Productivity and Seasonality Drive Total Soil Respiration in Semi-Arid Juniper Woodlands (Juniperus thurifera L., Southern Spain)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Measurement of Soil CO2 Efflux
2.3. Microclimatic Conditions and Organic Matter in Soils: Measurement of the Soil Temperature (Ts, °C), Soil Water Content (Sw, %), and Soil Organic C (%)
2.4. Data Analysis
3. Results
3.1. Effects of Juniper Woodland Type on Soil CO2 Efflux
3.2. Seasonal Variation of Soil CO2 Efflux in the Juniper Woodlands
3.3. Microclimatic Conditions and Organic Matter: Soil Temperature (Ts, °C), Soil Water Content (Sw, %), and Soil Organic C (%)
3.4. Seasonal Effects of Soil Temperature and Soil Water Content on Soil CO2 Efflux
4. Discussion
4.1. Effects of Juniper Woodland Type and Seasonality on Soil CO2 Efflux
4.2. Effects of Soil Temperature and Soil Water on Soil CO2 Efflux
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Teskey, R.O.; Saveyn, A.; Steppe, K.; McGuire, M.A. Origin, fate and significance of CO2 in tree stems. New Phytol. 2008, 177, 17–32. [Google Scholar] [CrossRef] [PubMed]
- Bond-Lamberty, B. New Techniques and Data for Understanding the Global Soil Respiration Flux. Earth’s Future 2018, 6, 1176–1180. [Google Scholar] [CrossRef] [Green Version]
- Landsberg, J.J.; Gower, S.T. Applications of Physiological Ecology to Forest Management; Academic Press: San Diego, CA, USA, 1997. [Google Scholar]
- Bond-Lamberty, B.; Wang, C.; Gower, S.T. A global relationship between the heterotrophic and autotrophic components of soil respiration? Glob. Chang. Biol. 2004, 10, 1756–1766. [Google Scholar] [CrossRef]
- Zhao, J.-F.; Liao, Z.-Y.; Yang, L.-Y.; Shi, J.-K.; Tan, Z.-H. Characteristics of Soil Respiration and Its Components of a Mixed Dipterocarp Forest in China. Forests 2021, 12, 1159. [Google Scholar] [CrossRef]
- Gower, S.T. Patterns and Mechanisms of the Forest Carbon Cycle. Annu. Rev. Environ. Resour. 2003, 28, 169–204. [Google Scholar] [CrossRef]
- Jiao, Z.; Wang, X. Contrasting Rhizospheric and Heterotrophic Components of Soil Respiration during Growing and Non-Growing Seasons in a Temperate Deciduous Forest. Forests 2019, 10, 8. [Google Scholar] [CrossRef] [Green Version]
- Waring, R.; Running, S. Forest Ecosystems. Analysis at Multiple Scales, 3rd ed.; Academic Press: San Diego, CA, USA, 2007; p. 440. [Google Scholar]
- Damesin, C.; Ceschia, E.; Le Goff, N.; Ottorini, J.M.; Dufrêne, E. Stem and branch respiration of beech: From tree measurements to estimations at the stand level. New Phytol. 2002, 153, 159–172. [Google Scholar] [CrossRef]
- Han, M.; Jin, G. Seasonal variations of Q10 soil respiration and its components in the temperate forest ecosystems, northeastern China. Eur. J. Soil Biol. 2018, 85, 36–42. [Google Scholar] [CrossRef]
- Xu, B.; Yang, Y.; Li, P.; Shen, H.; Fang, J. Global patterns of ecosystem carbon flux in forests: A biometric data-based synthesis. Glob. Biogeochem. Cycles 2014, 28, 962–973. [Google Scholar] [CrossRef]
- Azizi-Rad, M.; Guggenberger, G.; Ma, Y.; Sierra, C.A. Sensitivity of soil respiration rate with respect to temperature, moisture and oxygen under freezing and thawing. Soil Biol. Biochem. 2022, 165, 108488. [Google Scholar] [CrossRef]
- Aponte, C.; Marañón, T.; García, L.V. Microbial C, N and P in soils of Mediterranean oak forests: Influence of season, canopy cover and soil depth. Biogeochemistry 2010, 101, 77–92. [Google Scholar] [CrossRef] [Green Version]
- Tang, J.; Bradford, M.A.; Carey, J.; Crowther, T.W.; Machmuller, M.B.; Mohan, J.E.; Todd-Brown, K. Chapter 8—Temperature sensitivity of soil carbon. In Ecosystem Consequences of Soil Warming; Mohan, J.E., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 175–208. [Google Scholar]
- Tedeschi, V.; Rey, A.; Manca, G.; Valentini, R.; Jarvis, P.G.; Borghetti, M. Soil respiration in a Mediterranean oak forest at different developmental stages after coppicing. Glob. Chang. Biol. 2006, 12, 110–121. [Google Scholar] [CrossRef]
- Glukhova, T.V.; Ilyasov, D.V.; Vompersky, S.E.; Golovchenko, A.V.; Manucharova, N.A.; Stepanov, A.L. Soil Respiration in Alder Swamp (Alnus glutinosa) in Southern Taiga of European Russia Depending on Microrelief. Forests 2021, 12, 496. [Google Scholar] [CrossRef]
- Wang, X.; Piao, S.; Ciais, P.; Janssens, I.A.; Reichstein, M.; Peng, S.; Wang, T. Are ecological gradients in seasonal Q10 of soil respiration explained by climate or by vegetation seasonality? Soil Biol. Biochem. 2010, 42, 1728–1734. [Google Scholar] [CrossRef]
- Davidson, E.A.; Janssens, I.A.; Luo, Y. On the variability of respiration in terrestrial ecosystems: Moving beyond Q10. Glob. Chang. Biol. 2006, 12, 154–164. [Google Scholar] [CrossRef]
- Martínez-García, E.; Dadi, T.; Rubio, E.; García-Morote, F.A.; Andrés-Abellán, M.; López-Serrano, F.R. Aboveground autotrophic respiration in a Spanish black pine forest: Comparison of scaling methods to improve component partitioning. Sci. Total Environ. 2017, 580, 1505–1517. [Google Scholar] [CrossRef]
- Raich, J.W.; Tufekciogul, A. Vegetation and soil respiration: Correlations and controls. Biogeochemistry 2000, 48, 71–90. [Google Scholar] [CrossRef]
- Sampson, D.A.; Janssens, I.A.; Curiel Yuste, J.; Ceulemans, R. Basal rates of soil respiration are correlated with photosynthesis in a mixed temperate forest. Glob. Chang. Biol. 2007, 13, 2008–2017. [Google Scholar] [CrossRef]
- Pennington, S.C.; McDowell, N.G.; Megonigal, J.P.; Stegen, J.C.; Bond-Lamberty, B. Localized basal area affects soil respiration temperature sensitivity in a coastal deciduous forest. Biogeosciences 2020, 17, 771–780. [Google Scholar] [CrossRef] [Green Version]
- Talmon, Y.; Sternberg, M.; Grünzweig, J.M. Impact of rainfall manipulations and biotic controls on soil respiration in Mediterranean and desert ecosystems along an aridity gradient. Glob. Chang. Biol. 2011, 17, 1108–1118. [Google Scholar] [CrossRef]
- Bastin, J.-F.; Berrahmouni, N.; Grainger, A.; Maniatis, D.; Mollicone, D.; Moore, R.; Patriarca, C.; Picard, N.; Sparrow, B.; Abraham, E.M.; et al. The extent of forest in dryland biomes. Science 2017, 356, 635–638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meza, F.J.; Montes, C.; Bravo-Martínez, F.; Serrano-Ortiz, P.; Kowalski, A.S. Soil water content effects on net ecosystem CO2 exchange and actual evapotranspiration in a Mediterranean semiarid savanna of Central Chile. Sci. Rep. 2018, 8, 8570. [Google Scholar] [CrossRef] [PubMed]
- Adams, R.P. The Junipers of the World: The Genus Juniperus, 4th ed.; Trafford Publishing: Victoria, BC, Canada, 2014; p. 422. [Google Scholar]
- Farjon, A. A Monograph of Cupressaceae and Sciadopitys; Royal Botanic Gardens, Kew: Richmond, Surrey, UK, 2005; p. 648. [Google Scholar]
- Mao, K.; Hao, G.; Liu, J.; Adams, R.P.; Milne, R.I. Diversification and biogeography of Juniperus (Cupressaceae): Variable diversification rates and multiple intercontinental dispersals. New Phytol. 2010, 188, 254–272. [Google Scholar] [CrossRef]
- Jiménez, J.F.; Werner, O.; Sánchez-Gómez, P.; Fernández, S.; Guerra, J. Genetic variations and migration pathway of Juniperus thurifera L. (Cupressaceae) in the western Mediterranean region. Isr. J. Plant Sci. 2003, 51, 11–22. [Google Scholar] [CrossRef]
- Costa, M.; Gómez, F.; Morla, C.; Ollero, H. Caracterización fitoecológica de los sabinares albares de la Península Ibérica. Orsis Organ. Sist. 1993, 8, 79–93. [Google Scholar]
- García López, J.M.; Allué Camacho, C. Caracterización y potencialidades fitoclimáticas de la sabina albar (Juniperus thurifera L.) en la Península Ibérica. For. Syst. Investig. Agrar. Sist. Recur. For. 2005, 14, 98–109. [Google Scholar] [CrossRef] [Green Version]
- Stocker, T.F.; Qin, D.; Plattner, G.-K.; Tignor, M.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P. IPCC, Climate Change 2013: The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- García Morote, F.A. Biomasa y Productividad de la Sabina Albar (Juniperus thurifera L.) en El Campo de Montiel (Albacete). Ph.D. Thesis, Universidad de Castilla-La Mancha, Ciudad Real, Spain, 2008. [Google Scholar]
- Garcia Morote, F.A.; Lopez Serrano, F.R.; Andres, M.; Rubio, E.; Gonzalez Jimenez, J.L.; de las Heras, J. Allometries, biomass stocks and biomass allocation in the thermophilic Spanish juniper woodlands of Southern Spain. For. Ecol. Manag. 2012, 270, 85–93. [Google Scholar] [CrossRef]
- Garcia-Morote, F.A.; Lopez-Serrano, F.R.; Andres, M.; Martinez-Garcia, E.; Lucas-Borja, M.; Dadi, T.; Candel, D.; Wic, C. Effects of woodland maturity, vegetation cover and season on enzymatic and microbial activity in thermophilic Spanish Juniper woodlands (Juniperus thurifera L.) of southern Spain. Eur. J. Soil Sci. 2012, 63, 579–591. [Google Scholar] [CrossRef]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger climate classification. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- FAO. FAO/UNESCO Soil Map of the World, Revised Legend; FAO-UNESCO: Rome, Italy, 1988. [Google Scholar]
- Domingo Santos, J.M.; Fernández de Villarán San Juan, R.; Corral Pazos de Provens, E.; Rapp Arrarás, I. Estimation of water retention capacity in soil: Corrections to the CRA pedotransfer formula. For. Syst. 2006, 15, 14–23. [Google Scholar] [CrossRef]
- Yeomans, J.C.; Bremner, J.M. A rapid and precise method for routine determination of organic carbon in soil. Commun. Soil Sci. Plant Anal. 1988, 19, 1467–1476. [Google Scholar] [CrossRef]
- Pinheiro, J.B.D.; DebRoy, S.; Sarkar, D.; R Core Team. nlme: Linear and Nonlinear Mixed Effects Models. R Package Version 3.1-155. 2022. Available online: https://CRAN.R-project.org/package=nlme (accessed on 8 March 2022).
- Xu, M.; DeBiase, T.A.; Qi, Y.; Goldstein, A.; Liu, Z. Ecosystem respiration in a young ponderosa pine plantation in the Sierra Nevada Mountains, California. Tree Physiol. 2001, 21, 309–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez-Calcerrada, J.; Martin-StPaul, N.K.; Lempereur, M.; Ourcival, J.-M.; del Rey, M.D.C.; Joffre, R.; Rambal, S. Stem CO2 efflux and its contribution to ecosystem CO2 efflux decrease with drought in a Mediterranean forest stand. Agric. For. Meteorol. 2014, 195–196, 61–72. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Piao, S.; Sun, Z.; Lin, X.; Wang, T.; Yue, C.; Yang, Y. Stand ages regulate the response of soil respiration to temperature in a Larix principis-rupprechtii plantation. Agric. For. Meteorol. 2014, 184, 179–187. [Google Scholar] [CrossRef]
- García Morote, F.A.; Andrés Abellán, M.; Rubio, E.; Pérez Anta, I.; García Saucedo, F.; López Serrano, F.R. Stem CO2 Efflux as an Indicator of Forests’ Productivity in Relict Juniper Woodlands (Juniperus thurifera L.) of Southern Spain. Forests 2021, 12, 1340. [Google Scholar] [CrossRef]
- Lavigne, M.B. Comparing stem respiration and growth of jack pine provenances from northern and southern locations. Tree Physiol. 1996, 16, 847–852. [Google Scholar] [CrossRef] [PubMed]
- Neter, J.; Kutner, M.; Wasserman, W.; Nachtsheim, C. Applied Linear Statistical Models, 4th ed.; McGraw-Hill-Irwin: Chicago, IL, USA, 1996; p. 15. 720p. [Google Scholar]
- Belsley, D.A.; Kuh, E.; Welsch, R.E. Regression Diagnostics: Identifying Influential Data and Sources of Collinearity; John Wiley & Sons, Ltd.: New York, NY, USA, 2013. [Google Scholar]
- Lal, R. Forest soils and carbon sequestration. For. Ecol. Manag. 2005, 220, 242–258. [Google Scholar] [CrossRef]
- Powlson, D.S.; Whitmore, A.P.; Goulding, K.W.T. Soil carbon sequestration to mitigate climate change: A critical re-examination to identify the true and the false. Eur. J. Soil Sci. 2011, 62, 42–55. [Google Scholar] [CrossRef]
- Hibbard, K.A.; Law, B.E.; Reichstein, M.; Sulzman, J. An analysis of soil respiration across northern hemisphere temperate ecosystems. Biogeochemistry 2005, 73, 29–70. [Google Scholar] [CrossRef]
- Maseyk, K.; Grünzweig, J.M.; Rotenberg, E.; Yakir, D.A.N. Respiration acclimation contributes to high carbon-use efficiency in a seasonally dry pine forest. Glob. Chang. Biol. 2008, 14, 1553–1567. [Google Scholar] [CrossRef]
- Zha, T.; Kellomäki, S.; Wang, K.-Y.; Ryyppö, A.; Niinistö, S. Seasonal and annual stem respiration of Scots pine trees under boreal conditions. Ann. Bot. 2004, 94, 889–896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, J.; Bolstad, P.V.; Desai, A.R.; Martin, J.G.; Cook, B.D.; Davis, K.J.; Carey, E.V. Ecosystem respiration and its components in an old-growth forest in the Great Lakes region of the United States. Agric. For. Meteorol. 2008, 148, 171–185. [Google Scholar] [CrossRef]
- Inclán, R.; Uribe, C.; De La Torre, D.; Sánchez, D.M.; Clavero, M.A.; Fernández, A.M.; Morante, R.; Cardeña, A.; Fernández, M.; Rubio, A. Carbon dioxide fluxes across the Sierra de Guadarrama, Spain. Eur. J. For. Res. 2008, 129, 93. [Google Scholar] [CrossRef] [Green Version]
- Schimel, J.P.; Weintraub, M.N. The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: A theoretical model. Soil Biol. Biochem. 2003, 35, 549–563. [Google Scholar] [CrossRef]
- Chiang, P.-N.; Yu, J.-C.; Lai, Y.-J. Soil Respiration Variation among Four Tree Species at Young Afforested Sites under the Influence of Frequent Typhoon Occurrences. Forests 2021, 12, 787. [Google Scholar] [CrossRef]
- Jia, G.m.; Cao, J.; Wang, C.; Wang, G. Microbial biomass and nutrients in soil at the different stages of secondary forest succession in Ziwulin, northwest China. For. Ecol. Manag. 2005, 217, 117–125. [Google Scholar] [CrossRef]
- Allison, V.J.; Condron, L.M.; Peltzer, D.A.; Richardson, S.J.; Turner, B.L. Changes in enzyme activities and soil microbial community composition along carbon and nutrient gradients at the Franz Josef chronosequence, New Zealand. Soil Biol. Biochem. 2007, 39, 1770–1781. [Google Scholar] [CrossRef]
- Saiz, G.; Byrne, K.A.; Butterbach-Bahl, K.; Kiese, R.; Blujdea, V.; Farrell, E.P. Stand age-related effects on soil respiration in a first rotation Sitka spruce chronosequence in central Ireland. Glob. Chang. Biol. 2006, 12, 1007–1020. [Google Scholar] [CrossRef]
- Högberg, P.; Read, D.J. Towards a more plant physiological perspective on soil ecology. Trends Ecol. Evol. 2006, 21, 548–554. [Google Scholar] [CrossRef] [PubMed]
- Querejeta Mercader, J.I.; Egerton-Warburton, L.M.; Allen, M.F. Hydraulic lift may buffer rhizosphere hyphae against the negative effects of severe soil drying in a California Oak savanna. Soil Biol. Biochem. 2007, 39, 409–417. [Google Scholar] [CrossRef]
- Ruehr, N.K.; Buchmann, N. Soil respiration fluxes in a temperate mixed forest: Seasonality and temperature sensitivities differ among microbial and root–rhizosphere respiration. Tree Physiol. 2009, 30, 165–176. [Google Scholar] [CrossRef] [Green Version]
- Janssens, I.A.; Dore, S.; Epron, D.; Lankreijer, H.; Buchmann, N.; Longdoz, B.; Brossaud, J.; Montagnani, L. Climatic Influences on Seasonal and Spatial Differences in Soil CO2 Efflux. In Fluxes of Carbon, Water and Energy of European Forests; Valentini, R., Ed.; Ecological Studies (Analysis and Synthesis); Springer: Berlin/Heidelberg, Germany, 2003; Volume 163, pp. 235–255. [Google Scholar]
- Soil Respiration and the Environment; Luo, Y.; Zhou, X. (Eds.) Academic Press: Burlington, MA, USA, 2006; p. 305. [Google Scholar]
- Reichstein, M.; Tenhunen, J.D.; Roupsard, O.; Ourcival, J.-M.; Rambal, S.; Miglietta, F.; Peressotti, A.; Pecchiari, M.; Tirone, G.; Valentini, R. Severe drought effects on ecosystem CO2 and H2O fluxes at three Mediterranean evergreen sites: Revision of current hypotheses? Glob. Chang. Biol. 2002, 8, 999–1017. [Google Scholar] [CrossRef]
- Rey, A.; Pegoraro, E.; Tedeschi, V.; De Parri, I.; Jarvis, P.G.; Valentini, R. Annual variation in soil respiration and its components in a coppice oak forest in Central Italy. Glob. Chang. Biol. 2002, 8, 851–866. [Google Scholar] [CrossRef]
- Sancho, A.J.J.; Stephanie, B.; Kenneth, A.B. Partitioning of soil respiration in a first rotation beech plantation. Biol. Environ. Proc. R. Ir. Acad. 2017, 117, 91–105. [Google Scholar] [CrossRef]
- Moyano, F.E.; Manzoni, S.; Chenu, C. Responses of soil heterotrophic respiration to moisture availability: An exploration of processes and models. Soil Biol. Biochem. 2013, 59, 72–85. [Google Scholar] [CrossRef]
- Fernández-Alonso, M.J.; Díaz-Pinés, E.; Ortiz, C.; Rubio, A. Disentangling the effects of tree species and microclimate on heterotrophic and autotrophic soil respiration in a Mediterranean ecotone forest. For. Ecol. Manag. 2018, 430, 533–544. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Wang, H.; Zu, Y.; Li, X.; Koike, T. Characteristics of the temperature coefficient, Q10, for the respiration of non-photosynthetic organs and soils of forest ecosystems. Front. For. China 2006, 1, 125–135. [Google Scholar] [CrossRef]
- Ryan, M.G.; Gower, S.T.; Hubbard, R.M.; Waring, R.H.; Gholz, H.L.; Cropper, W.P.; Running, S.W. Woody tissue maintenance respiration of four conifers in contrasting climates. Oecologia 1995, 101, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Calcerrada, J.; Salomón, R.L.; Gordaliza, G.G.; Miranda, J.C.; Miranda, E.; de la Riva, E.G.; Gil, L. Respiratory costs of producing and maintaining stem biomass in eight co-occurring tree species. Tree Physiol. 2019, 39, 1838–1854. [Google Scholar] [CrossRef]
Characteristics | Young Woodland | Mature Woodland |
---|---|---|
Vegetation 1 | ||
Mean age (years) | 66 ± 4 | 170 ± 5 |
Woodland density (trees ha−1) | 308 ± 40 | 95 ± 12 |
Juniper cover (%) | 65 ± 23 | 32 ± 14 |
Total biomass (t ha−1) | 30.8 ± 2.6 | 7.6 ± 0.6 |
Net Primary Productivity (NPP, t ha−1 year−1) | 1.91 ± 0.14 | 0.44 ± 0.01 |
Litter fall (t ha−1 year−1) | 0.98 ± 0.13 | 0.24 ± 0.05 |
LAI (m2 m−2) | 1.03 | 0.32 |
Soils 2 | ||
Soil taxonomy (FAO [37]) | Calcaric cambisol | Lithic leptosol |
Mean soil depth (m) | 0.42 ± 0.04 | 0.10 ± 0.02 |
Soil pH | 8.3 ± 0.1 | 8.6 ± 0.1 |
Soil texture (sand, %) | 50 ± 5 | 58 ± 5 |
Soil texture (clay, %) | 28 ± 1 | 12 ± 1 |
Bulk density (g cm−3) | 1.37 ± 0.1 | 1.54 ± 0.2 |
Water storage capacity (mm) | 137.1 | 20.5 |
Effects | df | F-Value | p-Value |
---|---|---|---|
Intercept | 1 | 459.7 | <0.0001 |
Woodland (W) | 1 | 7.8 | 0.0061 |
Date (D) | 16 | 21.9 | <0.0001 |
W × D | 16 | 1.8 | 0.0283 |
Years | Seasons | p | |||||||
---|---|---|---|---|---|---|---|---|---|
2016 | Spring | 0.52 ± 0.08 | n.s. | 0.26 ± 0.06 | n.s. | n.s. | n.s. | 0.00 | 36.2 |
Summer | 0.40 ± 0.08 | n.s. | n.s. | n.s. | n.s. | 0.60 ± 0.15 | 0.00 | 45.4 | |
Autumn | 0.09 ± 0.01 | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | - | |
Yearly (2016) | 0.47 ± 0.04 | n.s. | n.s. | 0.21 ± 0.05 | n.s. | n.s. | 0.00 | 29.8 | |
2017 | Spring | 0.21 ± 0.16 | n.s. | 0.23 ± 0.09 | n.s. | n.s. | 0.11 ± 0.05 | 0.00 | 26.1 |
Summer | 0.17 ± 0.15 | 0.38 ± 0.2 | n.s. | n.s. | n.s. | n.s. | n.s. | - | |
Autumn | 0.36 ± 0.15 | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | - | |
Yearly (2017) | 0.02 ± 0.01 | n.s. | 0.20 ± 0.07 | 0.16 ± 0.06 | n.s. | n.s. | 0.00 | 26.7 | |
2018 | Winter | −0.44 ± 0.11 | n.s | n.s. | n.s. | n.s. | n.s. | n.s. | - |
Spring | −4.49 ± 1.55 | n.s. | 0.87 ± 0.06 | n.s. | 1.09 ± 0.46 | n.s. | 0.00 | 94.1 | |
2016–2018 | All data pooled | 0.16 ± 0.08 | n.s. | 0.18 ± 0.05 | 0.16 ± 0.05 | n.s. | n.s. | 0.00 | 16.7 |
Years | Seasons | Woodland | Rs (μmol CO2 m−2 s−1) | Q10 | Ts (°C) | Sw (%) |
---|---|---|---|---|---|---|
2016 | Spring | Young woodland | 1.30 | 13.7 ± 1.3 A | 9.0 ± 0.5 A | |
Mature woodland | 1.30 | 13.1 ± 0.9 A | 7.4 ± 0.4 B | |||
Summer | Young woodland | - | 23.4 ± 1.6 A | 2.2 ± 0.1 A | ||
Mature woodland | - | 24.4 ± 2.4 A | 1.7 ± 0.1 B | |||
Autumn | Young woodland | - | 10.4 ± 2.0 A | 13.2 ± 1.0 A | ||
Mature woodland | - | 10.6 ± 2.3 A | 9.2 ± 0.8 B | |||
Yearly (2016) | Young woodland | 1.23 | 15.3 ± 1.1 A | 8.3 ± 0.7 A | ||
Mature woodland | - | 15.2 ± 0.8 A | 6.5 ± 0.5 B | |||
2017 | Spring | Young woodland | 1.26 * | 19.1 ± 1.9 A | 7.8 ± 0.5 A | |
Mature woodland | 1.26 | 15.8 ± 1.3 A | 5.4 ± 0.3 B | |||
Summer | Young woodland | - | 27.8 ± 1.6 A | 1.7 ± 0.2 A | ||
Mature woodland | - | 24.3 ± 1.1 A | 0.9 ± 0.1 B | |||
Autumn | Young woodland | - | 11.1 ± 0.7 A | 13.7 ± 0.5 A | ||
Mature woodland | - | 12.0 ± 0.5 A | 10.6 ± 0.4 B | |||
Yearly (2017) | Young woodland | 1.43 | 14.1 ± 1.8 A | 13.0 ± 1.7 A | ||
Mature woodland | 1.22 | 12.4 ± 1.3 A | 10.8 ± 1.2 A | |||
2018 | Winter | Young woodland | - | 1.4 ± 0.9 A | 25.2 ± 0.7 A | |
Mature woodland | - | 1.6 ± 0.6 A | 23.8 ± 0.5 A | |||
Spring | Young woodland | 2.39 * | 18.2 ± 2.5 A | 26,7 ± 1.0 A | ||
Mature woodland | 2.39 * | 16.8 ± 1.8 A | 27.2 ± 0.7 A | |||
2016–2018 | All data pooled | Young woodland | 1.40 | 14.3 ± 0.7 A | 12.5 ± 1.1 A | |
Mature woodland | 1.20 | 15.2 ± 1.0 A | 10.7 ± 0.7 A |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morote, F.A.G.; Abellán, M.A.; Rubio, E.; García, E.M.; Saucedo, F.G.; Córdoba, M.I.P.; Serrano, F.R.L. Productivity and Seasonality Drive Total Soil Respiration in Semi-Arid Juniper Woodlands (Juniperus thurifera L., Southern Spain). Forests 2022, 13, 538. https://doi.org/10.3390/f13040538
Morote FAG, Abellán MA, Rubio E, García EM, Saucedo FG, Córdoba MIP, Serrano FRL. Productivity and Seasonality Drive Total Soil Respiration in Semi-Arid Juniper Woodlands (Juniperus thurifera L., Southern Spain). Forests. 2022; 13(4):538. https://doi.org/10.3390/f13040538
Chicago/Turabian StyleMorote, Francisco Antonio García, Manuela Andrés Abellán, Eva Rubio, Eduardo Martínez García, Francisco García Saucedo, Marta Isabel Picazo Córdoba, and Francisco Ramón López Serrano. 2022. "Productivity and Seasonality Drive Total Soil Respiration in Semi-Arid Juniper Woodlands (Juniperus thurifera L., Southern Spain)" Forests 13, no. 4: 538. https://doi.org/10.3390/f13040538
APA StyleMorote, F. A. G., Abellán, M. A., Rubio, E., García, E. M., Saucedo, F. G., Córdoba, M. I. P., & Serrano, F. R. L. (2022). Productivity and Seasonality Drive Total Soil Respiration in Semi-Arid Juniper Woodlands (Juniperus thurifera L., Southern Spain). Forests, 13(4), 538. https://doi.org/10.3390/f13040538