Does Vertical Greening Really Play Such a Big Role in an Indoor Thermal Environment?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Analytical Scenarios
2.2. Simulation Tools
2.3. Data Resources
3. Results and Discussion
3.1. Cooling Differences of Greening Scenarios in Each Month
3.2. Daily Distribution of an Indoor Thermal Environment around the Year
4. Conclusions
- (1)
- In this study, the window and door are closed where the building was treated as zero ventilation and zero infiltration. If the buildings are ventilated or infiltrated, what will the results be?
- (2)
- The greening adopted here is modular greening. If other modes of greening are adopted, what will the results be?
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eisenman, T.S.; Churkina, G.; Jariwala, S.P.; Kumar, P.; Lovasi, G.S.; Pataki, D.E.; Weinberger, K.R.; Whitlow, T.H. Urban trees, air quality, and asthma: An interdisciplinary review. Landsc. Urban Plan. 2019, 187, 47–59. [Google Scholar] [CrossRef]
- Shams, Z.I. Changes in diversity and composition of flora along a corridor of different land uses in Karachi over 20 years: Causes and implications. Urban For. Urban Green. 2016, 17, 71–79. [Google Scholar] [CrossRef]
- Ren, Z.; He, X.; Zheng, H.; Zhang, D.; Yu, X.; Shen, G.; Guo, R. Estimation of the relationship between urban park characteristics and park cool island intensity by remote sensing data and field measurement. Forests 2013, 4, 868–886. [Google Scholar] [CrossRef] [Green Version]
- Tiwary, A.; Godsmark, K.; Smethurst, J. Field evaluation of precipitation interception potential of green façades. Ecol. Eng. 2018, 122, 69–75. [Google Scholar] [CrossRef]
- Widiastuti, R.; Zaini, J.; Caesarendra, W. Field measurement on the model of green facade systems and its effect to building indoor thermal comfort. Measurement 2020, 166, 108212. [Google Scholar] [CrossRef]
- Stanley, C.H.; Helletsgruber, C.; Hof, A. Mutual Influences of Urban Microclimate and Urban Trees: An Investigation of Phenology and Cooling Capacity. Forests 2019, 10, 533. [Google Scholar] [CrossRef] [Green Version]
- Coccolo, S.; Kämpf, J.; Mauree, D.; Scartezzini, J.-L. Cooling potential of greening in the urban environment, a step further towards practice. Sustain. Cities Soc. 2018, 38, 543–559. [Google Scholar] [CrossRef]
- Li, J.; Zheng, B.; Shen, W.; Xiang, Y.; Chen, X.; Qi, Z. Cooling and energy-saving performance of different green wall design: A simulation study of a block. Energies 2019, 12, 2912. [Google Scholar] [CrossRef] [Green Version]
- Balany, F.; Ng, A.W.; Muttil, N.; Muthukumaran, S.; Wong, M.S. Green infrastructure as an urban heat island mitigation strategy—A review. Water 2020, 12, 3577. [Google Scholar] [CrossRef]
- Vivian, J.; Chiodarelli, U.; Emmi, G.; Zarrella, A. A sensitivity analysis on the heating and cooling energy flexibility of residential buildings. Sustain. Cities Soc. 2020, 52, 101815. [Google Scholar] [CrossRef]
- Zhang, L.; Deng, Z.; Liang, L.; Zhang, Y.; Meng, Q.; Wang, J.; Santamouris, M. Thermal behavior of a vertical green facade and its impact on the indoor and outdoor thermal environment. Energy Build. 2019, 204, 109502. [Google Scholar] [CrossRef]
- Medl, A.; Stangl, R.; Florineth, F. Vertical greening systems—A review on recent technologies and research advancement. Build. Environ. 2017, 125, 227–239. [Google Scholar] [CrossRef]
- Morakinyo, T.E.; Lai, A.; Lau, K.K.-L.; Ng, E. Thermal benefits of vertical greening in a high-density city: Case study of Hong Kong. Urban For. Urban Green. 2019, 37, 42–55. [Google Scholar] [CrossRef]
- Zhou, W.; Cao, F.; Wang, G. Effects of spatial pattern of forest vegetation on urban cooling in a compact megacity. Forests 2019, 10, 282. [Google Scholar] [CrossRef] [Green Version]
- Raji, B.; Tenpierik, M.J.; van den Dobbelsteen, A. The impact of greening systems on building energy performance: A literature review. Renew. Sustain. Energy Rev. 2015, 45, 610–623. [Google Scholar] [CrossRef] [Green Version]
- Moya, T.A.; van den Dobbelsteen, A.; Ottele, M.; Bluyssen, P.M. A review of green systems within the indoor environment. Indoor Built Environ. 2019, 28, 298–309. [Google Scholar] [CrossRef]
- Olivieri, F.; Olivieri, L.; Neila, J. Experimental study of the thermal-energy performance of an insulated vegetal façade under summer conditions in a continental mediterranean climate. Build. Environ. 2014, 77, 61–76. [Google Scholar] [CrossRef]
- Fernández-Cañero, R.; Urrestarazu, L.P.; Franco Salas, A. Assessment of the cooling potential of an indoor living wall using different substrates in a warm climate. Indoor Built Environ. 2012, 21, 642–650. [Google Scholar] [CrossRef]
- Coma, J.; Pérez, G.; Solé, C.; Castell, A.; Cabeza, L.F. New green facades as passive systems for energy savings on buildings. Energy Procedia 2014, 57, 1851–1859. [Google Scholar] [CrossRef] [Green Version]
- Haggag, M.; Hassan, A.; Elmasry, S. Experimental study on reduced heat gain through green façades in a high heat load climate. Energy Build. 2014, 82, 668–674. [Google Scholar] [CrossRef]
- Seyam, S. The impact of greenery systems on building energy: Systematic review. J. Build. Eng. 2019, 26, 100887. [Google Scholar] [CrossRef]
- Chen, Q.; Li, B.; Liu, X. An experimental evaluation of the living wall system in hot and humid climate. Energy Build. 2013, 61, 298–307. [Google Scholar] [CrossRef]
- Bhatia, A.; Sangireddy, S.A.R.; Garg, V. An approach to calculate the equivalent solar heat gain coefficient of glass windows with fixed and dynamic shading in tropical climates. J. Build. Eng. 2019, 22, 90–100. [Google Scholar] [CrossRef]
- Kumar, K.; Saboor, S.; Kumar, V.; Kim, K.-H.; Ashok Babu, T.P. Experimental and theoretical studies of various solar control window glasses for the reduction of cooling and heating loads in buildings across different climatic regions. Energy Build. 2018, 173, 326–336. [Google Scholar]
- Hami, A.; Abdi, B.; Zarehaghi, D.; Maulan, S.B. Assessing the thermal comfort effects of green spaces: A systematic review of methods, parameters, and plants’ attributes. Sustain. Cities Soc. 2019, 49, 101634. [Google Scholar] [CrossRef]
- Yang, F.; Yuan, F.; Qian, F.; Zhuang, Z.; Yao, J. Summertime thermal and energy performance of a double-skin green facade: A case study in Shanghai. Sustain. Cities Soc. 2018, 39, 43–51. [Google Scholar] [CrossRef]
- Daemei, A.B.; Azmoodeh, M.; Zamani, Z.; Khotbehsara, E.M. Experimental and simulation studies on the thermal behavior of vertical greenery system for temperature mitigation in urban spaces. J. Build. Eng. 2018, 20, 277–284. [Google Scholar] [CrossRef]
- Liao, J.; Tan, X.; Li, J. Evaluating the vertical cooling performances of urban vegetation scenarios in a residential environment. J. Build. Eng. 2021, 39, 102313. [Google Scholar] [CrossRef]
- Forouzandeh, A. Prediction of surface temperature of building surrounding envelopes using holistic microclimate ENVI-met model. Sustain. Cities Soc. 2021, 70, 102878. [Google Scholar] [CrossRef]
- Tsoka, S.; Tsikaloudaki, A.; Theodosiou, T. Analyzing the ENVI-met microclimate model’s performance and assessing cool materials and urban vegetation applications—A review. Sustain. Cities Soc. 2018, 43, 55–76. [Google Scholar] [CrossRef]
- Laaha, G.; Skøien, J.O.; Nobilis, F.; Blöschl, G. Spatial prediction of stream temperatures using Top-kriging with an external drift. Environ. Model. Assess. 2013, 18, 671–683. [Google Scholar] [CrossRef] [Green Version]
- Chaoqun, C. Researches on application of the renewable energy technologies in the development of low-carbon rural tourism. Energy Procedia 2011, 5, 1722–1726. [Google Scholar] [CrossRef] [Green Version]
- Mi, X.; Liu, R.; Cui, H.; Memon, S.A.; Xing, F.; Lo, Y. Energy and economic analysis of building integrated with PCM in different cities of China. Appl. Energy 2016, 175, 324–336. [Google Scholar] [CrossRef]
- Mohajerani, A.; Bakaric, J.; Jeffrey-Bailey, T. The urban heat island effect, its causes, and mitigation, with reference to the thermal properties of asphalt concrete. J. Environ. Manag. 2017, 197, 522–538. [Google Scholar] [CrossRef]
- Ng, E.; Ren, C. China’s adaptation to climate & urban climatic changes: A critical review. Urban Clim. 2018, 23, 352–372. [Google Scholar] [PubMed]
- Osman, M.M.; Sevinc, H. Adaptation of climate-responsive building design strategies and resilience to climate change in the hot/arid region of Khartoum, Sudan. Sustain. Cities Soc. 2019, 47, 101429. [Google Scholar] [CrossRef]
- Priya, U.K.; Senthil, R. A review of the impact of the green landscape interventions on the urban microclimate of tropical areas. Build. Environ. 2021, 205, 108190. [Google Scholar] [CrossRef]
- Li, J.; Zheng, B.; Chen, X.; Zhou, Y.; Rao, J.; Bedra, K.B. Research on Annual Thermal Environment of Non-Hvac Building Regulated by Window-to-Wall Ratio in a Chinese City (Chenzhou). Sustainability 2020, 12, 6637. [Google Scholar] [CrossRef]
- Smyth, M.; Eames, P.; Norton, B. Annual performance of heat retaining integrated collector/storage solar water heaters in a northern maritime climate. Sol. Energy 2001, 70, 391–401. [Google Scholar] [CrossRef]
- Apreda, C.; Reder, A.; Mercogliano, P. Urban morphology parameterization for assessing the effects of housing blocks layouts on air temperature in the Euro-Mediterranean context. Energy Build. 2020, 223, 110171. [Google Scholar] [CrossRef]
- Liu, Z.; Cheng, W.; Jim, C.Y.; Morakinyo, T.E.; Shi, Y.; Ng, E. Heat mitigation benefits of urban green and blue infrastructures: A systematic review of modeling techniques, validation and scenario simulation in ENVI-met V4. Build. Environ. 2021, 200, 107939. [Google Scholar] [CrossRef]
- Simon, H.; Fallmann, J.; Kropp, T.; Tost, H.; Bruse, M. Urban trees and their impact on local ozone concentration—A microclimate modeling study. Atmosphere 2019, 10, 154. [Google Scholar] [CrossRef] [Green Version]
- Bruse, M. ENVI-met 3.0: Updated Model Overview; University of Bochum: Bochum, Germany, 2004; Available online: www.envi-met.com (accessed on 12 October 2021).
- Chen, Y.-C.; Lin, T.-P.; Matzarakis, A. Comparison of mean radiant temperature from field experiment and modelling: A case study in Freiburg, Germany. Theor. Appl. Climatol. 2014, 118, 535–551. [Google Scholar] [CrossRef]
- Salata, F.; Golasi, I.; de Lieto Vollaro, R.; de Lieto Vollaro, A. Urban microclimate and outdoor thermal comfort. A proper procedure to fit ENVI-met simulation outputs to experimental data. Sustain. Cities Soc. 2016, 26, 318–343. [Google Scholar] [CrossRef]
- Yang, X.; Zhao, L.; Bruse, M.; Meng, Q. Evaluation of a microclimate model for predicting the thermal behavior of different ground surfaces. Build. Environ. 2013, 60, 93–104. [Google Scholar] [CrossRef]
- Wu, T.; Li, Y. Spatial interpolation of temperature in the United States using residual kriging. Appl. Geogr. 2013, 44, 112–120. [Google Scholar] [CrossRef]
- Yu, Z.; Song, Y.; Song, D.; Liu, Y. Spatial interpolation-based analysis method targeting visualization of the indoor thermal environment. Build. Environ. 2021, 188, 107484. [Google Scholar] [CrossRef]
- Abdeladim, K.; Razagui, A.; Semaoui, S.; Arab, A.H. Updating Algerian solar atlas using MEERA-2 data source. Energy Rep. 2020, 6, 281–287. [Google Scholar] [CrossRef]
- Li, J.; Zheng, B.; Chen, X.; Qi, Z.; Bedra, K.B.; Zheng, J.; Li, Z.; Liu, L. Study on a full-year improvement of indoor thermal comfort by different vertical greening patterns. J. Build. Eng. 2021, 35, 101969. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, Y.; Deng, Q. The effects of urban microclimate on outdoor thermal sensation and neutral temperature in hot-summer and cold-winter climate. Energy Build. 2016, 128, 190–197. [Google Scholar] [CrossRef]
- Yang, W.; Wong, N.H.; Zhang, G. A comparative analysis of human thermal conditions in outdoor urban spaces in the summer season in Singapore and Changsha, China. Int. J. Biometeorol. 2013, 57, 895–907. [Google Scholar] [CrossRef] [PubMed]
Scenarios | Ground Greening (m2) | Vertical Greening (m2) | Window (m2) |
---|---|---|---|
G100V0 | 6144 | 0 | 1536 |
G75V25 | 4608 | 1536 | 1536 |
G50V50 | 3072 | 3072 | 1536 |
G25V75 | 1536 | 4608 | 1536 |
G0V100 | 0 | 6144 | 1536 |
Greening Type | Elements | Parameters | Value |
---|---|---|---|
Ground greening | Plant | Leaf type | Grass |
Albedo | 0.20 | ||
Transmittance (Frac) | 0.30 | ||
Plant height (m) | 0.25 | ||
Root zone depth (m) | 0.20 | ||
LAD | 0.30 | ||
RAD | 0.10 | ||
Vertical greening | Plant | LAI (m2/m2) | 1.5 |
Leaf angle distribution | 0.5 | ||
Substrate | Emissivity of Substrate (Frac) | 0.95 | |
Albedo of Substrate (Frac) | 0.30 | ||
Water Coefficient of Substrate for plant | 0.50 | ||
Air Gap between Substrate and wall (m) | 0.0 |
Parameters | Value |
---|---|
Thickness (mm) | 20.00 |
Absorption (Frac) | 0.05 |
Transmission (Frac) | 0.90 |
Solar heat gain coefficient | 0.80 |
Reflection (Frac) | 0.05 |
Emissivity (Frac) | 0.90 |
Specific Heat (J/(kg·K) | 750.00 |
Thermal conductivity (W/(m·K) | 1.05 |
Density (kg/m3) | 2500.00 |
Parameters | Value |
---|---|
Absorption | 0.50 |
Transmission (Frac) | 0.00 |
Reflection (Frac) | 0.50 |
Emissivity (Frac) | 0.90 |
Specific heat (J/kg∗k) | 0.90 |
Thermal conductivity (W/m∗k) | 1.60 |
Density (kg/m3) | 2220.00 |
Month | Initial Meteorological Condition | Data | Month | Initial Meteorological Condition | Data |
---|---|---|---|---|---|
January | Wind velocity (m/s) (10 m off the ground) | 3 | February | Wind velocity (m/s) (10 m off the ground) | 3 |
Wind angle (°) | 315 | Wind angle (°) | 135 | ||
Mean max—air temperature (°C) | 8 | Mean max—air temperature (°C) | 14 | ||
Mean min—air temperature (°C) | 4 | Mean min—air temperature (°C) | 8 | ||
Mean max—relative humidity (%) | 95 | Mean max—relative humidity (%) | 91 | ||
Mean min—relative humidity (%) | 85 | Mean min—relative humidity (%) | 81 | ||
March | Wind velocity (m/s) (10 m off the ground) | 3 | April | Wind velocity (m/s) (10 m off the ground) | 3 |
Wind angle (°) | 315 | Wind angle (°) | 315 | ||
Mean max—air temperature (°C) | 17 | Mean max—air temperature (°C) | 22 | ||
Mean min—air temperature (°C) | 11 | Mean min—air temperature (°C) | 13 | ||
Mean max—relative humidity (%) | 88 | Mean max—relative humidity (%) | 89 | ||
Mean min—relative humidity (%) | 78 | Mean min—relative humidity (%) | 79 | ||
May | Wind velocity (m/s) (10 m off the ground) | 3 | June | Wind velocity (m/s) (10 m off the ground) | 3.5 |
Wind angle (°) | 315 | Wind angle (°) | 315 | ||
Mean max—air temperature (°C) | 28 | Mean max—air temperature (°C) | 31 | ||
Mean min—air temperature (°C) | 20 | Mean min—air temperature (°C) | 25 | ||
Mean max—relative humidity (%) | 88 | Mean max—relative humidity (%) | 89 | ||
Mean min—relative humidity (%) | 78 | Mean min—relative humidity (%) | 79 | ||
July | Wind velocity (m/s) (10 m off the ground) | 3 | August | Wind velocity (m/s) (10 m off the ground) | 3.5 |
Wind angle (°) | 270 | Wind angle (°) | 135 | ||
Mean max—air temperature (°C) | 32 | Mean max—air temperature (°C) | 35 | ||
Mean min—air temperature (°C) | 26 | Mean min—air temperature (°C) | 26 | ||
Mean max—relative humidity (%) | 80 | Mean max—relative humidity (%) | 88 | ||
Mean min—relative humidity (%) | 70 | Mean min—relative humidity (%) | 78 | ||
September | Wind velocity (m/s) (10 m off the ground) | 3 | October | Wind velocity (m/s) (10 m off the ground) | 3.5 |
Wind angle (°) | 0 | Wind angle (°) | 315 | ||
Mean max—air temperature (°C) | 26 | Mean max—air temperature (°C) | 21 | ||
Mean min—air temperature (°C) | 20 | Mean min—air temperature (°C) | 14 | ||
Mean max—relative humidity (%) | 90 | Mean max—relative humidity (%) | 88 | ||
Mean min—relative humidity (%) | 80 | Mean min—relative humidity (%) | 78 | ||
November | Wind velocity (m/s) (10 m off the ground) | 3.5 | December | Wind velocity (m/s) (10 m off the ground) | 3 |
Wind angle (°) | 0 | Wind angle (°) | 315 | ||
Mean max—air temperature (°C) | 18 | Mean max—air temperature (°C) | 10 | ||
Mean min—air temperature (°C) | 11 | Mean min—air temperature (°C) | 4 | ||
Mean max—relative humidity (%) | 87 | Mean max—relative humidity (%) | 87 | ||
Mean min—relative humidity (%) | 77 | Mean min—relative humidity (%) | 77 |
Location | Data |
---|---|
Longitude | 113.109° E |
Latitude | 28.235° N |
Beginning time and total simulation time | Data |
Beginning time | 8:00 am |
Total simulation time | 24 h |
Scenario | G100V0 (°C) | G75V25 (°C) | G50V50 (°C) | G25V75 (°C) | G0V100 (°C) | |
---|---|---|---|---|---|---|
Month | ||||||
January | 7.29 | 7.21 | 7.12 | 7.03 | 6.93 | |
February | 11.99 | 11.89 | 11.79 | 11.69 | 11.58 | |
March | 15.51 | 15.38 | 15.27 | 15.16 | 15.04 | |
April | 18.11 | 17.98 | 17.86 | 17.75 | 17.63 | |
May | 24.86 | 24.72 | 24.60 | 24.48 | 24.35 | |
June | 29.47 | 29.32 | 29.20 | 29.08 | 28.94 | |
July | 30.47 | 30.31 | 30.18 | 30.05 | 29.91 | |
August | 30.61 | 30.48 | 30.36 | 30.24 | 30.11 | |
September | 24.24 | 24.12 | 24.01 | 23.89 | 23.77 | |
October | 18.22 | 18.11 | 18.00 | 17.89 | 17.77 | |
November | 14.69 | 14.60 | 14.50 | 14.41 | 14.30 | |
December | 7.47 | 7.39 | 7.31 | 7.22 | 7.13 |
Scenarios | <8 °C | 8–12 °C | 12–19 °C | 19–26 °C | 26–30 °C | 30–34 °C | |
---|---|---|---|---|---|---|---|
G100V0 | Proportion (%) | 9.6% | 11.7% | 29.4% | 19.5% | 18.6% | 11.1% |
Duration (h) | 841.3 | 1024.4 | 2579.2 | 1710.5 | 1631.9 | 972.7 | |
G75V25 | Proportion (%) | 9.7% | 11.8% | 29.5% | 19.6% | 18.8% | 10.6% |
duration (h) | 850.39 | 1030.8 | 2587.4 | 1715.3 | 1647.9 | 928.2 | |
G50V50 | proportion (%) | 9.9% | 11.8% | 29.5% | 19.6% | 18.9% | 10.3% |
duration (h) | 863.7 | 1037.0 | 2585.1 | 1716.6 | 1654.3 | 903.4 | |
G25V75 | proportion (%) | 10.0% | 11.9% | 29.5% | 19.6% | 19.0% | 10.1% |
duration (h) | 874.2 | 1043.3 | 2581.8 | 1717.4 | 1659.9 | 883.5 | |
G0V100 | proportion (%) | 10.1% | 12.0% | 29.4% | 19.6% | 19.0% | 9.9% |
duration (h) | 885.70 | 1050.1 | 2579.2 | 1720.0 | 1659.6 | 865.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Zheng, B. Does Vertical Greening Really Play Such a Big Role in an Indoor Thermal Environment? Forests 2022, 13, 358. https://doi.org/10.3390/f13020358
Li J, Zheng B. Does Vertical Greening Really Play Such a Big Role in an Indoor Thermal Environment? Forests. 2022; 13(2):358. https://doi.org/10.3390/f13020358
Chicago/Turabian StyleLi, Jiayu, and Bohong Zheng. 2022. "Does Vertical Greening Really Play Such a Big Role in an Indoor Thermal Environment?" Forests 13, no. 2: 358. https://doi.org/10.3390/f13020358
APA StyleLi, J., & Zheng, B. (2022). Does Vertical Greening Really Play Such a Big Role in an Indoor Thermal Environment? Forests, 13(2), 358. https://doi.org/10.3390/f13020358