Understanding Socio-Economic and Environmental Impacts of Agroforestry on Rural Communities
Abstract
1. Introduction
2. Characteristics of Agroforestry Adoption in Developing Countries
3. Digging Deeper into the Impacts of Agroforestry for Rural Communities
3.1. Socio-Economic Impacts of Agroforestry
3.2. Environmental Impacts of Agroforestry
Aspect | Impact Description | Type of Impact | Reference |
---|---|---|---|
Economic |
| Positive | [64,65] |
| Positive | [23] | |
| Positive | [9,19] | |
| Negative | [66] | |
| Negative | [46] | |
Social |
| Positive | [21] |
| Positive | [21,67] | |
| Positive | [46] | |
| Positive | [45] | |
| Positive | [68] | |
| Negative | [46] | |
Environment |
| Positive | [7,54] |
| Positive | [54] | |
| Positive | [7,51] | |
| Positive | [69] | |
| Positive | [17] | |
| Positive | [11,69] | |
| Negative | [46] | |
| Negative | [70] | |
| Negative | [66,71] |
4. Setting Up a Baseline: Revisiting the Research Gap on Agroforestry Impact Assessment
5. Challenge and Future Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dai, A.; Zhao, T.; Chen, J. Climate Change and Drought: A Precipitation and Evaporation Perspective. Curr. Clim. Change Rep. 2018, 4, 301–312. [Google Scholar] [CrossRef]
- Tabari, H. Climate change impact on flood and extreme precipitation increases with water availability. Sci. Rep. 2020, 10, 13768. [Google Scholar] [CrossRef] [PubMed]
- Kukal, M.S.; Irmak, S. Climate-driven crop yield and yield variability and climate change impacts on the U.S. great plains agricultural production. Sci. Rep. 2018, 8, 3450. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Vanga, S.K.; Saxena, R.; Orsat, V.; Raghavan, V. Effect of Climate Change on the Yield of Cereal Crops: A Review. Climate 2018, 6, 41. [Google Scholar] [CrossRef]
- Han, M.; Zhu, B. Changes in soil greenhouse gas fluxes by land use change from primary forest. Glob. Change Biol. 2020, 26, 2656–2667. [Google Scholar] [CrossRef] [PubMed]
- Persha, L.; Fischer, H.; Chhatre, A.; Agrawal, A.; Benson, C. Biodiversity conservation and livelihoods in human-dominated landscapes: Forest commons in South Asia. Biol. Conserv. 2010, 143, 2918–2925. [Google Scholar] [CrossRef]
- Dollinger, J.; Jose, S. Agroforestry for soil health. Agrofor. Syst. 2018, 92, 213–219. [Google Scholar] [CrossRef]
- Amare, D.; Wondie, M.; Mekuria, W.; Darr, D. Agroforestry of Smallholder Farmers in Ethiopia: Practices and Benefits. Small-Scale For. 2019, 18, 39–56. [Google Scholar] [CrossRef]
- Martinelli, G.D.C.; Schlindwein, M.M.; Padovan, M.P.; Vogel, E.; Ruviaro, C.F. Environmental performance of agroforestry systems in the Cerrado biome, Brazil. World Dev. 2019, 122, 339–348. [Google Scholar] [CrossRef]
- Mbow, C.; Van Noordwijk, M.; Luedeling, E.; Neufeldt, H.; Minang, P.A.; Kowero, G. Agroforestry solutions to address food security and climate change challenges in Africa. Curr. Opin. Environ. Sustain. 2014, 6, 61–67. [Google Scholar] [CrossRef]
- Méndez, V.E.; Tanzi, S.C. Livelihood and Environmental Trade-Offs of Climate Mitigation in Smallholder Coffee Agroforestry Systems; Routledge: London, UK, 2011. [Google Scholar]
- Mosquera-Losada, M.R.; McAdam, J.H.; Romero-Franco, R.; Santiago-Freijanes, J.J.; Rigueiro-Rodróguez, A. Rigueiro Rodróguez Definitions and Components of Agroforestry Practices in Europe; Springer: Berlin, Germany, 2008; ISBN 9781402082719. [Google Scholar]
- Santoro, A.; Venturi, M.; Bertani, R.; Agnoletti, M. A Review of the Role of Forests and Agroforestry Systems in the FAO Globally Important Agricultural Heritage Systems (GIAHS) Programme. Forests 2020, 11, 860. [Google Scholar] [CrossRef]
- Bai, X.; Huang, Y.; Ren, W.; Coyne, M.; Jacinthe, P.-A.; Tao, B.; Hui, D.; Yang, J.; Matocha, C. Responses of soil carbon sequestration to climate-smart agriculture practices: A meta-analysis. Glob. Change Biol. 2019, 25, 2591–2606. [Google Scholar] [CrossRef]
- Kalaba, K.F.; Chirwa, P.; Syampungani, S.; Ajayi, C.O. Contribution of Agroforestry to Biodiversity and Livelihoods Improvement in Rural Communities of Southern African Regions. In Environmental Science and Engineering; Springer: Berlin/Heidelberg, Germany, 2010; pp. 461–476. [Google Scholar] [CrossRef]
- Assogbadjo, A.E.; Kakaï, R.G.; Vodouhê, F.G.; Djagoun, C.A.M.S.; Codjia, J.T.C.; Sinsin, B. Biodiversity and socioeconomic factors supporting farmers’ choice of wild edible trees in the agroforestry systems of Benin (West Africa). For. Policy Econ. 2012, 14, 41–49. [Google Scholar] [CrossRef]
- Santos, P.Z.F.; Crouzeilles, R.; Sansevero, J.B.B. Can agroforestry systems enhance biodiversity and ecosystem service provision in agricultural landscapes? A meta-analysis for the Brazilian Atlantic Forest. For. Ecol. Manag. 2019, 433, 140–145. [Google Scholar] [CrossRef]
- Browder, J.O.; Wynne, R.H.; Pedlowski, M.A. Agroforestry diffusion and secondary forest regeneration in the Brazilian Amazon: Further findings from the Rondônia Agroforestry Pilot Project (1992–2002). Agrofor. Syst. 2005, 65, 99–111. [Google Scholar] [CrossRef]
- Maia, A.G.; Eusebio, G.D.S.; Fasiaben, M.D.C.R.; Moraes, A.S.; Assad, E.D.; Pugliero, V.S. The economic impacts of the diffusion of agroforestry in Brazil. Land Use Policy 2021, 108, 105489. [Google Scholar] [CrossRef]
- Duffy, C.; Toth, G.G.; Hagan, R.P.O.; McKeown, P.C.; Rahman, S.A.; Widyaningsih, Y.; Sunderland, T.C.H.; Spillane, C. Agroforestry contributions to smallholder farmer food security in Indonesia. Agrofor. Syst. 2021, 95, 1109–1124. [Google Scholar] [CrossRef]
- Kiptot, E.; Franzel, S.; Degrande, A. Gender, agroforestry and food security in Africa. Curr. Opin. Environ. Sustain. 2014, 6, 104–109. [Google Scholar] [CrossRef]
- McGinty, M.M.; Swisher, M.E.; Alavalapati, J. Agroforestry adoption and maintenance: Self-efficacy, attitudes and socio-economic factors. Agrofor. Syst. 2008, 73, 99–108. [Google Scholar] [CrossRef]
- Iskandar, J.; Iskandar, B.S.; Partasasmita, R. Responses to environmental and socio-economic changes in the Karangwangi traditional agroforestry system, South Cianjur, West Java. Biodiversitas 2016, 17, 332–341. [Google Scholar] [CrossRef]
- Beyene, A.D.; Mekonnen, A.; Randall, B.; Deribe, R. Household Level Determinants of Agroforestry Practices Adoption in Rural Ethiopia. For. Trees Livelihoods 2019, 28, 194–213. [Google Scholar] [CrossRef]
- Bishaw, B.; Neufeldt, H.; Mowo, J.; Abdelkadir, A.; Muriuki, J.; Dalle, G.; Assefa, T.; Guillozet, K.; Kassa, H.; Dawson, I.K.; et al. Farmers’ Strategies for Adapting to and Mitigating Climate Variability and Change through Agroforestry in Ethiopia and Kenya; Forestry Communications Group: Corvallis, OR, USA, 2013. [Google Scholar]
- Beddington, J.R.; Asaduzzaman, M.; Clark, M.E.; Fernández Bremauntz, A.; Guillou, M.D.; Howlett, D.J.B.; Jahn, M.M.; Lin, E.; Mamo, T.; Negra, C.; et al. Agriculture: What next for Agriculture after Durban? Science 2012, 335, 289–290. [Google Scholar] [CrossRef] [PubMed]
- Kiptot, E.; Hebinck, P.; Franzel, S.; Richards, P. Adopters, testers or pseudo-adopters? Dynamics of the use of improved tree fallows by farmers in western Kenya. Agric. Syst. 2007, 94, 509–519. [Google Scholar] [CrossRef]
- Diao, X.; Hazell, P.; Thurlow, J. The Role of Agriculture in African Development. World Dev. 2010, 38, 1375–1383. [Google Scholar] [CrossRef]
- Soler, R.; Peri, P.L.; Bahamonde, H.A.; Gargaglione, V.; Ormaechea, S.; Herrera, A.H.; Jardón, L.S.; Lorenzo, C.; Pastur, G.J.M. Assessing Knowledge Production for Agrosilvopastoral Systems in South America. Rangel. Ecol. Manag. 2018, 71, 637–645. [Google Scholar] [CrossRef]
- Oliveira-Neto, N.E.; Nascimento, D.R.; Carvalho, F.A. Biodiversity inventory of trees in a neotropical secondary forest after abandonment of shaded coffee plantation. iForest—Biogeosci. For. 2017, 10, 303–308. [Google Scholar] [CrossRef]
- Avellaneda-Torres, L.M.; Sicard, T.E.L.; Rojas, E.T. Impact of potato cultivation and cattle farming on physicochemical parameters and enzymatic activities of Neotropical high Andean Páramo ecosystem soils. Sci. Total Environ. 2018, 631–632, 1600–1610. [Google Scholar] [CrossRef]
- Nguyen, M.P.; Vaast, P.; Pagella, T.; Sinclair, F. Local Knowledge about Ecosystem Services Provided by Trees in Coffee Agroforestry Practices in Northwest Vietnam. Land 2020, 9, 486. [Google Scholar] [CrossRef]
- Besar, N.A.; Suardi, H.; Phua, M.-H.; James, D.; Bin Mokhtar, M.; Ahmed, M.F. Carbon Stock and Sequestration Potential of an Agroforestry System in Sabah, Malaysia. Forests 2020, 11, 210. [Google Scholar] [CrossRef]
- Abiyu, A.; Teketay, D.; Gratzer, G.; Shete, M. Tree Planting by Smallholder Farmers in the Upper Catchment of Lake Tana Watershed, Northwest Ethiopia. Small-Scale For. 2016, 15, 199–212. [Google Scholar] [CrossRef]
- Jara-Rojas, R.; Russy, S.; Roco, L.; Fleming-Muñoz, D.; Engler, A. Factors Affecting the Adoption of Agroforestry Practices: Insights from Silvopastoral Systems of Colombia. Forests 2020, 11, 648. [Google Scholar] [CrossRef]
- Torquebiau, E.F. Agronomy / Agronomie A Renewed Perspective on Agroforestry Concepts and Classification. C R Acad Sci III 2000, 11, 323. [Google Scholar] [CrossRef]
- Sinclair, F.L. A general classification of agroforestry practice. Agrofor. Syst. 1999, 46, 161–180. [Google Scholar] [CrossRef]
- Nkamleu, G.B.; Manyong, V.M. Factors affecting the adoption of agroforestry practices by farmers in Cameroon. Small-Scale For. Econ. Manag. Policy 2005, 4, 135–148. [Google Scholar] [CrossRef]
- Jezeer, R.E.; Santos, M.J.; Boot, R.G.A.; Junginger, M.; Verweij, P.A. Effects of shade and input management on economic performance of small-scale Peruvian coffee systems. Agric. Syst. 2018, 162, 179–190. [Google Scholar] [CrossRef]
- Gebru, B.M.; Wang, S.W.; Kim, S.J.; Lee, W.-K. Socio-Ecological Niche and Factors Affecting Agroforestry Practice Adoption in Different Agroecologies of Southern Tigray, Ethiopia. Sustainability 2019, 11, 3729. [Google Scholar] [CrossRef]
- Roshetko, J.M.; Rohadi, D.; Perdana, A.; Sabastian, G.; Nuryartono, N.; Pramono, A.A.; Widyani, N.; Manalu, P.; Fauzi, M.A.; Sumardamto, P.; et al. Teak agroforestry systems for livelihood enhancement, industrial timber production, and environmental rehabilitation. For. Trees Livelihoods 2013, 22, 241–256. [Google Scholar] [CrossRef]
- Wollenberg, E.; Nawir, A.A. Turning straw into gold: Specialization among damar agroforest farmers in pesisir, sumatra. For. Trees Livelihoods 2005, 15, 317–336. [Google Scholar] [CrossRef]
- Suyanto, S.; Khususiyah, N.; Leimona, B. Poverty and Environmental Services: Case Study in Way Besai Watershed, Lampung Province, Indonesia. Ecol. Soc. 2007, 12, 13. [Google Scholar] [CrossRef]
- Reynolds, P.E.; Simpson, J.A.; Thevathasan, N.V.; Gordon, A.M. Effects of tree competition on corn and soybean photosynthesis, growth, and yield in a temperate tree-based agroforestry intercropping system in southern Ontario, Canada. Ecol. Eng. 2007, 29, 362–371. [Google Scholar] [CrossRef]
- De Alcântara Laudares, S.S.; Coimbra Borges, L.A.; de Ávila, P.A.; de Oliveira, A.L.; da Silva, K.G.; de Alcântara Laudares, D.C. Sistemas Agroflorestais Como Alternativa Sustentável Para Regularização Ambiental de Ocupações Rurais Consolidadas. Cerne 2017, 23, 161–174. [Google Scholar] [CrossRef][Green Version]
- Ollinaho, O.I.; Kröger, M. Agroforestry transitions: The good, the bad and the ugly. J. Rural Stud. 2021, 82, 210–221. [Google Scholar] [CrossRef]
- Ickowitz, A.; Rowland, D.; Powell, B.; Salim, M.A.; Sunderland, T. Forests, Trees, and Micronutrient-Rich Food Consumption in Indonesia. PLoS ONE 2016, 11, e0154139. [Google Scholar] [CrossRef] [PubMed]
- Pratiwi, A.; Suzuki, A. Reducing Agricultural Income Vulnerabilities through Agroforestry Training: Evidence from a Randomised Field Experiment in Indonesia. Bull. Indones. Econ. Stud. 2019, 55, 83–116. [Google Scholar] [CrossRef]
- Sharma, N.; Bohra, B.; Pragya, N.; Ciannella, R.; Dobie, P.; Lehmann, S. Bioenergy from agroforestry can lead to improved food security, climate change, soil quality, and rural development. Food Energy Secur. 2016, 5, 165–183. [Google Scholar] [CrossRef]
- Roikhwanphut Mungmachon, M. Knowledge and Local Wisdom: Community Treasure. Int. J. Humanit. Soc. Sci. 2012, 2, 174–181. [Google Scholar]
- Shrestha, B.M.; Chang, S.X.; Bork, E.W.; Carlyle, C.N. Enrichment Planting and Soil Amendments Enhance Carbon Sequestration and Reduce Greenhouse Gas Emissions in Agroforestry Systems: A Review. Forests 2018, 9, 369. [Google Scholar] [CrossRef]
- Hossain, M.; Siddique, M.R.H.; Rahman, M.S.; Hossain, M.Z.; Hasan, M.M. Nutrient dynamics associated with leaf litter decomposition of three agroforestry tree species (Azadirachta indica, Dalbergia sissoo, and Melia azedarach) of Bangladesh. J. For. Res. 2011, 22, 577–582. [Google Scholar] [CrossRef]
- Zhang, W.; Hendrix, P.F.; Dame, L.E.; Burke, R.A.; Wu, J.; Neher, D.A.; Li, J.; Shao, Y.; Fu, S. Earthworms facilitate carbon sequestration through unequal amplification of carbon stabilization compared with mineralization. Nat. Commun. 2013, 4, 2576. [Google Scholar] [CrossRef]
- De Souza, H.N.; Goede, R.G.M.; Brussaard, L.; Cardoso, I.M.; Duarte, E.M.G.; Fernandes, R.B.A.; Gomes, L.C.; Pulleman, M.M. Protective shade, tree diversity and soil properties in coffee agroforestry systems in the Atlantic Rainforest biome. Agric. Ecosyst. Environ. 2012, 146, 179–196. [Google Scholar] [CrossRef]
- Lott, J.E.; Ong, C.K.; Black, C.R. Understorey microclimate and crop performance in a Grevillea robusta-based agroforestry system in semi-arid Kenya. Agric. For. Meteorol. 2009, 149, 1140–1151. [Google Scholar] [CrossRef]
- Caron, B.O.; Sgarbossa, J.; Schwerz, F.; Elli, E.F.; Eloy, E.; Behling, A. Dynamics of solar radiation and soybean yield in agroforestry systems. An. Acad. Bras. Cienc. 2018, 90, 3799–3812. [Google Scholar] [CrossRef] [PubMed]
- Durand-Bessart, C.; Tixier, P.; Quinteros, A.; Andreotti, F.; Rapidel, B.; Tauvel, C.; Allinne, C. Analysis of interactions amongst shade trees, coffee foliar diseases and coffee yield in multistrata agroforestry systems. Crop. Prot. 2020, 133, 105137. [Google Scholar] [CrossRef]
- Lott, J.E.; Khan, A.A.H.; Black, C.R.; Ong, C.K. Water use in a Grevillea robusta–maize overstorey agroforestry system in semi-arid Kenya. For. Ecol. Manag. 2003, 180, 45–59. [Google Scholar] [CrossRef]
- Rawls, W.J.; Pachepsky, Y.A.; Ritchie, J.C.; Sobecki, T.M.; Bloodworth, H. Effect of soil organic carbon on soil water retention. Geoderma 2003, 116, 61–76. [Google Scholar] [CrossRef]
- Bayala, J.; Prieto, I. Water acquisition, sharing and redistribution by roots: Applications to agroforestry systems. Plant Soil 2020, 453, 17–28. [Google Scholar] [CrossRef]
- Gonzalez, P.; Tucker, C.J.; Sy, H. Tree density and species decline in the African Sahel attributable to climate. J. Arid Environ. 2012, 78, 55–64. [Google Scholar] [CrossRef]
- Van der Ent, R.J.; Savenije, H.H.G.; Schaefli, B.; Steele-Dunne, S.C. Origin and fate of atmospheric moisture over continents. Water Resour. Res. 2010, 46. [Google Scholar] [CrossRef]
- Ellison, D.; Futter, M.N.; Bishop, K. On the Forest Cover-Water Yield Debate: From Demand- to Supply-Side Thinking. Glob. Change Biol. 2012, 18, 806–820. [Google Scholar] [CrossRef]
- Hakim, L.; Siswanto, D.; Rahardi, B.; Zayadi, H. Fostering Coffee Agroforestry for Agrotourism Development in Degraded Land in a Buffer Zone of a National Park: A Case Study from Poncokusumo, Malang, Indonesia. EurAsian J. Biosci. 2019, 13, 1613–1620. [Google Scholar]
- Cerda, R.; Avelino, J.; Harvey, C.A.; Gary, C.; Tixier, P.; Allinne, C. Coffee agroforestry systems capable of reducing disease-induced yield and economic losses while providing multiple ecosystem services. Crop. Prot. 2020, 134, 105149. [Google Scholar] [CrossRef]
- Wu, J.; Zeng, H.; Zhao, F.; Chen, C.; Liu, W.; Yang, B.; Zhang, W. Recognizing the role of plant species composition in the modification of soil nutrients and water in rubber agroforestry systems. Sci. Total Environ. 2020, 723, 138042. [Google Scholar] [CrossRef] [PubMed]
- Mukhlis, I. Food Security for Communities Around the Forest in Alleviating Poverty. KnE Soc. Sci. 2019, 3, 946–957. [Google Scholar] [CrossRef]
- Cahyono, E.D.; Fairuzzana, S.; Willianto, D.; Pradesti, E.; McNamara, N.P.; Rowe, R.L.; Van Noordwijk, M. Agroforestry Innovation through Planned Farmer Behavior: Trimming in Pine–Coffee Systems. Land 2020, 9, 363. [Google Scholar] [CrossRef]
- Quandt, A.; Neufeldt, H.; McCabe, J.T. The role of agroforestry in building livelihood resilience to floods and drought in semiarid Kenya. Ecol. Soc. 2017, 22, 10. [Google Scholar] [CrossRef]
- Loss, S.R.; Noden, B.H.; Fuhlendorf, S.D. Woody plant encroachment and the ecology of vector-borne diseases. J. Appl. Ecol. 2021, 59, 420–430. [Google Scholar] [CrossRef]
- Kröger, M. Contentious Agency and Natural Resource Politics; Routledge: Abingdon-on-Thames, UK, 2014. [Google Scholar] [CrossRef]
- Miller, D.C.; Ordoñez, P.J.; Brown, S.E.; Forrest, S.; Nava, N.J.; Hughes, K.; Baylis, K. The impacts of agroforestry on agricultural productivity, ecosystem services, and human well-being in low-and middle-income countries: An evidence and gap map. Campbell Syst. Rev. 2020, 16, e1066. [Google Scholar] [CrossRef]
- De Jalón, S.G.; Graves, A.; Palma, J.H.N.; Williams, A.; Upson, M.; Burgess, P.J. Modelling and valuing the environmental impacts of arable, forestry and agroforestry systems: A case study. Agrofor. Syst. 2018, 92, 1059–1073. [Google Scholar] [CrossRef]
- Kraft, P.; Rezaei, E.E.; Breuer, L.; Ewert, F.; Große-Stoltenberg, A.; Kleinebecker, T.; Seserman, D.M.; Nendel, C. Modelling Agroforestry’s Contributions to People—A Review of Available Models. Agronomy 2021, 11, 2106. [Google Scholar] [CrossRef]
- Lichtfouse, E.; Navarrete, M.; Debaeke, P.; Souchère, V.; Alberola, C. Sustainable Agriculture; Springer: Dordrecht, The Netherlands, 2009; ISBN 9789048126651. [Google Scholar]
- Paraskevopoulou, C.; Theodoridis, A.; Johnson, M.; Ragkos, A.; Arguile, L.; Smith, L.; Vlachos, D.; Arsenos, G. Sustainability Assessment of Goat and Sheep Farms: A Comparison between European Countries. Sustainability 2020, 12, 3099. [Google Scholar] [CrossRef]
- Smith, L.G.; Westaway, S.; Mullender, S.; Ghaley, B.B.; Xu, Y.; Lehmann, L.M.; Pisanelli, A.; Russo, G.; Borek, R.; Wawer, R.; et al. Assessing the multidimensional elements of sustainability in European agroforestry systems. Agric. Syst. 2022, 197, 103357. [Google Scholar] [CrossRef]
- Häni, F.; Stämpfli, A.; Tello, J.R.; Braga, F. Farm Sustainability Assessment using the IDEA Method. From the concept of farm sustainability to case studies on French farms. In Proceedings of the INFASA Symposium, Bern, Switzerland, 16–17 March 2006; Available online: https://hal.archives-ouvertes.fr/hal-02278989 (accessed on 24 March 2022).
- Porsche, H.; Fischer, M.; Braga, F.; Häni, F. Introduction of the Sustainability Assessment Tool RISE into Canadian Agriculture. J. Univ. Guelph. 2004, 11, 11–19. [Google Scholar]
- Grenz, J.; Thalmann, C.; Stämpfli, A.; Studer, C.; Häni, F. Rise, a Method for Assessing the Sustainability of Agricultural Production at Farm Level. Available online: https://www.hafl.bfh.ch/fileadmin/docs/Forschung_Dienstleistungen/Agrarwissenschaften/Nachhaltigkeitsbeurteilung/RISE/Publikationen/E_RDN_1_2009.pdf (accessed on 24 March 2022).
- Heredia-R, M.; Torres, B.; Cayambe, J.; Ramos, N.; Luna, M.; Diaz-Ambrona, C.G.H. Sustainability Assessment of Smallholder Agroforestry Indigenous Farming in the Amazon: A Case Study of Ecuadorian Kichwas. Agronomy 2020, 10, 1973. [Google Scholar] [CrossRef]
- FAO. Safa Sustainability Assessment of Food and Agriculture Systems Guidelines. Available online: http://www.fao.org/3/a-i3957e.pdf (accessed on 24 March 2022).
- Dhiman, R. Status and Impact of Commercial Agroforestry in India; Indian Society of Agroforestry: Jhansi, India, 2013. [Google Scholar]
- Nagendra, H. Drivers of Reforestation in Human-Dominated Forests. Proc. Natl. Acad. Sci. USA 2007, 104, 15218–15223. [Google Scholar] [CrossRef] [PubMed]
- Meinzen-Dick, R. Beyond panaceas in water institutions. Proc. Natl. Acad. Sci. USA 2007, 104, 15200–15205. [Google Scholar] [CrossRef] [PubMed]
- Western, D.; Wright, R.M.; Strum, S.C. Natural Connections Perspectives in Community-Based Conservation; Shirley, C., Ed.; Island Press: Washington, DC, USA, 1994; ISBN 1-55963-802-8. [Google Scholar]
- Barton, D.; Klepeis, P. Deforestation, Forest Transitions, and Institutions for Sustainability in Southeastern Mexico, 1900–2000. Environ. Hist. 2005, 11, 194–223. [Google Scholar]
- Ostrom, E. The Economic Analysis of Institutions Ions and the Environment; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Aoki, M. Toward a Comparative Institutional Analysis; MIT Press: Cambridge, MA, USA, 2001; ISBN 0-262-26721-7. [Google Scholar]
- Ostrom, E. Governing the Commons: The Evolution of Institutions for Collective Action; Canto Classics; Cambridge University Press: Cambridge, UK, 2015; ISBN 1-316-45536-X. [Google Scholar]
- Binam, J.N.; Place, F.; Djalal, A.A.; Kalinganire, A. Effects of local institutions on the adoption of agroforestry innovations: Evidence of farmer managed natural regeneration and its implications for rural livelihoods in the Sahel. Agric. Food Econ. 2017, 5, 2. [Google Scholar] [CrossRef]
Type of Practice | Description |
---|---|
Silvoarable | Trees are inter-cropped with annual or perennial crops. It comprises alley cropping, scattered trees and line belts. |
Silvopastoral | Combining trees with forage and animal production. It comprises forest or woodland grazing and open forest trees. |
Agro-silvopastoral | Combining trees with annual crops and animal production, but the arable and livestock components are usually temporally and spatially distinct. |
Multipurpose trees | Fruit and other trees are planted in cropland or pasture for the purpose of providing fruit, fuelwood, fodder and timber, among other services. |
Riparian buffer | Strips of perennial vegetation (tree/shrub/grass) natural or planted between croplands/pastures and water sources such as streams, lakes, wetlands and ponds to protect water quality. |
Improve fallow | Fast growing, preferably leguminous woody species planted during the fallow phase of shifting cultivation. This species can also improve soil fertility and may yield economic products. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mukhlis, I.; Rizaludin, M.S.; Hidayah, I. Understanding Socio-Economic and Environmental Impacts of Agroforestry on Rural Communities. Forests 2022, 13, 556. https://doi.org/10.3390/f13040556
Mukhlis I, Rizaludin MS, Hidayah I. Understanding Socio-Economic and Environmental Impacts of Agroforestry on Rural Communities. Forests. 2022; 13(4):556. https://doi.org/10.3390/f13040556
Chicago/Turabian StyleMukhlis, Imam, Muhammad Syamsu Rizaludin, and Isnawati Hidayah. 2022. "Understanding Socio-Economic and Environmental Impacts of Agroforestry on Rural Communities" Forests 13, no. 4: 556. https://doi.org/10.3390/f13040556
APA StyleMukhlis, I., Rizaludin, M. S., & Hidayah, I. (2022). Understanding Socio-Economic and Environmental Impacts of Agroforestry on Rural Communities. Forests, 13(4), 556. https://doi.org/10.3390/f13040556