Geostatistical Analysis of Mangrove Ecosystem Health: Mapping and Modelling of Sampling Uncertainty Using Kriging
Abstract
:1. Introduction
2. Methodology
2.1. Description of Site
2.2. Variables
2.3. Geostatistical Analysis
2.4. Reclassification and Standardisation
2.5. Linear Weight Combination Model
(12 × no. of phytoplankton) + (12 × no. of diatom) + (12 × DO) + (12 × turbidity)
3. Results and Discussion
3.1. Best-Fit Model of Geostatistical Analysis
3.2. Geospatial Distribution Map
3.3. Mangrove Ecosystem Health Distribution
3.4. Limitation of Study
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Faridah-Hanum, I.; Yusoff, F.M.; Fitrianto, A.; Ainuddin, N.A.; Gandaseca, S.; Zaiton, S.; Nurhidayu, S.; Roslan, M.K.; Hakeem, K.R.; Shamsuddin, I.; et al. Development of a comprehensive mangrove quality index (MQI) in Matang mangrove: Assessing mangrove ecosystem health. Ecol. Indic. 2019, 102, 103–117. [Google Scholar] [CrossRef]
- Thomas, N.; Lucas, R.; Bunting, P.; Hardy, A.; Rosenqvist, A.; Simard, M. Distribution and drivers of global mangrove forest change, 1996–2010. PLoS ONE 2017, 12, e0179302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richards, D.R.; Friess, D.A. Rates and drivers of mangrove deforestation in Southeast Asia, 2000–2012. Proc. Natl. Acad. Sci. USA 2016, 113, 344–349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asbridge, E.; Lucas, R.; Accad, A.; Dowling, R. Mangrove response to environmental changes predicted under varying climates: Case studies from Australia. Curr. For. Rep. 2015, 1, 178–194. [Google Scholar] [CrossRef] [Green Version]
- Ibharim, N.A.; Mustapha, M.A.; Lihan, T.; Mazlan, A.G. Mapping mangrove changes in the Matang mangrove forest using multi temporal satellite imageries. Ocean Coast. Manag. 2015, 114, 64–76. [Google Scholar] [CrossRef]
- Misra, A.; Murali, M.R.; Vethamony, P. Assessment of the land use/land cover (LU/LC) and mangrove changes along the Mandovi–Zuari estuarine complex of Goa, India. Arab. J. Geosci. 2015, 8, 267–279. [Google Scholar] [CrossRef]
- Nguyen, H.H. The relation of coastal mangrove changes and adjacent land-use: A review in Southeast Asia and Kien Giang, Vietnam. Ocean Coast. Manag. 2014, 90, 1–10. [Google Scholar] [CrossRef]
- Nguyen, H.; Mcalpine, C.; Pullar, D.; Johansen, K.; Duke, N.C. Ocean and coastal management the relationship of spatial e temporal changes in fringe mangrove extent and adjacent land-use: Case study of Kien Giang coast, Vietnam. Ocean Coast. Manag. 2013, 76, 12–22. [Google Scholar] [CrossRef]
- Kirui, K.B.; Kairo, J.G.; Bosire, J.; Viergever, K.M.; Rudra, S.; Huxham, M.; Briers, R.A. Mapping of mangrove forest land cover change along the Kenya coastline using Landsat imagery. Ocean Coast. Manag. 2013, 83, 19–24. [Google Scholar] [CrossRef]
- Abdullah, S.A.; Nakagoshi, N. Forest fragmentation and its correlation to human land use change in the state of Selangor, peninsular Malaysia. For. Ecol. Manag. 2007, 241, 39–48. [Google Scholar] [CrossRef]
- Giri, C.; Pengra, B.; Zhu, Z.; Singh, A.; Tieszen, L.L. Monitoring mangrove forest dynamics of the Sundarbans in Bangladesh and India using multi-temporal satellite data from 1973 to 2000. Estuar. Coast. Shelf Sci. 2007, 73, 91–100. [Google Scholar] [CrossRef]
- Thu, P.M.; Populus, J. Status and changes of mangrove forest in Mekong delta: Case study in Tra Vinh, Vietnam. Estuar. Coast. Shelf Sci. 2007, 71, 98–109. [Google Scholar] [CrossRef]
- Rhyma, P.P.; Norizah, K.; Hamdan, O.; Faridah-Hanum, I.; Zulfa, A.W. Integration of normalised different vegetation index and soil-adjusted vegetation index for mangrove vegetation delineation. Remote Sens. Appl. Soc. Environ. 2020, 17, 100280. [Google Scholar] [CrossRef]
- Hamdan, O.; Khairunnisa, M.R.; Ammar, A.A.; Mohd Hasmadi, I.; Khali Aiz, H. Mangrove carbon stock assessment by optical satellite imagery. J. Trop. For. Sci. 2013, 25, 554–565. [Google Scholar]
- Taureau, F.; Robin, M.; Proisy, C.; Fromard, F.; Imbert, D.; Debaine, F. Mapping the mangrove forest canopy using spectral unmixing of very high spatial resolution satellite images. Remote Sens. 2019, 11, 367. [Google Scholar] [CrossRef] [Green Version]
- Thomas, N.; Bunting, P.; Lucas, R.; Hardy, A.; Rosenqvist, A.; Fatoyinbo, T. Mapping mangrove extent and change: A globally applicable approach. Remote Sens. 2018, 10, 1466. [Google Scholar] [CrossRef] [Green Version]
- Son, N.T.; Chen, C.F.; Chen, C.R. Mapping mangrove density from rapideye data in central America. Open Geosci. 2017, 9, 211–220. [Google Scholar] [CrossRef] [Green Version]
- Conti, L.A.; de Araujo, C.A.S.; Cunha-Lignon, M. Spatial database modeling for mangrove forests mapping; example of two estuarine systems in Brazil. Model. Earth Syst. Environ. 2016, 2, 73. [Google Scholar] [CrossRef]
- Ghosh, M.K.; Kumar, L.; Langat, P.K. Geospatial modelling of the inundation levels in the Sundarbans mangrove forest due to the impact of sea level rise and identification of affected species and regions. Geomat. Nat. Hazards Risk 2019, 10, 1028–1046. [Google Scholar] [CrossRef]
- Razali, S.M.; Nuruddin, A.A.; Lion, M. Mangrove vegetation health assessment based on remote sensing indices for Tanjung Piai, Malay Peninsular. J. Landsc. Ecol. 2019, 12, 26–40. [Google Scholar] [CrossRef] [Green Version]
- Hamdan, O.; Muhamad Afizzul, M.; Samsudin, M. GIS and Remote Sensing for Mangroves Mapping and Monitoring. In Geographic Information System and Science; Rocha, J., Abrantes, P., Eds.; IntechOpen: London, UK, 2019; p. 16. [Google Scholar]
- Rhyma, P.P.; Norizah, K.; Ismail Adnan, A.M.; Faridah-Hanum, I.; Ibrahim, S. Canopy density classification of Matang mangrove forest reserve using machine learning approach in remote sensing for transect establishment. Malays. For. 2015, 78, 75–86. [Google Scholar]
- Li, X.; Cheng, X.; Yang, R.; Qiu, Y.; Zhang, J.; Cai, E.; Zhao, L. Validation of remote sensing retrieval products using data from a wireless sensor-based online monitoring in Antartica. Sensors 2016, 16, 1938. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Lin, X.; Ge, Y.; Jin, R.; Ma, M.; Liu, Q.; Wen, J.; Liu, S. Validation of regional-scale remote sensing products in China: From site to network. Remote Sens. 2016, 8, 980. [Google Scholar] [CrossRef] [Green Version]
- Rhodes, C.J.; Henrys, P.; Siriwardena, G.M.; Whitingham, M.J.; Norton, L.R. The relative value of field survey and remote sensing for biodiversity assessment. Methods Ecol. Evol. 2015, 6, 772–781. [Google Scholar] [CrossRef]
- Scales, I.R.; Friess, D.A. Pattern or mangrove forest disturbance and biomass removal due to small-scale harvesting in south-western Madagascar. Wetl. Ecol. Manag. 2019, 27, 609–625. [Google Scholar] [CrossRef] [Green Version]
- Feka, N.Z.; Morrison, I. Managing mangroves for coastal ecosystems change: A decade and beyond of conservation experiences and lessons for and from west-central Africa. J. Ecol. Nat. Environ. 2017, 9, 99–123. [Google Scholar]
- Li, J.; Heap, A.D. Spatial interpolation methods applied in the environmental sciences: A review. Environ. Model. Softw. 2014, 53, 173–189. [Google Scholar] [CrossRef]
- Schweiger, A.H.; Iri, S.D.H.; Steinbauer, M.J.; Dengler, J.; Beierkuhnlein, C. Optimizing sampling approaches along ecological Gradients. Methods Ecol. Evol. 2016, 7, 463–471. [Google Scholar] [CrossRef]
- McLeod, L.; Bharadwaj, L.; Epp, T.; Waldner, C.L. Use of principal components analysis and Kriging to predict groundwater-sourced rural drinking water quality in Saskatchewan. Int. J. Environ. Res. Public Health 2017, 14, 1065. [Google Scholar] [CrossRef] [Green Version]
- White, J.T.; Hemmings, B.; Fienen, M.N.; Knowling, M.J. Towards improved environmental modelling outcomes: Enabling low-cost access to high-dimensional, geostatistical-based decision-support analyses. Environ. Model. Softw. 2021, 139, 105022. [Google Scholar] [CrossRef]
- Gupta, A.; Kamble, T.; Machiwal, D. Comparison of ordinary and Bayesian kriging techniques in depicting rainfall in arid and semi-arid regions of north-west India. Environ. Earth Sci. 2017, 76, 512. [Google Scholar] [CrossRef]
- Tveito, O.E.; Wegehenkel, M.; van der Wel, F.; Dobesch, H. COST Action 719: The Use of Geographic Information Systems in Climatology and Meteorology; EUR-OP: Luxembourg, 2008. [Google Scholar]
- Webster, R.; Oliver, M. Geostatistics for Environmental Scientists; John Wiley & Sons, Ltd.: Chichester, UK, 2001. [Google Scholar]
- Mirzaei, R.; Sakizadeh, M. Comparison of interpolation methods for the estimation of groundwater contamination in Andimeshk-Shush Plain, southwest of Iran. Environ. Sci. Pollut. Res. 2016, 23, 2758–2769. [Google Scholar] [CrossRef] [PubMed]
- Al-Omran, A.M.; Aly, A.A.; Al-Wabel, M.I.; Al-Shayaa, M.S.; Sallam, A.S.; Nadeem, M.E. Geostatistical methods in evaluating spatial variability of groundwater quality in Al-Kharj Region, Saudi Arabia. Appl. Water Sci. 2017, 7, 4013–4023. [Google Scholar] [CrossRef] [Green Version]
- Omran, E.E. A proposed model to assess and map irrigation water well suitability using geospatial analysis. Water 2012, 4, 545–567. [Google Scholar] [CrossRef] [Green Version]
- Gidey, A. 2018. Geospatial distribution modelling and determining suitability of groundwater quality for irrigation purpose using geospatial methods and water quality index (WQI) in northern Ethiopia. Appl. Water Sci. 2018, 8, 82. [Google Scholar] [CrossRef] [Green Version]
- Bhunia, G.S.; Keshavarzi, A.; Shit, P.V.; Omran, E.E.; Bagherzadeh, A. Evaluation of groundwater quality and its suitability for drinking and irrigation using GIS and geostatistics techniques in semiarid region of Neyshabur, Iran. Appl. Water Sci. 2018, 8, 168. [Google Scholar] [CrossRef] [Green Version]
- Castillo, J.A.A.; Apan, A.A.; Maraceni, T.N.; Salmo, S.G., III. Soil C quantities of mangrove forests, their competing land uses, and their spatial distribution in the coast of Honda Bay Philippines. Geoderma 2017, 293, 82–90. [Google Scholar] [CrossRef]
- Oliver, M.A.; Webster, R. A tutorial guide to geostatistics: Computing and modelling variograms and kriging. Catena 2014, 113, 56–69. [Google Scholar] [CrossRef]
- Li, J.; Heap, A. A review of comparative studies of spatial interpolation methods in environmental sciences: Performance and impact factors. Ecol. Inform. 2011, 6, 228–241. [Google Scholar] [CrossRef]
- Bennett, N.D.; Croke, B.F.W.; Guariso, G.; Guillaume, J.H.A.; Hamilton, S.H.; Jakeman, A.J.; Marsili-Libelli, S.; Newham, L.T.H.; Norton, J.P.; Perrin, C.; et al. Characterising performance of environmental models. Environ. Model. Softw. 2013, 40, 1–20. [Google Scholar] [CrossRef]
- Chang, Y.H.; Scrimshaw, M.D.; Emmerson, R.H.C.; Lester, J.N. Geostatistical analysis of sampling uncertainty at the Tollesbury Managed Retreat site in Blackwater Estuary, Essex, UK: Kriging and cokriging approach to minimise sampling density. Sci. Total Environ. 1998, 221, 43–57. [Google Scholar] [CrossRef]
- Brus, D.J.; de Gruijter, J.J. Estimation of non-ergodic variograms and their sampling variance by design-based sampling strategies. Math. Geol. 1994, 26, 437–454. [Google Scholar] [CrossRef]
- Burrough, P.A.; McDonnell, R.A. Principles of Geographical Information Systems; Oxford University Press: Oxford, UK, 1998. [Google Scholar]
- Journel, A.G.; Huijbregts, C.J. Mining Geostatistics; Academic Press: London, UK, 1978. [Google Scholar]
- Kerry, R.; Oliver, M.A. Comparing sampling needs for variograms of soil properties computed by the method of moments and residual maximum likelihood. Geoderma 2007, 140, 383–396. [Google Scholar] [CrossRef]
- Roslan, A.; Nik Mohd Shah, N.M. A Working Plan for the Matang Mangrove Forest Reserve, Perak: The First 10-Year Period (2010–2019) of the Third Rotation (6th Revision); State Forestry Department of Perak: Ipoh, Malaysia, 2014; p. 229. [Google Scholar]
- ESRI. 2019a. An Overview of ArcMap extension: ArcGIS Geostatistical Analyst. Available online: https://desktop.arcgis.com/en/arcmap/latest/extensions/main/about-arcgis-for-desktop-extensions.htm (accessed on 7 January 2019).
- Esri. 2020. Available online: https://pro.arcgis.com/en/pro-app/2.8/tool-reference/geostatistical-analyst/cross-validation.htm (accessed on 18 June 2020).
- ESRI. 2019. Available online: https://pro.arcgis.com/en/pro-app/help/analysis/geostatistical-analyst/understanding-a-semivariogram-the-range-sill-and-nugget.htm (accessed on 11 February 2020).
- Behrens, T.; Viscarra Rossel, R.A.; Kerry, R.; MacMillan, R.; Schmidt, K.; Lee, J.; Scholten, T.; Zhu, A.-X. The relevant range of scales for multi-scale contextual spatial modelling. Sci. Rep. 2019, 9, 14800. [Google Scholar] [CrossRef] [Green Version]
- Engström, K.; Esbensen, K.H. Variographic assessment of total process measurement system performance for a complete ore-to-shipping value chain. Minerals 2018, 8, 310. [Google Scholar] [CrossRef] [Green Version]
- Viscarra Rossel, R.A.; Mcbratney, A.B. Soil chemical analytical accuracy and costs: Implications from precision agriculture. Aust. J. Exp. Agric. 1998, 38, 765–775. [Google Scholar] [CrossRef]
- Fortin, M.-J. Spatial Statistics in Landscape Ecology; Springer: New York, NY, USA, 1999; pp. 253–279. [Google Scholar]
- Rhyma, P.P.; Norizah, K. Kriging analysis–optimizing values in unknown areas using known data point. In Proceeding of the International Conference on Sustainable Forest Development in View of Climate Change (SFDCC), Hotel Bangi-Putrajaya, Malaysia, 8–11 August 2016; Nurhidayu, S., Ainuddin, A.N., Nazre, M., Seca, G., Mohd Zaki, H., Lee, S.H., Eds.; Universiti Putra Malaysia: Selangor, Malaysia, 2016. [Google Scholar]
- Mishra, A.K.; Deep, S.; Choudhry, A. Identification of suitable sites for organic farming using AHP & GIS. Egypt. J. Remote Sens. Space Sci. 2015, 18, 181–193. [Google Scholar]
- Norizah, K.; Mohd Hasmadi, I.; Kamaruzaman, J. Quantification of least cost path analysis for best forest road planning. Malays. For. 2014, 77, 99–108. [Google Scholar]
- Bernal, N.A.; DeAngelis, D.L.; Schofield, P.J.; Sealey, K.S. Predicting spatial and temporal distribution of Indo-Pacific lionfish (Pterois volitans) in Biscayne Bay through habitat suitability modeling. Biol. Invasions 2015, 17, 1603–1614. [Google Scholar] [CrossRef]
- Lausch, A.; Bastin, O.; Klotz, S.; Leitão, P.; Jung, A.; Rocchini, D.; Schaepman, M.E.; Skidmore, A.K.; Tischendorf, L.; Knapp, S. Understanding and assessing vegetation health by in situ species and remote-sensing approaches. Methods Ecol. Evol. 2018, 9, 1799–1809. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, Z.; Shi, H.; Han, F.; Liu, Q.; Qi, J.; Lu, Y. Ecosystem health assessment of world natural heritage sites based on remote sensing and field sampling verification: Bayanbulak as case study. Sustainability 2020, 12, 2610. [Google Scholar] [CrossRef] [Green Version]
- Mouat, D.A. Remote Sensing and Ecosystem Health: An Evaluation of Time-Series AVHRR NDVI Data. In Evaluating and Monitoring the Health of Large-Scale Ecosystems; NATO ASI Series; Rapport, D.J., Gaudet, C.L., Calow, P., Eds.; Springer: Berlin/Heidelberg, Germany, 1995; Volume 28. [Google Scholar]
- Azahar, M.; Nik Mohd Shah, N.M. A Working Plan for the Matang Mangrove Forest Reserve, Perak: Fifth Revision of the 10-Year Period (2000–2009) of the Second Rotation; State Forestry Department of Perak: Ipoh, Malaysia, 2003; p. 319. [Google Scholar]
- Palmer, M.A.; Bernhardt, E.S.; Allan, J.D.; Lake, P.S.; Alexander, G.; Brooks, S.; Carr, J.; Clayton, S.; Dahm, C.N.; Follstad Shah, J.; et al. Standards for ecologically successful river restoration. J. Appl. Ecol. 2005, 42, 208–217. [Google Scholar] [CrossRef]
- Imani, G.; Boyemba, F.; Lewis, S.; Nabahungu, N.L.; Calders, K.; Zapfack, L.; Riera, B.; Balegamire, C.; Cuni-Sanchez, A. Height-diameter allometry and above ground biomass in tropical montane forests: Insights from the Albertine Rift in Africa. PLoS ONE 2017, 12, e0179653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Askar; Nuthammachot, N.N.; Phairuang, W.; Wicaksono, P.; Sayektiningsih, T. Estimating aboveground biomass on private forest using Sentinel-2 imagery. J. Sens. 2018, 2018, 6745625. [Google Scholar]
- Baghi, N.G.; Oldeland, J. Do soil-adjusted or standard vegetation indices better predict above ground biomass of semi-arid, saline rangelands in North-East Iran? Int. J. Remote Sens. 2019, 40, 8223–8235. [Google Scholar] [CrossRef]
- Escadafal, R. Remote sensing of drylands: When soils come into the picture. Ciência Trópico 2017, 41, 33–50. [Google Scholar]
- Lindquist, E.S.; Krauss, K.W.; Green, P.T.; O’Dowd, D.J.; Sherman, P.M.; Smith, T.J. Land crabs as key drivers in tropical coastal forest recruitment. Biol. Rev. 2009, 84, 203–223. [Google Scholar] [CrossRef]
- Cannici, S.; Fusi, M.; Cimo, F.; Dahdouh-Guebas, F.; Fratini, S. Interference competition as a key determinant for spatial distribution of mangrove crabs. BMC Ecol. 2018, 18, 8. [Google Scholar]
- Otero, X.L.; Araújo, J.M.C., Jr.; Barcellos, D.; Queiroz, H.M.; Romero, D.J.; Nóbrega, G.N.; Neto, M.S.; Ferreira, T.O. Crab bioturbation and seasonality control nitrous oxide emissions in semiarid mangrove forests (Ceará, Brazil). Appl. Sci. 2020, 10, 2215. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.Q.; Zhang, X.D.; Jiang, L.F.; Bertness, M.D.; Fang, C.M.; Chen, J.K.; Hara, T.; Li, B. Bioturbation of burrowing crabs promotes sediment turnover and carbon and nitrogen movements in an Estuarine Salt Marsh. Ecosystems 2010, 13, 586–599. [Google Scholar] [CrossRef]
- Mchenga, I.S.S.; Tsuchiya, M. Crab engineering effects on soil organic matter and nutrients flow in subtropical mangroves forest. J. Global Biosci. 2013, 2, 10–16. [Google Scholar]
- Sherman, P.M. Influence of land crabs Geocarcinus quadratus (Gecarcinidae) on distributions of organic carbon and roots in a Costa Rican rain forest. Rev. Biol. Trop. 2006, 54, 149–161. [Google Scholar] [CrossRef] [Green Version]
- Qiu, D.; Cui, B.; Yan, J.; Ma, X.; Ning, Z.; Wang, F.; Sui, H.; Bai, J. Effect of burrowing crabs on retention and accumulation of soil carbon and nitrogen in an intertidal salt marsh. J. Sea Res. 2019, 154, 101808. [Google Scholar] [CrossRef]
- McLeod, E.; Chmura, G.L.; Bouillon, S.; Salm, R.; Björk, M.; Duarte, C.M.; Lovelock, C.E.; Schlesinger, W.H.; Silliman, B.R. A blueprint for blue carbon: Toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front. Ecol. Environ. 2011, 9, 552–560. [Google Scholar] [CrossRef] [Green Version]
- Compton, J.E.; Boone, R.D.; Motzkin, G.; Foster, D.R. Soil carbon and nitrogen in a pine-oak sand plain in central Massachusetts: Role of vegetation and land-use history. Oceologia 1998, 116, 536–542. [Google Scholar] [CrossRef]
- Nursuhayati, A.S.; Yusoff, F.M.; Sharrif, M. Fisheries and aquatic science. J. Fish. Aquat. Sci. 2013, 4, 480–493. [Google Scholar]
- Revilla, M.; Franco, J.; Bald, J.; Borja, Á.; Laza, A.; Seoane, S.; Valencia, V. Assessment of the phytoplankton ecological status in the Basque coast (northern Spain) according to the European water framework directive. J. Sea Res. 2009, 61, 60–67. [Google Scholar] [CrossRef]
- Mackey, R.L.; Currie, D.J. The diversity-disturbance relationship: Is it generally strong and peaked? Ecology 2001, 82, 3479–3492. [Google Scholar]
- Antonelli, M.; Wetzel, C.E.; Ector, L.; Teuling, A.J.; Pfister, L. On the potential for terrestrial diatom communities and diatom indices to identify anthropic disturbance in soils. Ecol. Ind. 2017, 75, 73–81. [Google Scholar] [CrossRef]
- Desrosiers, C.; Leflaive, J.; Eulin, A.; Ten-Hage, L. Bioindicators in marine waters: Benthic diatoms as a tool to assess water quality from eutrophic to oligotrophic coastal ecosystems. Ecol. Ind. 2013, 32, 25–34. [Google Scholar] [CrossRef]
- Oelsner, G.P.; Stets, E.G. Recent trends in nutrient and sediment loading to coastal areas of the conterminous U.S.: Insights and global context. Sci. Total Environ. 2019, 654, 1225–1240. [Google Scholar] [CrossRef]
- Hanrahan, G. Key Concepts in Environmental Chemistry; Elsevier: Amsterdam, The Netherlands, 2012; p. 384. [Google Scholar]
- Johnstons, K.; ver Hoeft, J.M.; Krivoruchko, K.; Lucas, N. Using ArcGIS Geostatistical Analyst (Vol. 380); Redlands: Esri, CA, USA, 2001. [Google Scholar]
- Bannari, A.; Morin, D.; Bonn, F.; Huete, A.R. A review of vegetation indices. Remote Sens. Rev. 1995, 13, 95–120. [Google Scholar] [CrossRef]
- Chellamani, P.; Singh, C.P.; Panigrahy, S. Assessment of the health status of Indian mangrove ecosystems using multi temporal remote sensing data. Trop. Ecol. 2014, 55, 245–253. [Google Scholar]
- Flores-Cárdenas, F.; Millán-Aguilar, O.; Díaz-Lara, L.; Rodríguez-Arredondo, L.; Hurtado-Oliva, M.A.; Manzano-Sarabia, M. Trends in the normalized difference vegetation index for mangrove areas in Northwestern Mexico. J. Coast. Res. 2018, 34, 877–882. [Google Scholar] [CrossRef]
- Sheppard, S.R.; Meitner, M. Using multi-criteria analysis and visualisation for sustainable forest management planning with stakeholder groups. For. Ecol. Manag. 2005, 207, 171–187. [Google Scholar] [CrossRef]
- Wolfslehner, B.; Vacik, H.; Lexer, M.J. Application of the analytic network process in multi-criteria analysis of sustainable forest management. For. Ecol. Manag. 2005, 207, 157–170. [Google Scholar] [CrossRef]
Variables | Number of Samples (Number of Sampling Points) | |||
---|---|---|---|---|
Kuala Sepetang | Kuala Trong | Sungai Kerang | ||
Mangrove biotic integrity | Aboveground biomass (tonnes/ha) | 193 (5) | 33 (5) | 144 (5) |
Crab abundance | 68 (5) | 191 (5) | 352 (5) | |
Mangrove soil | Soil carbon (%) | 12 (3) | 12 (3) | 24 (6) |
Soil nitrogen (%) | 12 (3) | 12 (3) | 24 (6) | |
Marine mangrove | Number of phytoplankton species | 123 (2) | 121 (2) | 81 (2) |
Number of diatom species | 87 (2) | 88 (2) | 56 (2) | |
Mangrove hydrology | Dissolved oxygen (mg/L) | 16 (8) | 11 (5) | 22 (11) |
Turbidity (NTU) | 16 (8) | 9 (5) | 22 (11) |
Variables | Minimum | Maximum | Mean | Median | SD | Skewness | Kurtosis |
---|---|---|---|---|---|---|---|
AGB (tonne/ha) | 7.83 | 61.32 | 30.047 | 24.24 | 16.322 | 0.237 | 2.23 |
Crab abundance | 3 | 91 | 40.733 | 38 | 26.196 | 0.234 * | 2.26 |
Soil C (%) | 6.527 | 20.908 | 10.711 | 9.0787 | 4.5865 | 1.080 (0.660) | 3.01 |
Soil N (%) | 0.113 | 0.648 | 0.34942 | 0.3215 | 0.17625 | 0.230 * | 1.90 |
No. of phytoplankton sp. | 57 | 120 | 94.167 | 100.5 | 23.439 | −0.591 (−0.834) | 2.03 |
No. of diatom sp. | 51 | 84 | 69.333 | 73.5 | 12.956 | −0.461 * | −0.46 |
DO (mg/L) | 2.215 | 5.655 | 4.0135 | 4.25 | 1.0155 | −0.334 * | 1.87 |
Turbidity (NTU) | 8.48 | 116.03 | 44.026 | 33.346 | 27.995 | 0.654 (0.409 *) | 2.76 |
Variables | Model | Nugget/Sill | Prediction Errors | ||
---|---|---|---|---|---|
ME | RMSE | RMSSE | |||
AGB (tonne/ha) | Hole Effect | 1.108 | −0.3397 | 14.8418 | 0.9953 |
Crab abundance | Spherical | 0 | −0.1055 | 9.2213 | 0.9050 |
Soil C (%) | Circular | 0.327 | −0.0283 | 2.7024 | 0.9651 |
Soil N (%) | Exponential | 0.169 | −0.0005 | 0.0993 | 0.9762 |
No. of phytoplankton sp. | Gaussian | 0.086 | −0.0165 | 10.7670 | 1.3591 |
No. of diatom sp. | Hole Effect | 0.032 | −0.1975 | 4.3751 | 0.9919 |
DO (mg/L) | Stable | 1.348 | −0.0001 | 0.6430 | 0.9348 |
Turbidity (NTU) | Rational Quadratic | 0 | 1.1194 | 12.6746 | 0.7975 |
Region | Vegetation Indices [13] | MQI [1] | |
---|---|---|---|
NDVI | SAVI | ||
Kuala Sepetang | −0.916667–0.314991 | −1.55556–0.545049 | MQI 2 (bad) |
Kuala Trong | −0.689846–0.652204 | −1.15279–1.12794 | MQI 5 (excellent) |
Sungai Kerang | −0.732505–0.638626 | −1.22977–1.10828 | MQI 4 (good) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parman, R.P.; Kamarudin, N.; Ibrahim, F.H.; Nuruddin, A.A.; Omar, H.; Abdul Wahab, Z. Geostatistical Analysis of Mangrove Ecosystem Health: Mapping and Modelling of Sampling Uncertainty Using Kriging. Forests 2022, 13, 1185. https://doi.org/10.3390/f13081185
Parman RP, Kamarudin N, Ibrahim FH, Nuruddin AA, Omar H, Abdul Wahab Z. Geostatistical Analysis of Mangrove Ecosystem Health: Mapping and Modelling of Sampling Uncertainty Using Kriging. Forests. 2022; 13(8):1185. https://doi.org/10.3390/f13081185
Chicago/Turabian StyleParman, Rhyma Purnamasayangsukasih, Norizah Kamarudin, Faridah Hanum Ibrahim, Ahmad Ainuddin Nuruddin, Hamdan Omar, and Zulfa Abdul Wahab. 2022. "Geostatistical Analysis of Mangrove Ecosystem Health: Mapping and Modelling of Sampling Uncertainty Using Kriging" Forests 13, no. 8: 1185. https://doi.org/10.3390/f13081185
APA StyleParman, R. P., Kamarudin, N., Ibrahim, F. H., Nuruddin, A. A., Omar, H., & Abdul Wahab, Z. (2022). Geostatistical Analysis of Mangrove Ecosystem Health: Mapping and Modelling of Sampling Uncertainty Using Kriging. Forests, 13(8), 1185. https://doi.org/10.3390/f13081185