Effects of Salinity and Oil Contamination on the Soil Seed Banks of Three Dominant Vegetation Communities in the Coastal Wetland of the Yellow River Delta
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Sampling Method
2.3. Analysis of Soil Physical and Chemical Parameters
2.4. Soil Seed Germination Experiment
2.5. Data Analysis
2.5.1. Diversity and Similarity Indicators Calculation of the Soil Seed Bank and Vegetation Community
2.5.2. Statistical Analysis of Data
3. Results
3.1. Soil Physical and Chemical Parameters of the Three Dominant Vegetation Communities in the YRD
3.2. The Main Plant Species Presented in the Three Dominant Soil Seed Banks and the Above-ground Vegetation Communities
3.3. Effects of Salinity and Diesel Contamination on the Germination of Seeds
4. Discussion
4.1. The Species Diversity of Above-Ground and Under-Ground Vegetation in the YRD
4.2. Effects of Soil Salinity and Diesel Contamination on the Germination of Seeds
4.3. Potential of Soil Seed Banks for the Restoration of the Degraded Coastal Wetland
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Engelhardt, K.A.M.; Ritchie, M.E. The effect of aquatic plant species richness on wetland ecosystem processes. Ecology 2002, 83, 2911–2924. [Google Scholar] [CrossRef]
- Davidson, N.C. How much wetland has the world lost? Long-term and recent trends in global wetland area. Mar. Freshw. Res. 2014, 65, 934–941. [Google Scholar] [CrossRef]
- Bian, H.; Li, W.; Li, Y.; Ren, B.; Niu, Y.; Zeng, Z. Driving forces of changes in China’s wetland area from the first (1999–2001) to second (2009–2011) National Inventory of Wetland Resources. Glob. Ecol. Conserv. 2019, 21, e00867. [Google Scholar] [CrossRef]
- Meng, W.; He, M.; Hu, B.; Mo, X.; Li, H.; Liu, B.; Wang, Z. Status of wetlands in China: A review of extent, degradation, issues and recommendations for improvement. Ocean Coast. Manag. 2017, 146, 50–59. [Google Scholar] [CrossRef]
- Millennium Ecosystem Assessment (MEA). Ecosystems and Human Wellbeing: Wetlands and Water Synthesis; World Resources Institute: Washington, DC, USA, 2005. [Google Scholar]
- Gedan, K.B.; Kirwan, M.L.; Wolanski, E.; Barbier, E.B.; Silliman, B. The present and future role of coastal wetland vegetation in protecting shorelines: Answering recent challenges to the paradigm. Clim. Chang. 2011, 106, 7–29. [Google Scholar] [CrossRef]
- Ooi, M.K. Seed bank persistence and climate change. Seed Sci. Res. 2012, 22, S53–S60. [Google Scholar] [CrossRef] [Green Version]
- Tellier, A. Persistent seed banking as eco-evolutionary determinant of plant nucleotide diversity: Novel population genetics insights. New Phytol. 2018, 221, 725–730. [Google Scholar] [CrossRef] [Green Version]
- Nishihiro, J.; Nishihiro, M.A.; Washitani, I. Restoration of wetland vegetation using soil seed banks: Lessons from a project in Lake Kasumigaura, Japan. Landsc. Ecol. Eng. 2006, 2, 171–176. [Google Scholar] [CrossRef]
- Saatkamp, A.; Poschlod, P.; Venable, L. The Functional Role of Soil seed Banks in Natural Communities, 3rd ed.; Gallagher, R., Ed.; CABI: Wallingford, UK, 2014; pp. 263–295. [Google Scholar]
- Wang, X.; Zhang, D.; Qi, Q.; Tong, S.; An, Y.; Lu, X.; Liu, Y. The restoration feasibility of degraded Carex Tussock in soda-salinization area in arid region. Ecol. Indic. 2018, 98, 131–136. [Google Scholar] [CrossRef]
- Morimoto, J.; Shibata, M.; Shida, Y.; Nakamura, F. Wetland restoration by natural succession in abandoned pastures with a degraded soil seed bank. Restor. Ecol. 2017, 25, 1005–1014. [Google Scholar] [CrossRef]
- Kiss, R.; Deák, B.; Török, P.; Tóthmérész, B.; Valkó, O. Grassland seed bank and community resilience in a changing climate. Restor. Ecol. 2018, 26, S141–S150. [Google Scholar] [CrossRef]
- Bai, J.; Huang, L.; Gao, Z.; Lu, Q.; Wang, J.; Zhao, Q. Soil seed banks and their germination responses to cadmium and salinity stresses in coastal wetlands affected by reclamation and urbanization based on indoor and outdoor experiments. J. Hazard. Mater. 2014, 280, 295–303. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Gao, Y.; Li, D. Germination of grass species in soil affected by crude oil contamination. Int. J. Phytoremediation 2018, 20, 567–573. [Google Scholar] [CrossRef] [PubMed]
- Touzard, B.; Amiaud, B.; Langlois, E.; Lemauviel, S.; Clément, B. The relationships between soil seed bank, aboveground vegetation and disturbances in an eutrophic alluvial wetland of Western France. Flora—Morphol. Distrib. Funct. Ecol. Plants 2002, 197, 175–185. [Google Scholar] [CrossRef]
- Wang, M.; Qi, S.; Zhang, X. Wetland loss and degradation in the Yellow River Delta, Shandong Province of China. Environ. Earth Sci. 2012, 67, 185–188. [Google Scholar] [CrossRef]
- Wang, Z.-Y.; Gao, D.-M.; Li, F.-M.; Zhao, J.; Xin, Y.-Z.; Simkins, S.; Xing, B.-S. Petroleum Hydrocarbon Degradation Potential of Soil Bacteria Native to the Yellow River Delta. Pedosphere 2008, 18, 707–716. [Google Scholar] [CrossRef]
- Wu, B.; Guo, S.; Wang, J. Spatial ecological risk assessment for contaminated soil in oiled fields. J. Hazard. Mater. 2021, 403, 123984. [Google Scholar] [CrossRef]
- Adam, G.; Duncan, H. Influence of diesel fuel on seed germination. Environ. Pollut. 2002, 120, 363–370. [Google Scholar] [CrossRef]
- Yang, J.; Yao, R. Spatial variability of soil water and salt characteristics in the Yellow River Delta. Sci. Geogr. Sin. 2007, 27, 348–353. [Google Scholar]
- Sun, X.-S.; Chen, Y.-H.; Zhuo, N.; Cui, Y.; Luo, F.-L.; Zhang, M.-X. Effects of salinity and concomitant species on growth of Phragmites australis populations at different levels of genetic diversity. Sci. Total Environ. 2021, 780, 146516. [Google Scholar] [CrossRef]
- Liang, K.; Fan, Y.; Meki, K.; Meng, D.; Yan, Q.; Zheng, H.; Li, F.; Luo, X. The seasonal dynamics of nitrogen and rhizosphere effects in the typical saline-alkali vegetation communities of the Yellow River Estuary wetland. Environ. Chem. 2019, 38, 2327–2335. [Google Scholar]
- Xia, J.; Zhang, S.; Guo, J.; Rong, Q.; Zhang, G. Critical effects of gas exchange parameters in Tamarix chinensis Lour on soil water and its relevant environmental factors on a shell ridge island in China’s Yellow River Delta. Ecol. Eng. 2014, 76, 36–46. [Google Scholar] [CrossRef]
- Zhang, Q.-H.; Sairebieli, K.; Zhao, M.-M.; Sun, X.-H.; Wang, W.; Yu, X.-N.; Du, N.; Guo, W.-H. Nutrients Have a Different Impact on the Salt Tolerance of Two Coexisting Suaeda Species in the Yellow River Delta. Wetlands 2020, 40, 2811–2823. [Google Scholar] [CrossRef]
- Wang, X.; Yu, J.; Zhou, D.; Dong, H.; Li, Y.; Lin, Q.; Guan, B.; Wang, Y. Vegetative Ecological Characteristics of Restored Reed (Phragmites australis) Wetlands in the Yellow River Delta, China. Environ. Manag. 2011, 49, 325–333. [Google Scholar] [CrossRef] [Green Version]
- Guan, B.; Yu, J.; Hou, A.; Han, G.; Wang, G.; Qu, F.; Xia, J.; Wang, X. The ecological adaptability of Phragmites australis to interactive effects of water level and salt stress in the Yellow River Delta. Aquat. Ecol. 2016, 51, 107–116. [Google Scholar] [CrossRef]
- Guan, B.; Chen, M.; Elsey-Quirk, T.; Yang, S.; Shang, W.; Li, Y.; Tian, X.; Han, G. Soil seed bank and vegetation differences following channel diversion in the Yellow River Delta. Sci. Total Environ. 2019, 693, 133600. [Google Scholar] [CrossRef]
- Taleisnik, E.; Rodríguez, A.A.; Bustos, D.; Erdei, L.; Ortega, L.; Senn, M.E. Leaf expansion in grasses under salt stress. J. Plant Physiol. 2009, 166, 1123–1140. [Google Scholar] [CrossRef]
- Flexas, J.; Bota, J.; Galmés, J.; Medrano, H.; Ribas-Carbó, M. Keeping a positive carbon balance under adverse conditions: Responses of photosynthesis and respiration to water stress. Physiol. Plant. 2006, 127, 343–352. [Google Scholar] [CrossRef]
- Attia, H.; Karray, N.; Rabhi, M.; Lachaâl, M. Salt-imposed restrictions on the uptake of macroelements by roots of Arabidopsis thaliana. Acta Physiol. Plant. 2008, 30, 723–727. [Google Scholar] [CrossRef]
- James, K.; Hart, B. Effect of salinity on four freshwater macrophytes. Mar. Freshw. Res. 1993, 44, 769–777. [Google Scholar] [CrossRef]
- Hasegawa, P.M.; Bressan, R.A.; Zhu, J.-K.; Bohnert, H.J. Plant cellular and molecular responses to high salinity. Annu. Rev. Plant Physiol. Plant Mol. Biol. 2000, 51, 463–499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.; Wang, G.; Zhao, M.; Wang, M.; Jiang, M. Direct and indirect effects of soil salinization on soil seed banks in salinizing wetlands in the Songnen Plain, China. Sci. Total Environ. 2021, 819, 152035. [Google Scholar] [CrossRef] [PubMed]
- Duan, H.; Ma, Y.; Liu, R.; Li, Q.; Yang, Y.; Song, J. Effect of combined waterlogging and salinity stresses on euhalophyte Suaeda glauca. Plant Physiol. Biochem. 2018, 127, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.; Dong, D.; Yang, Q.; Zhu, D. Salt-Responsive Transcriptome Profiling of Suaeda glauca via RNA Sequencing. PLoS ONE 2016, 11, e0150504. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Du, J.; Bahar, M.; Wang, H.; Subashchandrabose, S.; Duan, L.; Yang, X.; Megharaj, M.; Zhao, Q.; Zhang, W.; et al. Metagenomics analysis identifies nitrogen metabolic pathway in bioremediation of diesel contaminated soil. Chemosphere 2021, 271, 129566. [Google Scholar] [CrossRef]
- Dorn, P.B.; Salanitro, J.P. Temporal ecological assessment of oil contaminated soils before and after bioremediation. Chemosphere 2000, 40, 419–426. [Google Scholar] [CrossRef]
- Wei, Y.; Wang, Y.; Duan, M.; Han, J.; Li, G. Growth tolerance and remediation potential of six plants in oil-polluted soil. J. Soils Sediments 2019, 19, 3773–3785. [Google Scholar] [CrossRef]
Community Type | Code of Sampling Plots | Longitude and Latitude of The Sampling Plots |
---|---|---|
Multi-Species Community | 1 | 37°44′16.46″ N, 119°9′38.05″ E |
2 | 37°44′13.44″ N, 119°9′46.43″ E | |
3 | 37°44′4.18″ N, 119°10′6.48″ E | |
4 | 37°43′50.69″ N, 119°10′53.69″ E | |
Phragmites Australis Community | 1 | 37°45′47.33″ N, 119°3′16.76″ E |
2 | 37°45′49.92″ N, 119°4′35.92″ E | |
3 | 37°45′37.36″ N, 119°5′17.1″ E | |
4 | 37°45′35.67″ N, 119°5′22.05″ E | |
Phragmites Australis–Suaeda Glauca Community | 1 | 37°44′52.99″ N, 119°7′38.76″ E |
2 | 37°44′58.62″ N, 119°7′58.62″ E | |
3 | 37°45′48.58″ N, 119°3′1.51″ E | |
4 | 37°45′50.84″ N, 119°4′6.43″ E |
Multi-Species Community | Phragmites Australis Community | Phragmites Australis– Suaeda glauca Community | |
---|---|---|---|
AP (mg/kg) | 2.30 ± 0.41 a | 1.75 ± 0.21 a | 1.80 ± 0.11 a |
TC (g/kg) | 13.03 ± 0.81 b | 11.53 ± 0.29 ab | 10.90 ± 0.20 a |
TN (mg/kg) | 743.75 ± 90.32 a | 775.75 ± 76.45 a | 1008.75 ± 27.48 b |
AN (mg/kg) | 24.00 ± 0.82 a | 25.25 ± 1.97 a | 24.50 ± 0.29 a |
TOM (g/kg) | 8.20 ± 0.74 a | 9.30 ± 0.38 a | 8.38 ± 0.23 a |
EC (μS/cm) | 557.18 ± 260.70 a | 4303.28 ± 842.28 b | 3658.63 ± 649.75 b |
pH | 7.99 ± 0.04 a | 7.91 ± 0.04 a | 7.90 ± 0.03 a |
C/N ratio | 18.17 ± 1.95 b | 15.31 ± 1.26 ab | 10.83 ± 0.40 a |
Community Type | Species | Seedling Density (Seedlings/m2) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
0 (S), 0 (D) | 1% (S), 0 (D) | 2% (S), 0 (D) | 0 (S), 1% (D) | 1% (S), 1% (D) | 2% (S), 1% (D) | 0 (S), 2% (D) | 1% (S), 2% (D) | 2% (S), 2%(D) | ||
Multi-Species Community | Phragmites australis | 4404 ± 1269 | 1165 ± 263 | 459 ± 87 | 5579 ± 1689 | 2895 ± 1654 | 630 ± 369 | 2369 ±655 | 1662 ± 251 | 678 ± 186 |
Suaeda glauca | 258 ± 65 | 153 ± 35 | 115 ± 41 | 267 ± 91 | 134 ± 59 | 105 ± 42 | 344 ± 102 | 210 ± 123 | 163 ± 29 | |
Sonchus arvensis | 363 ± 236 | 48 ± 36 | 115 ± 66 | 29 ± 18 | 124 ± 61 | 48 ± 29 | ||||
Typha orientalis | 38 ± 27 | 248 ± 171 | 19 ± 19 | 229 ± 122 | 10 ± 10 | |||||
Atriplex patens | 105 ± 80 | 96 ± 63 | 267 ± 131 | 29 ± 18 | 86 ± 74 | 29 ± 18 | 10 ± 10 | |||
Artemisia mongolica | 10976 ± 4116 | 3353 ± 1483 | 640 ± 301 | 7499 ± 3728 | 2417 ± 1006 | 564 ± 180 | 7002 ± 3459 | 2350 ± 1237 | 736 ± 421 | |
Setaria viridis | 2723 ± 1452 | 659 ± 290 | 220 ± 153 | 2025 ± 1142 | 927 ± 630 | 191 ± 191 | 2302 ± 911 | 1395 ± 489 | 115 ± 115 | |
Glycine soja | 19 ± 19 | 38 ± 16 | 10 ± 10 | 10 ± 10 | ||||||
Tripolium vulgare | 10 ± 10 | |||||||||
Artemisia fauriei | 172 ± 89 | 57 ± 37 | 67 ± 67 | |||||||
Suaeda salsa | 287 ± 250 | 325 ± 226 | 220 ± 207 | 143 ± 83 | 392 ± 366 | 229 ± 182 | 172 ± 135 | 287 ± 225 | 210 ± 150 | |
Chloris virgata | 86 ± 86 | 48 ± 48 | 57 ± 57 | 19 ± 19 | ||||||
Capsella bursa -pastoris | 10 ± 10 | |||||||||
Cirsium arvense var. integrifolium | 115 ± 102 | 86 ± 74 | ||||||||
Ixeris polycephala | 19 ± 19 | 19 ± 19 | 19 ± 11 | |||||||
Conyza canadensis | 29 ± 18 | 10 ± 10 | 29 ± 29 | |||||||
Ranunculus sceleratus | 10 ± 10 | |||||||||
Artemisia capillaris | 10 ± 10 | 29 ± 29 | ||||||||
Phragmites Australis Community | Phragmites australis | 2961 ± 571 | 1404 ± 362 | 95 ± 57 | 2293 ± 356 | 1079 ± 223 | 76 ± 27 | 2178 ± 421 | 1013 ± 123 | 191 ± 68 |
Sonchus arvensis | 105 ± 24 | 19 ± 19 | 57 ± 25 | 29 ± 18 | 10 ± 10 | 57 ± 25 | 29 ± 18 | 19 ± 19 | ||
Typha orientalis | 19 ± 11 | 29 ± 18 | ||||||||
Phragmites Australis–Suaeda Glauca Community | Phragmites australis | 1824 ± 696 | 831 ± 366 | 152 ± 128 | 1652 ± 409 | 888 ± 441 | 162 ± 83 | 1757 ± 583 | 898 ± 456 | 487 ± 231 |
Suaeda glauca | 1948 ± 801 | 2407 ± 740 | 1538 ± 508 | 2502 ± 709 | 1719 ± 510 | 1136 ± 404 | 2502 ± 986 | 1242 ± 525 | 850 ± 366 | |
Sonchus arvensis | 57 ± 37 | 10 ± 10 | 67 ± 45 | 29 ± 29 | 48 ± 48 | |||||
Typha orientalis | 19 ± 19 | 10 ± 10 | 27 ± 27 | |||||||
Suaeda salsa | 38 ± 38 | 10 ± 10 |
Community Type | Seedling Density (Seedlings/m2) | Sørensen Index |
---|---|---|
Multi-Species Community | 19.60 × 103 ± 15.90 × 103 b | 0.55 ± 0.06 a |
P. Australis Community | 3.01 × 103 ± 0.55 × 103 a | 0.54 ± 0.09 a |
P. Australis–S. Glauca Community | 3.85 × 103 ± 0.60 × 103 a | 0.75 ± 0.17 b |
Number of Germinated Species | Seedling Number | Margalef Index | Simpson Index | Shannon–Wiener Index | ||||||
---|---|---|---|---|---|---|---|---|---|---|
F | P | F | P | F | P | F | P | F | P | |
C | 282.060 | 0.000 | 36.253 | 0.000 | 159.960 | 0.000 | 206.764 | 0.000 | 110.522 | 0.000 |
S | 57.070 | 0.000 | 33.251 | 0.000 | 20.161 | 0.000 | 5.499 | 0.006 | 5.207 | 0.007 |
D | 0.169 | 0.845 | 0.627 | 0.537 | 0.338 | 0.714 | 1.586 | 0.211 | 0.348 | 0.707 |
C × S | 17.517 | 0.000 | 11.959 | 0.000 | 4.507 | 0.002 | 1.892 | 0.119 | 0.137 | 0.968 |
C × D | 0.938 | 0.446 | 0.293 | 0.882 | 1.662 | 0.166 | 0.440 | 0.779 | 0.300 | 0.877 |
S × D | 0.548 | 0.701 | 0.389 | 0.816 | 0.342 | 0.849 | 0.347 | 0.845 | 1.949 | 0.109 |
C × S × D | 0.488 | 0.862 | 0.516 | 0.841 | 0.428 | 0.901 | 0.303 | 0.963 | 0.742 | 0.655 |
Species Name | C | S | D | C × S | C × D | S × D | C × S × D |
---|---|---|---|---|---|---|---|
Phragmites australis | 0.000 | 0.000 | 0.262 | 0.067 | 0.114 | 0.326 | 0.609 |
Suaeda glauca | 0.000 | 0.031 | 0.750 | 0.055 | 0.769 | 0.650 | 0.802 |
Sonchus arvensis | 0.038 | 0.000 | 0.346 | 0.070 | 0.421 | 0.292 | 0.671 |
Typha orientalis | 0.003 | 0.000 | 0.256 | 0.001 | 0.380 | 0.339 | 0.566 |
Atriplex patens | 0.022 | 0.003 | 0.730 | 0.168 | 0.851 | 0.837 | 0.633 |
Artemisia mongolica | 0.000 | 0.000 | 0.579 | 0.000 | 0.712 | 0.886 | 0.972 |
Setaria viridis | 0.000 | 0.001 | 0.920 | 0.000 | 0.988 | 0.915 | 0.984 |
Artemisia fauriei | 0.001 | 0.001 | 0.353 | 0.000 | 0.401 | 0.384 | 0.426 |
Suaeda salsa | 0.000 | 0.701 | 0.919 | 0.804 | 0.996 | 0.992 | 0.999 |
Chloris virgata | 0.025 | 0.257 | 0.304 | 0.263 | 0.330 | 0.808 | 0.925 |
Cirsium arvense | 0.059 | 0.054 | 0.453 | 0.025 | 0.545 | 0.529 | 0.626 |
Ixeris polycephala | 0.014 | 0.222 | 0.222 | 0.214 | 0.214 | 0.551 | 0.654 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, Z.; Ge, X.; Gao, Y.; Liu, J.; Ma, Y.; Yang, X.; Meng, F. Effects of Salinity and Oil Contamination on the Soil Seed Banks of Three Dominant Vegetation Communities in the Coastal Wetland of the Yellow River Delta. Forests 2022, 13, 615. https://doi.org/10.3390/f13040615
Fu Z, Ge X, Gao Y, Liu J, Ma Y, Yang X, Meng F. Effects of Salinity and Oil Contamination on the Soil Seed Banks of Three Dominant Vegetation Communities in the Coastal Wetland of the Yellow River Delta. Forests. 2022; 13(4):615. https://doi.org/10.3390/f13040615
Chicago/Turabian StyleFu, Zhaoyang, Xiuli Ge, Yongchao Gao, Jian Liu, Yuhong Ma, Xiaodong Yang, and Fanbo Meng. 2022. "Effects of Salinity and Oil Contamination on the Soil Seed Banks of Three Dominant Vegetation Communities in the Coastal Wetland of the Yellow River Delta" Forests 13, no. 4: 615. https://doi.org/10.3390/f13040615
APA StyleFu, Z., Ge, X., Gao, Y., Liu, J., Ma, Y., Yang, X., & Meng, F. (2022). Effects of Salinity and Oil Contamination on the Soil Seed Banks of Three Dominant Vegetation Communities in the Coastal Wetland of the Yellow River Delta. Forests, 13(4), 615. https://doi.org/10.3390/f13040615