Different-Sized Vessels of Quercus variabilis Blume Respond Diversely to Six-Year Canopy and Understory N Addition in a Warm-Temperate Transitional Zone
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Experimental Design and Tree Selection
2.3. Sampling and Section Preparation
2.3.1. Sampling
2.3.2. Section Preparation
2.3.3. Calculation of Vessel-Related Traits
2.3.4. Data Analysis
3. Results
3.1. Distribution of Different-Sized Vessels along Tree-Ring
3.2. Vessel-Related Traits in the Different Groups and Treatments during 2013–2018
3.3. Tree-Ring and Annual Vessel-Related Traits in Treatments
3.4. Effects of N Addition on Vessel-Related Traits and Tree-Ring Width
4. Discussion
4.1. Vessel Distributions along Tree-Ring in Different Treatments
4.2. Effect of N Addition Treatments on Different-Sized Vessels along Tree-Ring
4.3. Effect of N Addition Treatments on Annual Tree-Ring and Annual Vessel-Related Traits
4.3.1. Annual Tree-Ring Growth
4.3.2. Annual Vessel-Related Traits
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Galloway, J.; Raghuram, N.; Abrol, Y.P. Perspective on reactive nitrogen in a global, Asian and Indian context. Curr. Sci. 2008, 94, 1375–1381. [Google Scholar]
- Liu, X.J.; Zhang, Y.; Han, W.X.; Tang, A.H.; Shen, J.L.; Cui, Z.L.; Vitousek, P.; Erisman, J.W.; Goulding, K.; Christie, P.; et al. Enhanced nitrogen deposition over China. Nature 2013, 494, 459–462. [Google Scholar] [CrossRef] [PubMed]
- Stevens, C.J. Nitrogen in the environment. Science 2019, 363, 578–580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, E.Z.; Terrer, C.; Pellegrini, A.F.A.; Ahlstrom, A.; van Lissa, C.J.; Zhao, X.; Xia, N.; Wu, X.H.; Jackson, R.B. Global patterns of terrestrial nitrogen and phosphorus limitation. Nat. Geosci. 2020, 13, 221–226. [Google Scholar] [CrossRef]
- Garcia-Gonzalez, I.; Fonti, P. Selecting earlywood vessels to maximize their environmental signal. Tree Physiol. 2006, 26, 1289–1296. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Vilalta, J. The rear window: Structural and functional plasticity in tree responses to climate change inferred from growth rings. Tree Physiol. 2018, 38, 155–158. [Google Scholar] [CrossRef] [Green Version]
- Preston, K.A.; Cornwell, W.K.; DeNoyer, J.L. Wood density and vessel traits as distinct correlates of ecological strategy in 51 California coast range angiosperms. New Phytol. 2006, 170, 807–818. [Google Scholar] [CrossRef]
- Manzanedo, R.D.; HilleRisLambers, J.; Rademacher, T.T.; Pederson, N. Evidence of unprecedented rise in growth synchrony from global tree ring records (Retraction of Vol 4, Pg 1622, 2020). Nat. Ecol. Evol. 2021, 5, 1047. [Google Scholar] [CrossRef]
- Fichot, R.; Laurans, F.; Monclus, R.; Moreau, A.; Pilate, G.; Brignolas, F. Xylem anatomy correlates with gas exchange, water-use efficiency and growth performance under contrasting water regimes: Evidence from Populus deltoides × Populus nigra hybrids. Tree Physiol. 2009, 29, 1537–1549. [Google Scholar] [CrossRef]
- Pan, R.H.; Tyree, M.T. How does water flow from vessel to vessel? Further investigation of the tracheid bridge concept. Tree Physiol. 2019, 39, 1019–1031. [Google Scholar] [CrossRef]
- Chen, Y.J.; Schnitzer, S.A.; Zhang, Y.J.; Fan, Z.X.; Goldstein, G.; Tomlinson, K.W.; Lin, H.; Zhang, J.L.; Cao, K.F. Physiological regulation and efficient xylem water transport regulate diurnal water and carbon balances of tropical lianas. Funct. Ecol. 2017, 31, 306–317. [Google Scholar] [CrossRef] [Green Version]
- Worbes, M.; Blanchart, S.; Fichtler, E. Relations between water balance, wood traits and phenological behavior of tree species from a tropical dry forest in Costa Rica—A multifactorial study. Tree Physiol. 2013, 33, 527–536. [Google Scholar] [CrossRef] [Green Version]
- Thomas, R.Q.; Canham, C.D.; Weathers, K.C.; Goodale, C.L. Increased tree carbon storage in response to nitrogen deposition in the US. Nat. Geosci. 2010, 3, 13–17. [Google Scholar] [CrossRef]
- Tian, D.H.; Wang, H.; Sun, J.; Niu, S.L. Global evidence on nitrogen saturation of terrestrial ecosystem net primary productivity. Environ. Res. Lett. 2016, 11, 024012. [Google Scholar] [CrossRef] [Green Version]
- Hacke, U.G.; Plavcova, L.; Almeida-Rodriguez, A.; King-Jones, S.; Zhou, W.C.; Cooke, J.E.K. Influence of nitrogen fertilization on xylem traits and aquaporin expression in stems of hybrid poplar. Tree Physiol. 2010, 30, 1016–1025. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.Y.; Wang, Z.C.; Liu, H.H.; Zhang, C.; Fu, S.L.; Fang, X. Responses in Growth and Anatomical Traits of Two Subtropical Tree Species to Nitrogen Addition, Drought, and Their Interactions. Front. Plant Sci. 2021, 12, 709510. [Google Scholar] [CrossRef]
- Dail, D.B.; Hollinger, D.Y.; Davidson, E.A.; Fernandez, I.; Sievering, H.C.; Scott, N.A.; Gaige, E. Distribution of nitrogen-15 tracers applied to the canopy of a mature spruce-hemlock stand, Howland, Maine, USA. Oecologia 2009, 160, 589–599. [Google Scholar] [CrossRef]
- Liu, Y.; Tan, X.P.; Wang, Y.Y.; Guo, Z.M.; He, D.; Fu, S.L.; Wan, S.Q.; Ye, Q.; Zhang, W.; Liua, W.; et al. Responses of litter, organic and mineral soil enzyme kinetics to 6 years of canopy and understory nitrogen additions in a temperate forest. Sci. Total Environ. 2020, 712, 136383. [Google Scholar] [CrossRef]
- Sievering, H.; Tomaszewski, T.; Torizzo, J. Canopy uptake of atmospheric N deposition at a conifer forest: Part I—Canopy N budget, photosynthetic efficiency and net ecosystem exchange. Tellus B Chem. Phys. Meteorol. 2007, 59, 483–492. [Google Scholar] [CrossRef]
- Schwarz, M.T.; Bischoff, S.; Blaser, S.; Boch, S.; Schmitt, B.; Thieme, L.; Fischer, M.; Michalzik, B.; Schulze, E.D.; Siemens, J.; et al. More efficient aboveground nitrogen use in more diverse Central European forest canopies. For. Ecol. Manag. 2014, 313, 274–282. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Shen, W.; Zhu, S.; Wan, S.; Luo, Y.; Yan, J.; Wang, K.; Liu, L.; Dai, H.; Li, P.; et al. CAN canopy addition of nitrogen better illustrate the effect of atmospheric nitrogen deposition on forest ecosystem? Sci. Rep. 2015, 5, 11245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plavcova, L.; Hacke, U.G. Phenotypic and developmental plasticity of xylem in hybrid poplar saplings subjected to experimental drought, nitrogen fertilization, and shading. J. Exp. Bot. 2012, 63, 6481–6491. [Google Scholar] [CrossRef] [Green Version]
- Tyree, M.T.; Sperry, J.S. Vulnerability of Xylem to Cavitation and Embolism. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1989, 40, 19–38. [Google Scholar] [CrossRef]
- Ma, C.; Zhang, W.H.; Wu, M.; Xue, Y.Q.; Ma, L.W.; Zhou, J.Y. Effect of aboveground intervention on fine root mass, production, and turnover rate in a Chinese cork oak (Quercus variabilis Blume) forest. Plant Soil 2013, 368, 201–214. [Google Scholar] [CrossRef]
- Gricar, J.; Hafner, P.; Lavric, M.; Ferlan, M.; Ogrinc, N.; Krajnc, B.; Eler, K.; Vodnik, D. Post-fire effects on development of leaves and secondary vascular tissues in Quercus pubescens. Tree Physiol. 2020, 40, 796–809. [Google Scholar] [CrossRef]
- Gea-Izquierdo, G.; Fonti, P.; Cherubini, P.; Martin-Benito, D.; Chaar, H.; Canellas, I. Xylem hydraulic adjustment and growth response of Quercus canariensis Willd. to climatic variability. Tree Physiol. 2012, 32, 401–413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.W.; Zhang, C.L.; Zhang, B.B.; Wu, D.; Shi, Y.F.; Zhang, W.; Ye, Q.; Yan, J.H.; Fu, J.M.; Fang, C.L.; et al. Canopy and understory nitrogen addition have different effects on fine root dynamics in a temperate forest: Implications for soil carbon storage. New Phytol. 2021, 231, 1377–1386. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Zhang, H.; Liu, T.; Zhang, W.; Shao, Y.; Ha, D.; Li, Y.; Zhang, C.; Cai, X.A.; Rao, X.; et al. Consistent effects of canopy vs. understory nitrogen addition on the soil exchangeable cations and microbial community in two contrasting forests. Sci. Total Environ. 2016, 553, 349–357. [Google Scholar] [CrossRef] [PubMed]
- Gei, M.G.; Powers, J.S. Do legumes and non-legumes tree species affect soil properties in unmanaged forests and plantations in Costa Rican dry forests? Soil Biol. Biochem. 2013, 57, 264–272. [Google Scholar] [CrossRef]
- Rossi, S.; Anfodillo, T.; Menardi, R. Trephor: A new tool for sampling microcores from tree stems. IAWA J. 2006, 27, 89–97. [Google Scholar] [CrossRef] [Green Version]
- Rossi, S.; Deslauriers, A.; Anfodillo, T. Assessment of cambial activity and xylogenesis by microsampling tree species: An example at the alpine timberline. IAWA J. 2006, 27, 383–394. [Google Scholar] [CrossRef] [Green Version]
- Tyree, M.T.; Zimmermann, M.H. Xylem Structure and the Ascent of Sap; Springer: Berlin, Germany, 2002. [Google Scholar]
- Lindstrom, M.J.; Bates, D.M. Nonlinear mixed effects models for repeated measures data. Biometrics 1990, 46, 673–687. [Google Scholar] [CrossRef]
- Garcia-Gonzalez, I.; Eckstein, D. Climatic signal of earlywood vessels of oak on a maritime site. Tree Physiol. 2003, 23, 497–504. [Google Scholar] [CrossRef]
- Deslauriers, A.; Giovannelli, A.; Rossi, S.; Castro, G.; Fragnelli, G.; Traversi, L. Intra-annual cambial activity and carbon availability in stem of poplar. Tree Physiol. 2009, 29, 1223–1235. [Google Scholar] [CrossRef] [Green Version]
- Perez-de-Lis, G.; Olano, J.M.; Rozas, V.; Rossi, S.; Vazquez-Ruiz, R.A.; Garcia-Gonzalez, I. Environmental conditions and vascular cambium regulate carbon allocation to xylem growth in deciduous oaks. Funct. Ecol. 2017, 31, 592–603. [Google Scholar] [CrossRef] [Green Version]
- Taneda, H.; Sperry, J.S. A case-study of water transport in co-occurring ring- versus diffuse-porous trees: Contrasts in water-status, conducting capacity, cavitation and vessel refilling. Tree Physiol. 2008, 28, 1641–1651. [Google Scholar] [CrossRef] [Green Version]
- Cai, J.; Tyree, M.T. The impact of vessel size on vulnerability curves: Data and models for within-species variability in saplings of aspen, Populus tremuloides Michx. Plant Cell Environ. 2010, 33, 1059–1069. [Google Scholar] [CrossRef]
- Hacke, U.G.; Sperry, J.S. Functional and ecological xylem anatomy. Perspect. Plant Ecol. 2001, 4, 97–115. [Google Scholar] [CrossRef] [Green Version]
- Hacke, U.G.; Sperry, J.S.; Wheeler, J.K.; Castro, L. Scaling of angiosperm xylem structure with safety and efficiency. Tree Physiol. 2006, 26, 689–701. [Google Scholar] [CrossRef] [PubMed]
- Borghetti, M.; Gentilesca, T.; Leonardi, S.; van Noije, T.; Rita, A. Long-term temporal relationships between environmental conditions and xylem functional traits: A meta-analysis across a range of woody species along climatic and nitrogen deposition gradients. Tree Physiol. 2017, 37, 4–17. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Gonzalez, B.D.; Vazquez-Ruiz, R.A.; Garcia-Gonzalez, I. Effects of climate on earlywood vessel formation of Quercus robur and Q. pyrenaica at a site in the northwestern Iberian Peninsula. Can. J. For. Res. 2015, 45, 698–709. [Google Scholar] [CrossRef]
- Schmitt, U.; Moller, R.; Eckstein, D. Seasonal wood formation dynamics of beech (Fagus sylvatica L.) and black locust (Robinia pseudoacacia L.) as determined by the “pinning” technique. Angew. Bot. 2000, 74, 10–16. [Google Scholar]
- Fonti, P.; Garcia-Gonzalez, I. Suitability of chestnut earlywood vessel chronologies for ecological studies. New Phytol. 2004, 163, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Souto-Herrero, M.; Rozas, V.; Garcia-Gonzalez, I. Earlywood vessels and latewood width explain the role of climate on wood formation of Quercus pyrenaica Willd. across the Atlantic-Mediterranean boundary in NW Iberia. For. Ecol. Manag. 2018, 425, 126–137. [Google Scholar] [CrossRef]
- Granier, A.; Anfodillo, T.; Sabatti, M.; Cochard, H.; Dreyer, E.; Tomasi, M.; Valentini, R.; Breda, N. Axial and Radial Water-Flow in the Trunks of Oak Trees—A Quantitative and Qualitative-Analysis. Tree Physiol. 1994, 14, 1383–1396. [Google Scholar] [CrossRef] [Green Version]
- Umebayashi, T.; Utsumi, Y.; Koga, S.; Inoue, S.; Matsumura, J.; Oda, K.; Fujikawa, S.; Arakawa, K.; Otsuki, K. Xylem water-conducting patterns of 34 broadleaved evergreen trees in southern Japan. Trees Struct. Funct. 2010, 24, 571–583. [Google Scholar] [CrossRef]
- Cochard, H.; Tyree, M.T. Xylem Dysfunction in Quercus: Vessel Sizes, Tyloses, Cavitation and Seasonal-Changes in Embolism. Tree Physiol. 1990, 6, 393–407. [Google Scholar] [CrossRef] [Green Version]
- Sperry, J.S.; Nichols, K.L.; Sullivan, J.E.M.; Eastlack, S.E. Xylem Embolism in Ring-Porous, Diffuse-Porous, and Coniferous Trees of Northern Utah and Interior Alaska. Ecology 1994, 75, 1736–1752. [Google Scholar] [CrossRef]
- Kula, E.; Pešlová, A.; Martinek, P. Effects of nitrogen on growth properties and phenology of silver birch (Betula pendula Roth). J. For. Sci. 2012, 9, 391–399. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.K.; Rossi, S.; Huang, J.G.; Jiang, S.W.; Yu, B.Y.; Zhang, W.; Ye, Q. Intra-Annual Dynamics of Xylem Formation in Liquidambar formosana Subjected to Canopy and Understory N Addition. Front. Plant Sci. 2018, 9, 79. [Google Scholar] [CrossRef] [Green Version]
- Meng, C.; Tian, D.S.; Zeng, H.; Li, Z.L.; Yi, C.X.; Niu, S.L. Global soil acidification impacts on belowground processes. Environ. Res. Lett. 2019, 14, 7. [Google Scholar] [CrossRef]
- Smithwick, E.A.H.; Eissenstat, D.M.; Lovett, G.M.; Bowden, R.D.; Rustad, L.E.; Driscoll, C.T. Root stress and nitrogen deposition: Consequences and research priorities. New Phytol. 2013, 197, 712–719. [Google Scholar] [CrossRef] [PubMed]
- Vanguelova, E.I.; Nortcliff, S.; Moffat, A.J.; Kennedy, F. Morphology, biomass and nutrient status of fine roots of Scots pine (Pinus sylvestris) as influenced by seasonal fluctuations in soil moisture and soil solution chemistry. Plant Soil 2005, 270, 233–247. [Google Scholar] [CrossRef]
- Chiwa, M.; Matsuda, T.; Nakatani, N.; Kobayashi, T.; Kume, A.; Sakugawa, H. Effects of canopy N uptake on foliar CO2 assimilation rates and biomass production and allocation in Japanese red pine seedlings. Can. J. For. Res. 2012, 42, 1395–1403. [Google Scholar] [CrossRef]
- Wang, X.; Wang, B.; Wang, C.Z.; Wang, Z.H.; Li, J.; Jia, Z.; Yang, S.; Li, P.; Wu, Y.T.; Pan, S.N.; et al. Canopy processing of N deposition increases short-term leaf N uptake and photosynthesis, but not long-term N retention for aspen seedlings. New Phytol. 2021, 229, 2601–2610. [Google Scholar] [CrossRef]
- Korpela, M.; Nojd, P.; Hollmen, J.; Makinen, H.; Sulkava, M.; Hari, P. Photosynthesis, temperature and radial growth of Scots pine in northern Finland: Identifying the influential time intervals. Trees Struct. Funct. 2011, 25, 323–332. [Google Scholar] [CrossRef]
- De Micco, V.; Aronne, G.; Baas, P. Wood anatomy and hydraulic architecture of stems and twigs of some Mediterranean trees and shrubs along a mesic-xeric gradient. Trees Struct. Funct. 2008, 22, 643–655. [Google Scholar] [CrossRef]
- Zhang, H.X.; McDowell, N.G.; Adams, H.D.; Wang, A.Z.; Wu, J.B.; Jin, C.J.; Tian, J.Y.; Zhu, K.; Li, W.B.; Zhang, Y.S.; et al. Divergences in hydraulic conductance and anatomical traits of stems and leaves in three temperate tree species coping with drought, N addition and their interactions. Tree Physiol. 2020, 40, 230–244. [Google Scholar] [CrossRef]
- Dang, H.; Jiang, M.; Zhang, Q.; Zhang, Y. Growth responses of subalpine fir (Abies fargesii) to climate variability in the Qinling Mountain, China. For. Ecol. Manag. 2007, 240, 143–150. [Google Scholar] [CrossRef]
- Didi, V.; Jackson, P.; Hejatko, J. Hormonal regulation of secondary cell wall formation. J. Exp. Bot. 2015, 66, 5015–5027. [Google Scholar] [CrossRef]
- Kubo, M.; Udagawa, M.; Nishikubo, N.; Horiguchi, G.; Yamaguchi, M.; Ito, J.; Mimura, T.; Fukuda, H.; Demura, T. Transcription switches for protoxylem and metaxylem vessel formation. Genes Dev. 2005, 19, 1855–1860. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Linderholm, H.W.; Song, H.; Cai, Q.; Tian, Q.; Sun, J.; Chen, D.; Simelton, E.; Seftigen, K.; Tian, H. Temperature variations recorded in Pinus tabulaeformis tree rings from the southern and northern slopes of the central Qinling Mountains, central China. Boreas 2009, 38, 285–291. [Google Scholar] [CrossRef]
- Zhang, W.-t.; Jiang, Y.; Dong, M.-y.; Kang, M.-y.; Yang, H.-c. Relationship between the radial growth of Picea meyeri and climate along elevations of the Luyashan Mountain in North-Central China. For. Ecol. Manag. 2012, 265, 142–149. [Google Scholar] [CrossRef]
- Mo, J.; Li, D.; Gundersen, P. Seedling growth response of two tropical tree species to nitrogen deposition in southern China. Eur. J. For. Res. 2008, 127, 275–283. [Google Scholar] [CrossRef]
- Pregitzer, K.S.; Burton, A.J.; Zak, D.R.; Talhelm, A.F. Simulated chronic nitrogen deposition increases carbon storage in Northern Temperate forests. Glob. Chang. Biol. 2008, 14, 142–153. [Google Scholar] [CrossRef]
- Zhang, S.; Huang, J.-G.; Rossi, S.; Ma, Q.; Yu, B.; Zhai, L.; Luo, D.; Guo, X.; Fu, S.; Zhang, W.; et al. Intra-annual dynamics of xylem growth in Pinus massoniana submitted to an experimental nitrogen addition in Central China. Tree Physiol. 2017, 37, 1546–1553. [Google Scholar] [CrossRef] [Green Version]
- Day, M.E.; Greenwood, M.S.; White, A.S. Age-related changes in foliar morphology and physiology in red spruce and their influence on declining photosynthetic rates and productivity with tree age. Tree Physiol. 2001, 21, 1195–1204. [Google Scholar] [CrossRef] [Green Version]
- Vieira, J.; Campelo, F.; Nabais, C. Age-dependent responses of tree-ring growth and intra-annual density fluctuations of Pinus pinaster to Mediterranean climate. Trees Struct. Funct. 2009, 23, 257–265. [Google Scholar] [CrossRef] [Green Version]
Vessel Groups | Vessel-Related Traits | Source of Variation | F-Value | p-Value |
---|---|---|---|---|
Group I | Mean vessel area | Treatment | 1.94 | 0.17 |
Year | 0.22 | 0.64 | ||
Treatment × Year | 0.95 | 0.39 | ||
Percentage of total vessel area | Treatment | 3.24 | 0.06 | |
Year | 2.17 | 0.14 | ||
Treatment × Year | 0.40 | 0.67 | ||
Grouped KH | Treatment | 1.62 | 0.23 | |
Year | 2.23 | 0.14 | ||
Treatment × Year | 0.44 | 0.65 | ||
Percentage of grouped KH | Treatment | 0.66 | 0.53 | |
Year | 0.38 | 0.54 | ||
Treatment × Year | 1.30 | 0.28 | ||
Group II | Mean vessel area | Treatment | 0.35 | 0.71 |
Year | 0.15 | 0.70 | ||
Treatment × Year | 0.65 | 0.53 | ||
Percentage of total vessel area | Treatment | 0.47 | 0.63 | |
Year | 0.23 | 0.63 | ||
Treatment × Year | 1.40 | 0.25 | ||
Grouped KH | Treatment | 1.21 | 0.32 | |
Year | 0.88 | 0.35 | ||
Treatment × Year | 1.26 | 0.29 | ||
Percentage of grouped KH | Treatment | 0.77 | 0.48 | |
Year | 0.02 | 0.90 | ||
Treatment × Year | 0.28 | 0.76 | ||
Group III | Mean vessel area | Treatment | 0.14 | 0.87 |
Year | 1.02 | 0.32 | ||
Treatment × Year | 4.25 | 0.02 * | ||
Percentage of total vessel area | Treatment | 0.02 | 0.98 | |
Year | 0.03 | 0.87 | ||
Treatment × Year | 4.37 | 0.02 * | ||
Grouped KH | Treatment | 0.40 | 0.68 | |
Year | 1.10 | 0.30 | ||
Treatment × Year | 4.03 | 0.02 * | ||
Percentage of grouped KH | Treatment | 0.92 | 0.42 | |
Year | 4.92 | 0.03 * | ||
Treatment × Year | 4.25 | 0.02 * |
Xylem Related Traits | Source of Variation | F-Value | p-Value |
---|---|---|---|
Tree-ring width | Treatment | 4.27 | 0.03 * |
Year | 3.18 | 0.08 | |
Treatment × Year | 0.26 | 0.77 | |
Annual mean vessel area | Treatment | 1.27 | 0.31 |
Year | 0.01 | 0.91 | |
Treatment × Year | 0.86 | 0.43 | |
Annual KH | Treatment | 1.78 | 0.20 |
Year | 2.59 | 0.11 | |
Treatment × Year | 0.90 | 0.41 | |
Percentage of annual total vessel area | Treatment | 2.01 | 0.16 |
Year | 1.26 | 0.26 | |
Treatment × Year | 2.23 | 0.11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Yu, B.; Zhou, P.; Huang, J.; Fu, S.; Zhang, W. Different-Sized Vessels of Quercus variabilis Blume Respond Diversely to Six-Year Canopy and Understory N Addition in a Warm-Temperate Transitional Zone. Forests 2022, 13, 1075. https://doi.org/10.3390/f13071075
Zhang S, Yu B, Zhou P, Huang J, Fu S, Zhang W. Different-Sized Vessels of Quercus variabilis Blume Respond Diversely to Six-Year Canopy and Understory N Addition in a Warm-Temperate Transitional Zone. Forests. 2022; 13(7):1075. https://doi.org/10.3390/f13071075
Chicago/Turabian StyleZhang, Shaokang, Biyun Yu, Peng Zhou, Jianguo Huang, Shenglei Fu, and Wei Zhang. 2022. "Different-Sized Vessels of Quercus variabilis Blume Respond Diversely to Six-Year Canopy and Understory N Addition in a Warm-Temperate Transitional Zone" Forests 13, no. 7: 1075. https://doi.org/10.3390/f13071075
APA StyleZhang, S., Yu, B., Zhou, P., Huang, J., Fu, S., & Zhang, W. (2022). Different-Sized Vessels of Quercus variabilis Blume Respond Diversely to Six-Year Canopy and Understory N Addition in a Warm-Temperate Transitional Zone. Forests, 13(7), 1075. https://doi.org/10.3390/f13071075