Rapid and Efficient Regeneration of Populus ussuriensis Kom. from Root Explants through Direct De Novo Shoot Organogenesis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Culture Medium and Conditions
2.3. Shoot Induction
2.4. Shoot Multiplication and Elongation
2.5. Rooting and Acclimatization
2.6. Statistical Analysis of Data
3. Results
3.1. Effect of the Concentration and Combination of PGR(s) on Shoot Bud Induction
3.2. Effect of the In Vitro Root Explant Shapes on Shoot Bud Induction
3.3. Effect of the PGRs on Further Multiplication and Elongation of Induced Shoot Buds
3.4. Rooting and Acclimatization
4. Discussion
4.1. TDZ Promotes Shoot Bud Induction by Its High Cytokinin Activity
4.2. TDZ Inhibits Shoot Elongation by High Cytokinin Activity of TDZ Itself and REDUCED Endogenous GA Level
4.3. De Novo Shoot Organogenesis Process Is Driven by Combinatorial Action of Several PGRs
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Giri, C.C.; Shyamkumar, B.; Anjaneyulu, C. Progress in tissue culture, genetic transformation and applications of biotechnology to trees: An overview. Trees 2004, 18, 115–135. [Google Scholar] [CrossRef]
- Krishan Kumar, S. Propagation of citrus species through cutting: A review. J. Med. Plants. Stud. 2018, 6, 167–172. [Google Scholar]
- Relf, D.; Ball, E. Propagation by cuttings, layering and division. VCE Publ. 2009, 426, 1–6. [Google Scholar]
- Amissah, J.N.; Bassuk, N.L. Clonal propagation of Quercus spp. using a container layering technique. J. Environ. Hortic. 2004, 22, 80–84. [Google Scholar] [CrossRef]
- Charles, W.M.; Elliot, M.M. Plant grafting. Curr. Biol. 2015, 25, 183–188. [Google Scholar]
- Lee, J.-M.; Kubota, C.; Tsao, S.J.; Bie, Z.; Echevarria, P.H.; Morra, L.; Oda, M. Current status of vegetable grafting: Diffusion, grafting techniques, automation. Sci. Hortic. 2010, 127, 93–105. [Google Scholar] [CrossRef]
- Martínez, M.T.; Corredoira, E.; Vieitez, A.M.; Cernadas, M.J.; Montenegro, R.; Ballester, A.; Vieitez, F.J.; San José, M.C. Mi-cropropagation of mature Quercus ilex L. trees by axillary budding. Plant Cell Tiss. Org. Cult. 2017, 131, 499–512. [Google Scholar] [CrossRef]
- Radhakrishnan, D.; Kareem, A.; Durgaprasad, K.; Sreeraj, E.; Sugimoto, K.; Prasad, K. Shoot regeneration: A journey from acquisition of competence to completion. Curr. Opin. Plant Biol. 2018, 41, 23–31. [Google Scholar] [CrossRef]
- Kareem, A.; Durgaprasad, K.; Sugimoto, K.; Du, Y.; Pulianmackal, A.J.; Trivedi, Z.B.; Abhayadev, P.V.; Pinon, V.; Meyerowitz, E.M.; Scheres, B.; et al. PLETHORA genes control regeneration by a two-step mechanism. Curr. Biol. 2015, 25, 1017–1030. [Google Scholar] [CrossRef] [Green Version]
- Atta, R.; Laurens, L.; Boucheron-Dubuisson, E.; Guivarc’h, A.; Carnero, E.; Giraudat-Pautot, V.; Rech, P.; Chriqui, D. Plurip-otency of Arabidopsis xylem pericycle underlies shoot regeneration from root and hypocotyl explants grown in vitro. Plant J. 2009, 57, 626–644. [Google Scholar] [CrossRef]
- Che, P.; Lall, S.; Howell, S.H. Developmental steps in acquiring competence for shoot development in Arabidopsis tissue culture. Planta 2007, 226, 1183–1194. [Google Scholar] [CrossRef]
- Gordon, S.P.; Heisler, M.G.; Reddy, G.V.; Ohno, C.; Das, P.; Meyerowitz, E.M. Pattern formation during de novo assembly of the Arabidopsis shoot meristem. Development 2007, 134, 3539–3548. [Google Scholar] [CrossRef] [Green Version]
- Ikeuchi, M.; Sugimoto, K.; Iwase, A. Plant callus: Mechanisms of induction and repression. Plant Cell 2013, 25, 3159–3173. [Google Scholar] [CrossRef] [Green Version]
- Sugimoto, K.; Jiao, Y.; Meyerowitz, E.M. Arabidopsis regeneration from multiple tissues occurs via a root development pathway. Dev. Cell 2010, 18, 463–471. [Google Scholar] [CrossRef] [Green Version]
- Okushima, Y.; Fukaki, H.; Onoda, M.; Theologis, A.; Tasaka, M. ARF7 and ARF19 regulate lateral root formation via direct activation of LBD/ASL genes in Arabidopsis. Plant Cell 2007, 19, 118–130. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.-K.; Geisler, M.; Springer, P.S. LATERAL ORGAN FUSION1 and LATERAL ORGAN FUSION2 function in lateral organ separation and axillary meristem formation in Arabidopsis. Development 2009, 136, 2423–2432. [Google Scholar] [CrossRef] [Green Version]
- Fan, M.; Xu, C.; Xu, K.; Hu, Y. LATERAL ORGAN BOUNDARIES DOMAIN transcription factors direct callus formation in Arabidopsis regeneration. Cell Res. 2012, 22, 1169–1180. [Google Scholar] [CrossRef] [Green Version]
- Sakai, H.; Honma, T.; Aoyama, T.; Sato, S.; Kato, T.; Tabata, S.; Oka, A. ARR1, a transcription factor for genes immediately responsive to cytokinins. Science 2001, 294, 1519–1521. [Google Scholar] [CrossRef] [Green Version]
- Tajima, Y.; Imamura, A.; Kiba, T.; Amano, Y.; Yamashino, T.; Mizuno, T. Comparative studies on the tytpe-B response regulators revealing their distinctive properties in the His-to-Asp phosphorelay signal transduction of Arabidopsis thaliana. Plant Cell Physiol. 2004, 45, 28–39. [Google Scholar] [CrossRef] [Green Version]
- Shin, J.; Bae, S.; Seo, P.J. De novo shoot organogenesis during plant regeneration. J. Exp. Bot. 2019, 71, 63–72. [Google Scholar] [CrossRef]
- Ibáñez, S.; Carneros, E.; Testillano, P.; Pérez-Pérez, J. Advances in plant regeneration: Shake, rattle and roll. Plants 2020, 9, 897. [Google Scholar] [CrossRef]
- Werner, T.; Motyka, V.; Laucou, V.; Smets, R.; Van Onckelen, H.; Schmülling, T. Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell 2003, 15, 2532–2550. [Google Scholar] [CrossRef] [Green Version]
- Pernisová, M.; Klíma, P.; Horák, J.; Válková, M.; Malbeck, J.; Soucek, P.; Reichman, P.; Hoyerová, K.; Dubová, J.; Friml, J.; et al. Cytokinins modulate auxin-induced organogenesis in plants via regulation of the auxin efflux. Proc. Natl. Acad. Sci. USA 2009, 106, 3609–3614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Z.; Li, J.; Wang, L.; Li, Q.; Lu, Q.; Yu, Y.; Li, S.; Bai, M.Y.; Hu, Y.; Xiang, F. Repression of callus initiation by the miR-NA-directed interaction of auxin-cytokinin in Arabidopsis thaliana. Plant J. 2016, 87, 391–402. [Google Scholar] [CrossRef]
- Chatfield, S.P.; Raizada, M.N. Ethylene and shoot regeneration: Hookless1 modulates de novo shoot organogenesis in Ara-bidopsis thaliana. Plant Cell Rep. 2008, 27, 655–666. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.B.; Kwon, M.; Ryu, H.; Fujioka, S.; Takatsuto, S.; Yoshida, S.; An, C.S.; Lee, I.; Hwang, I.; Choe, S. The regulation of DWARF4 expression is likely a critical mechanism in maintaining the homeostasis of bioactive brassinosteroids in Arabidopsis. Plant Physiol. 2006, 140, 548–557. [Google Scholar] [CrossRef] [Green Version]
- Cheon, J.; Park, S.-Y.; Schulz, B.; Choe, S. Arabidopsis brassinosteroid biosynthetic mutant dwarf7-1exhibits slower rates of cell division and shoot induction. BMC Plant Biol. 2010, 10, 270. [Google Scholar] [CrossRef] [Green Version]
- Ezura, H.; Harberd, N. Endogenous gibberellin levels influence in-vitro shoot regeneration in Arabidopsis thaliana (L.) Heynh. Planta 1995, 197, 301–305. [Google Scholar] [CrossRef]
- Huang, W.-L.; Lee, C.-H.; Chen, Y.-R. Levels of endogenous abscisic acid and indole-3-acetic acid influence shoot organogenesis in callus cultures of rice subjected to osmotic stress. Plant Cell Tissue Organ Cult. (PCTOC) 2011, 108, 257–263. [Google Scholar] [CrossRef]
- Kareem, A.; Radhakrishnan, D.; Wang, X.; Bagavathiappan, S.; Trivedi, Z.B.; Sugimoto, K.; Xu, J.; Mähönen, A.P.; Prasad, K. Protocol: A method to study the direct reprogramming of lateral root primordia to fertile shoots. Plant Methods 2016, 12, 27. [Google Scholar] [CrossRef] [Green Version]
- Rosspopoff, O.; Chelysheva, L.; Saffar, J.; Lecorgne, L.; Gey, D.; Caillieux, E.; Colot, V.; Roudier, F.; Hilson, P.; Berthomé, R.; et al. Direct conversion of root primordium into shoot meristem relies on timing of stem cell niche development. Development 2017, 144, 1187–1200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larkin, P.J.; Scowcroft, W.R. Somaclonal variation—a novel source of variability from cell cultures for plant improvement. Theor. Appl. Genet. 1981, 60, 197–214. [Google Scholar] [CrossRef] [PubMed]
- Rani, V.; Raina, S.N. Genetic fidelity of organized meristem-derived micropropagated plants: A critical reappraisal. In Vitro Cell. Dev. Biol.-Plant 2000, 36, 319–330. [Google Scholar] [CrossRef]
- Romyanon, K.; Mosaleeyanon, K.; Kirdmanee, C. Direct-shoot organogenesis as an alternative protocol for in vitro regeneration of oil palm (Elaeis guineensis Jacq.). Sci. Hortic. 2015, 195, 1–7. [Google Scholar] [CrossRef]
- Hnatuszko-Konka, K.; Gerszberg, A.; Weremczuk-Jeżyna, I.; Grzegorczyk-Karolak, I. Cytokinin signaling and de novo shoot organogenesis. Genes 2021, 12, 265. [Google Scholar] [CrossRef]
- Raspor, M.; Motyka, V.; Kaleri, A.R.; Ninković, S.; Tubić, L.; Cingel, A.; Ćosić, T. Integrating the roles for cytokinin and auxin in de novo shoot organogenesis: From hormone uptake to signaling outputs. Int. J. Mol. Sci. 2021, 22, 8554. [Google Scholar] [CrossRef]
- Sang, Y.L.; Cheng, Z.J.; Zhang, X.S. Plant stem cells and de novo organogenesis. New Phytol. 2018, 218, 1334–1339. [Google Scholar] [CrossRef] [Green Version]
- Ikeuchi, M.; Ogawa, Y.; Iwase, A.; Sugimoto, K. Plant regeneration: Cellular origins and molecular mechanisms. Development 2016, 143, 1442–1451. [Google Scholar] [CrossRef] [Green Version]
- Son, S.; Hall, R. Plant regeneration capacity of callus derived from leaf, stem, and root segments of Populus alba L. x P. grandidentata Michx. Plant Cell Rep. 1990, 9, 344–347. [Google Scholar] [CrossRef]
- Maheshwari, P.; Kovalchuk, I. Efficient shoot regeneration from internodal explants of Populus angustifolia, Populus balsamifera and Populus deltoids. New Biotechnol. 2011, 28, 778–787. [Google Scholar] [CrossRef]
- Guo, B.; Abbasi, B.H.; Zeb, A.; Xu, L.L.; Wei, Y.H. Thidiazuron: A multi-dimensional plant growth regulator. Afr. J. Biotechnol. 2011, 10, 8984–9000. [Google Scholar]
- Lu, C.-Y. The use of thidiazuron in tissue culture. In Vitro Cell. Dev. Biol.-Plant 1993, 29, 92–96. [Google Scholar] [CrossRef]
- Nisler, J.; Kopečný, D.; Končitíková, R.; Zatloukal, M.; Bazgier, V.; Berka, K.; Zalabák, D.; Briozzo, P.; Strnad, M.; Spíchal, L. Novel thidiazuron-derived inhibitors of cytokinin oxidase/dehydrogenase. Plant Mol. Biol. 2016, 92, 235–248. [Google Scholar] [CrossRef]
- Murthy, B.N.S.; Murch, S.J.; Saxena, P.K. Thidiazuron: A potent regulator of in vitro plant morphogenesis. In Vitro Cell. Dev. Biol.-Plant 1998, 34, 267–275. [Google Scholar] [CrossRef]
- Wang, S.Y.; Steffens, G.L.; Faust, M. Breaking bud dormancy in apple with a plant bioregulator, thidiazuron. Phytochemistry 1986, 25, 311–317. [Google Scholar] [CrossRef]
- Vu, N.H.; Anh, P.H.; Nhut, D.T. The role of sucrose and different cytokinins in the in vitro floral morphogenesis of rose (hybrid tea) cv. “First Prize”. Plant Cell Tissue Organ Cult. (PCTOC) 2006, 87, 315–320. [Google Scholar] [CrossRef]
- Dey, M.; Bakshi, S.; Galiba, G.; Sahoo, L.; Panda, S.K. Development of a genotype independent and transformation amenable regeneration system from shoot apex in rice (Oryza sativa spp. indica) using TDZ. 3 Biotech 2012, 2, 233–240. [Google Scholar] [CrossRef] [Green Version]
- Mithila, J.; Hall, J.; Victor, J.; Saxena, P. Thidiazuron induces shoot organogenesis at low concentrations and somatic embryogenesis at high concentrations on leaf and petiole explants of African violet (Saintpaulia ionantha Wendl.). Plant Cell Rep. 2003, 21, 408–414. [Google Scholar] [CrossRef]
- Fasolo, F.; Zimmerman, R.H.; Fordham, I. Adventitious shoot formation on excised leaves of in vitro grown shoots of apple cultivars. Plant Cell Tissue Organ Cult. 1989, 16, 75–87. [Google Scholar] [CrossRef] [Green Version]
- Sankhla, D.; Davis, T.D.; Sankhla, N. In vitro regeneration of silktree (Albizzia julibrissin) from excised roots. Plant Cell Tissue Organ Cult. (PCTOC) 1996, 44, 83–86. [Google Scholar] [CrossRef]
- Cruz, D.C.M.; Van, L.B.; Zuily-Fodil, Y.; Pham, T.A.; Tran, T.V.K. Efficient whole plant regeneration of common bean (Phaseolus vulgaris L.) using thin-cell-layer culture and silver nitrate. Plant Sci. 2000, 159, 223–232. [Google Scholar] [CrossRef]
- Varshney, A.; Anis, M. Improvement of shoot morphogenesis in vitro and assessment of changes of the activity of antioxidant enzymes during acclimation of micropropagated plants of Desert Teak. Acta Physiol. Plant. 2011, 34, 859–867. [Google Scholar] [CrossRef]
- Samir, C.D. A two-step procedure for adventitious shoot regeneration from in vitro-derived lingonberry leaves: Shoot induction with TDZ and shoot elongation using zeatin. Hortscience 2005, 40, 189–192. [Google Scholar]
- Khanam, M.N.; Anis, M. Organogenesis and efficient in vitro plantlet regeneration from nodal segments of Allamanda cathartica L. using TDZ and ultrasound assisted extraction of quercetin. Plant Cell Tissue Organ Cult. (PCTOC) 2018, 134, 241–250. [Google Scholar] [CrossRef]
- Kim, M.K.; Sommer, H.E.; Bongarten, B.C.; Merkle, S.A. High-frequency induction of adventitious shoots from hypocotyl segments of Liquidambar styracifiua L. by thidiazuron. Plant Cell Rep. 1997, 16, 536–540. [Google Scholar] [CrossRef]
- Debnath, S.C. Micropropagation of lingonberry: Influence of genotype, explant orientation, and overcoming TDZ-induced inhibition of shoot elongation using zeatin. Hortscience 2005, 40, 185–188. [Google Scholar] [CrossRef]
- Siamak, S.; Fatemeh, M.; Mahmood, M.; Shirani, S.; Mahdavi, F.; Maziah, M. Morphological abnormality among regenerated shoots of banana and plantain (Musa spp.) after in vitro multiplication with TDZ and BAP from excised shoot-tips. Afr. J. Biotechnol. 2009, 8, 5755–5761. [Google Scholar] [CrossRef] [Green Version]
- Tian, D.; Tilt, K.M.; Dane, F.; Woods, F.M.; Sibley, J.L. Comparison of shoot induction ability of different explants in herbaceous peony (Paeonia lactiflora Pall.). Sci. Hortic. 2010, 123, 385–389. [Google Scholar] [CrossRef]
- Carl, A.H.; John, E.P. Thidiazuron: A potent cytokinin for woody plant tissue culture. Plant Cell Tissue Organ Cult. 1993, 33, 105–119. [Google Scholar]
- Çelikel, F.G.; Zhang, Q.; Zhang, Y.; Reid, M.S.; Jiang, C.-Z. A cytokinin analog thidiazuron suppresses shoot growth in potted rose plants via the gibberellic acid pathway. Front. Plant Sci. 2021, 12, 639717. [Google Scholar] [CrossRef]
- Fleishon, S.; Shani, E.; Ori, N.; Weiss, D. Negative reciprocal interactions between gibberellin and cytokinin in tomato. New Phytol. 2011, 190, 609–617. [Google Scholar] [CrossRef] [PubMed]
PGRs | Mean No. of Shoots per Root Explant * | ||
---|---|---|---|
6-BA (μM) | IBA (μM) | TDZ (μM) | |
44.40 | - | - | 11.4 ± 1.2b |
221.98 | - | - | 15.7 ± 1.5a |
443.95 | - | - | 3.1 ± 1.0d |
- | 49.20 | - | 0.9 ± 0.3e |
- | 147.61 | - | 1.1 ± 0.4e |
- | 246.02 | - | 0.2 ± 0.1e |
- | - | 2.27 | 4.3 ± 0.5d |
- | - | 4.54 | 11.3 ± 1.3b |
- | - | 22.70 | 10.6 ± 2.0b |
221.98 | 147.61 | - | 11.7 ± 1.6b |
221.98 | - | 4.54 | 8.3 ± 0.9c |
- | 147.61 | 4.54 | 8.1 ± 1.4c |
221.98 | 147.61 | 4.54 | 15.2 ± 1.5a |
- | - | - | 0.0 ± 0.0e |
Explant Shape | No. of Shoots per Root Explant * | No. of Shoots per 1 cm Root Segment * |
---|---|---|
5 cm root segment | 14.2 ± 1.3b | 2.8 ± 0.3b |
complete root | 81.7 ± 7.0a | 3.5 ± 0.3a |
PGRs | Length of Shoots (cm) * | No. of Elongated Shoots * | Efficiency of Elongation (%) * | |||
---|---|---|---|---|---|---|
6-BA (μM) | IBA (μM) | TDZ (μM) | GA3 (μM) | |||
221.98 | 147.61 | - | - | 3.3 ± 0.1b | 48.5 ± 3.4b | 52.7b |
221.98 | 147.61 | 4.54 | - | 0.4 ± 0.1d | 0.0 ± 0.0d | 0.0d |
221.98 | 147.61 | - | 57.74 | 6.5 ± 0.2a | 75.2 ± 4.3a | 78.0a |
- | - | - | - | 1.7 ± 0.1c | 19.4 ± 2.2c | 19.8c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, S.; Liu, R.; Li, W.; Jing, Y.; Pak, S.; Li, C. Rapid and Efficient Regeneration of Populus ussuriensis Kom. from Root Explants through Direct De Novo Shoot Organogenesis. Forests 2022, 13, 806. https://doi.org/10.3390/f13050806
Yang S, Liu R, Li W, Jing Y, Pak S, Li C. Rapid and Efficient Regeneration of Populus ussuriensis Kom. from Root Explants through Direct De Novo Shoot Organogenesis. Forests. 2022; 13(5):806. https://doi.org/10.3390/f13050806
Chicago/Turabian StyleYang, Shuyu, Runze Liu, Wenlong Li, Yanan Jing, Solme Pak, and Chenghao Li. 2022. "Rapid and Efficient Regeneration of Populus ussuriensis Kom. from Root Explants through Direct De Novo Shoot Organogenesis" Forests 13, no. 5: 806. https://doi.org/10.3390/f13050806
APA StyleYang, S., Liu, R., Li, W., Jing, Y., Pak, S., & Li, C. (2022). Rapid and Efficient Regeneration of Populus ussuriensis Kom. from Root Explants through Direct De Novo Shoot Organogenesis. Forests, 13(5), 806. https://doi.org/10.3390/f13050806