Mao, Y.-T.; Hu, W.; Chau, H.W.; Lei, B.-K.; Di, H.-J.; Chen, A.-Q.; Hou, M.-T.; Whitley, S. Combined Cultivation Pattern Reduces Soil Erosion and Nutrient Loss from Sloping Farmland on Red Soil in Southwestern China. Agronomy 2020, 10, 1071. [Google Scholar] [CrossRef]
- Ma, D.; Duan, H.; Li, X.; Li, Z.; Zhou, Z.; Li, T. Effects of seepage-induced erosion on nonlinear hydraulic properties of broken red sandstones. Tunn. Undergr. Space Technol. 2019, 91, 102993. [Google Scholar] [CrossRef]
- Feng, M.; Wu, J.; Ma, D.; Ni, X.; Yu, B.; Chen, Z. Experimental investigation on the seepage property of saturated broken red sandstone of continuous gradation. Bull. Eng. Geol. Environ. 2018, 77, 1167–1178. [Google Scholar] [CrossRef]
- Huang, Z.; Ouyang, Z.; Li, F.; Zheng, H.; Wang, X. Response of runoff and soil loss to reforestation and rainfall type in red soil region of southern China. J. Environ. Sci. 2010, 22, 1765–1773. [Google Scholar] [CrossRef]
- Shi, X.Z.; Wang, H.J.; Yu, D.S.; David, C.W.; Cheng, X.F.; Pan, X.Z.; Sun, W.X.; Chen, J.M. Potential for soil carbon seques-tration of eroded areas in subtropical China. Soil Tillage Res. 2008, 105, 322–327. [Google Scholar] [CrossRef]
- Zhu, X.; Liang, Y.; Qu, L.; Cao, L.; Tian, Z.; Liu, T.; Li, M. Characteristics of runoff and sediment yield for two typical erodible soils in southern China. Int. J. Sediment Res. 2022, 37, 653–661. [Google Scholar] [CrossRef]
- Zhu, X.; Liang, Y.; Cao, L.; Tian, Z.; Li, M. Pore characteristics of physical crust samples from two typical erodible soils in southern China. Eur. J. Soil Sci. 2022, 73, e13234. [Google Scholar] [CrossRef]
- Yang, S.-Q.; Jing, H.-W.; Cheng, L. Influences of pore pressure on short-term and creep mechanical behavior of red sandstone. Eng. Geol. 2014, 179, 10–23. [Google Scholar] [CrossRef]
- Ayed, G.M.; Mohammad, A.A. The impact of vegetative cover type on runoff and soil erosion under different land uses. Catena 2010, 81, 97–103. [Google Scholar]
- Zhang, X.; Wang, Z. Interrill soil erosion processes on steep slopes. J. Hydrol. 2017, 548, 652–664. [Google Scholar] [CrossRef]
- Pan, D.; Yang, S.; Song, Y.; Gao, X.; Wu, P.; Zhao, X. The tradeoff between soil erosion protection and water consumption in revegetation: Evaluation of new indicators and influencing factors. Geoderma 2019, 347, 32–39. [Google Scholar] [CrossRef]
- Asmelash, F.; Bekele, T.; Birhane, E. The Potential Role of Arbuscular Mycorrhizal Fungi in the Restoration of Degraded Lands. Front. Microbiol. 2016, 7, 1095. [Google Scholar] [CrossRef]
- Khalid, M.E.; Ahmed, S.E.; Abdallah, M.E. The impact of arbuscular mycorrhizal fungi in mitigating salt-induced adverse effects in sweet basil (Ocimum basilicum L.). Saudi J. Biol. Sci. 2017, 24, 170–179. [Google Scholar]
- Sun, X.-G.; Tang, M. Effect of arbuscular mycorrhizal fungi inoculation on root traits and root volatile organic compound emissions of Sorghum bicolor. S. Afr. J. Bot. 2013, 88, 373–379. [Google Scholar] [CrossRef]
- Alessandra, S.; Paola, B. Systems biology and “omics” tools: A cooperation for next-generation mycorrhizal studies. Plant Sci. 2013, 203, 107–114. [Google Scholar]
- Priya, B.; Pragati, P.M.; Mrinmoy, R.; Nilimesh, M. Prediction of mean weight diameter of soil using machine learning approaches. Agron. J. 2021, 113, 1303–1316. [Google Scholar]
- Abbas, A.; Mohammad-Reza, N.; Hassan, R.; Hossein, A. Fractal dimension of soil aggregates as an index of soil erodibility. J. Hydrol. 2011, 400, 305–311. [Google Scholar]
- Wang, T.; Song, Z.; Yang, J.; Zhang, Q.; Cheng, Y. A Study of the Dynamic Characteristics of Red Sandstone Residual Soils Based on SHPB Tests. KSCE J. Civ. Eng. 2021, 25, 1705–1717. [Google Scholar] [CrossRef]
- Chang, E.; Li, P.; Li, Z.; Su, Y.; Zhang, Y.; Zhang, J.; Liu, Z.; Li, Z. The Impact of Vegetation Successional Status on Slope Runoff Erosion in the Loess Plateau of China. Water 2019, 11, 2614. [Google Scholar] [CrossRef]
- Han, D.; Deng, J.; Gu, C.; Mu, X.; Gao, P.; Gao, J. Effect of shrub-grass vegetation coverage and slope gradient on runoff and sediment yield under simulated rainfall. Int. J. Sediment Res. 2021, 36, 29–37. [Google Scholar] [CrossRef]
- Deng, L.Z.; Sun, T.Y.; Fei, K.; Zhang, L.P.; Fan, X.J.; Wu, Y.H.; Ni, L. Effects of erosion degree, rainfall intensity and slope gra-dient on runoff and sediment yield for the bare soils from the weathered granite slopes of SE China. Geomorphology 2020, 352, 106997. [Google Scholar] [CrossRef]
- Wei, W.; Jia, F.; Yang, L.; Chen, L.; Zhang, H.; Yu, Y. Effects of surficial condition and rainfall intensity on runoff in a loess hilly area, China. J. Hydrol. 2014, 513, 115–126. [Google Scholar] [CrossRef]
- Duan, J.; Liu, Y.-J.; Wang, L.-Y.; Yang, J.; Tang, C.-J.; Zheng, H.-J. Importance of grass stolons in mitigating runoff and sediment yield under simulated rainstorms. Catena 2022, 213, 106132. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, G.Q.; Bin Li, Z.; Li, P. Experimental Study on Slope Runoff, Erosion and Sediment under Different Vegetation Types. Water Resour. Manag. 2014, 28, 2415–2433. [Google Scholar] [CrossRef]
- Willemijn, M.A.; Patrick, W.B.; Sjoerd, E.A.T.M. Surface runoff in flat terrain: How field topography and runoff generating processes control hydrological connectivity. J. Hydrol. 2016, 534, 493–504. [Google Scholar]
- Parniske, M. Arbuscular mycorrhiza: The mother of plant root endosymbioses. Nat. Rev. Genet. 2008, 6, 763–775. [Google Scholar] [CrossRef]
- Rillig, M.C.; Mummey, D.L. Mycorrhizas and soil structure. New Phytol. 2006, 171, 41–53. [Google Scholar] [CrossRef]
- Smith, S.E.; Smith, F.A.; Jakobsen, I. Mycorrhizal Fungi Can Dominate Phosphate Supply to Plants Irrespective of Growth Responses. Plant Physiol. 2003, 133, 16–20. [Google Scholar] [CrossRef] [PubMed]
- John, N.K. Variation in Plant Response to Native and Exotic Arbuscular Mycorrhizal Fungi. Ecology 2003, 84, 2292–2301. [Google Scholar]
- Xu, W.-X.; Yang, L.; Bao, Y.-H.; Li, J.-L.; Wei, J. Soil anti-scourability enhanced by herbaceous species roots in a reservoir water level fluctuation zone. J. Mt. Sci. 2021, 18, 392–406. [Google Scholar] [CrossRef]
- Schneider, S.; Schintlmeister, A.; Becana, M.; Wagner, M.; Woebken, D.; Wienkoop, S. Sulfate is transported at significant rates through the symbiosome membrane and is crucial for nitrogenase biosynthesis. Plant Cell Environ. 2019, 42, 1180–1189. [Google Scholar] [CrossRef]
- Hodge, A.; Campbell, C.; Fitter, A.H. An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature 2001, 413, 297–299. [Google Scholar] [CrossRef]
- Wu, Q.-S.; Zou, Y.-N.; He, X.-H. Contributions of arbuscular mycorrhizal fungi to growth, photosynthesis, root morphology and ionic balance of citrus seedlings under salt stress. Acta Physiol. Plant. 2010, 32, 297–304. [Google Scholar] [CrossRef]
- Almudena, M.; Rosario, A. Effectiveness of the application of arbuscular mycorrhiza fungi and organic amendments to improve soil quality and plant performance under stress conditions. J. Soil Sci. Plant Nutr. 2010, 10, 354–372. [Google Scholar]
pH | Organic Matter /g·kg−1 | Total Nitrogen /g·kg−1 | Total Phosphorus /g·kg−1 | Total Potassium /g·kg−1 | Available Phosphorus /mg·kg−1 | Available Potassium /mg·kg−1 | Alkali-Hydrolyzable Nitrogen/mg·kg−1 |
---|---|---|---|---|---|---|---|
5.17 | 2.95 | 0.18 | 0.30 | 45.49 | 1.90 | 99.60 | 72.46 |
Treatment | Runoff Characteristics | Cynodon dactylon | Lotus corniculatus | Zoysia japonica | Astragalus sinicus |
---|---|---|---|---|---|
CK | Flow velocity (cm/s) | 36.39 ± 0.60 Aa | 36.64 ± 0.62 Aa | 32.71 ± 0.92 Bb | 36.48 ± 1.04 Aa |
Depth (cm) | 2.51 ± 0.07 Aa | 2.21 ± 0.06 Bb | 2.27 ± 0.06 Ab | 2.28 ± 0.07 Ab | |
Width (cm) | 9.83 ± 0.35 Bb | 8.89 ± 0.50 Bc | 14.82 ± 0.23 Ba | 10.14 ± 0.38 Bb | |
AM | Flow velocity (cm/s) | 32.90 ± 0.63 Bb | 37.44 ± 0.78 Aa | 38.65 ± 1.75 Aa | 32.29 ± 0.86 Bb |
Depth (cm) | 2.16 ± 0.07 Bb | 2.70 ± 0.07 Aa | 2.20 ± 0.06 Ab | 2.33 ± 0.06 Ab | |
Width (cm) | 13.41 ± 0.31 Ac | 10.43 ± 0.19 Ad | 16.33 ± 0.30 Ab | 17.70 ± 0.21 Aa |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Xiao, T.; Liu, H.; Ge, P.; Xia, J.; Dai, C.; Zhang, W.; Zhao, X. Effects of AM Fungi and Grass Strips on Soil Erosion Characteristics in Red Sandstone Erosion Areas in Southern China. Forests 2022, 13, 1351. https://doi.org/10.3390/f13091351
Zhang L, Xiao T, Liu H, Ge P, Xia J, Dai C, Zhang W, Zhao X. Effects of AM Fungi and Grass Strips on Soil Erosion Characteristics in Red Sandstone Erosion Areas in Southern China. Forests. 2022; 13(9):1351. https://doi.org/10.3390/f13091351
Chicago/Turabian StyleZhang, Lichao, Tingqi Xiao, Hongguang Liu, Peilin Ge, Jinwen Xia, Chenwei Dai, Wenbo Zhang, and Xiaomin Zhao. 2022. "Effects of AM Fungi and Grass Strips on Soil Erosion Characteristics in Red Sandstone Erosion Areas in Southern China" Forests 13, no. 9: 1351. https://doi.org/10.3390/f13091351
APA StyleZhang, L., Xiao, T., Liu, H., Ge, P., Xia, J., Dai, C., Zhang, W., & Zhao, X. (2022). Effects of AM Fungi and Grass Strips on Soil Erosion Characteristics in Red Sandstone Erosion Areas in Southern China. Forests, 13(9), 1351. https://doi.org/10.3390/f13091351