Effects of Environmental Stress on the Pollen Viability of Ornamental Tree-Species in the City of Granada (South-Eastern Spain)
Abstract
:1. Introduction
2. Materials and Methods
- Trypan blue. It measures cell viability by staining non-viable pollen grains a deep blue color [43]. This type of staining is based on the principle that living cells have an intact cell membrane, which is selective in relation to which compounds can cross it, that is, they exclude certain dyes, while dead cells do not [44].
- Pyrogallol red (Commercially sold as Redprot-aeromedi©). Evaluates the state of physiological maturity of the pollen grains, differentiating pollen grains with an intact and mature protein coat, which stain purple, from those that do not have the cover in an optimal state of maturity and therefore do not stain. If the pollen grain is mature, it will correspond to a more suitable phase for fertilization [45].
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ahmad, B.; Raina, A.; Khan, S. Retracted Chapter: Impact of biotic and abiotic stresses on plants, and their responses. In Disease Resistance in Crop Plants; Wani, S.H., Ed.; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Beniwal, R.; Hooda, M.; Polle, A. Amelioration of planting stress by soil amendment with hydrogel mycorrhiza mixture for early establishment of beech (Fagus sylvatica L.) seedlings. Ann. For. Sci. 2011, 68, 803–810. [Google Scholar] [CrossRef] [Green Version]
- Czaja, M.; Kołton, A.; Muras, P. The complex issue of urban trees-stress factor accumulation and ecological service possibilities. Forests 2020, 11, 932. [Google Scholar] [CrossRef]
- Percival, G.; Barrow, I.; Noviss, K.; Keary, I.; Pennington, P. The impact of horse chestnut leaf miner (Cameraria ohridella Deschka and Dimic; HCLM) on vitality, growth and reproduction of Aesculus hippocastanum L. Urban For. Urban Green. 2011, 10, 11–17. [Google Scholar] [CrossRef]
- Sæbø, A.; Borzan, Ž.; Ducatillion, C.; Hatzistathis, A.; Lagerström, T.; Supuka, J.; García-Valdecantos, J.; Rego, F.; Van Slycken, J. The selection of plant materials for street trees, park trees and urban woodland. In Urban Forests and Trees; Springer: Cham, Switzerland, 2005; pp. 257–280. [Google Scholar] [CrossRef]
- De Storme, N.; Geelen, D. The impact of environmental stress on male reproductive development in plants: Biological processes and molecular mechanisms. Plant Cell Environ. 2013, 37, 1–18. [Google Scholar] [CrossRef]
- Neil, K.; Wu, J. Effects of urbanization on plant flowering phenology: A review. Urban Ecosyst. 2006, 9, 243–257. [Google Scholar] [CrossRef]
- Cuinica, L.; Abreu, I.; Esteves da Silva, J. Effect of air pollutant NO₂ on Betula pendula, Ostrya carpinifolia and Carpinus betulus pollen fertility and human allergenicity. Environ. Pollut. 2014, 186, 50–55. [Google Scholar] [CrossRef]
- Shiraiwa, M.; Selzle, K.; Yang, H.; Sosedava, Y.; Ammann, M.; Pöschl, U. Multiphase chemical kinetics of the nitration of aerosolized proteins by ozone and nitrogen dioxide. Environ. Sci. Technol. 2012, 46, 6672–6680. [Google Scholar] [CrossRef]
- Zhao, F.; Elkelish, A.; Durner, J.; Lindermayr, C.; Winkler, J.; Ruëff, F.; Behrendt, H.; Traidl-Hoffmann, C.; Holzinger, A.; Kofler, W.; et al. Common ragweed (Ambrosia artemisiifolia L.): Allergenicity and molecular characterisation of pollen after plant exposure to elevated NO2. Plant Cell Environ. 2015, 39, 147–164. [Google Scholar] [CrossRef]
- Ruffin, J.; Liu, M.; Sessoms, R.; Banerjee, S.; Banerjee, U. Effects of certain atmospheric pollutants (SO2, NO2 and CO) on the soluble amino acids, molecular weight and antigenicity of some airborne pollen grains. Cytobios 1986, 46, 119–129. [Google Scholar]
- Ouyang, Y.; Xu, Z.; Fan, E.; Li, Y.; Zhang, L. Effect of nitrogen dioxide and sulfur dioxide on viability and morphology of oak pollen. Int. Forum Allergy Rhinol. 2016, 6, 95–100. [Google Scholar] [CrossRef]
- Malayeri, B.E.; Noori, M.; Jafari, M. Using the Pollen Viability and Morphology for Fluoride Pollution Biomonitoring. Biol Trace Elem Res 2012, 147, 315–319. [Google Scholar] [CrossRef]
- Rezanejad, F. Air pollution effects on structure, proteins and flavonoids in pollen grains on Thuja orientalis L. (Cupressaceae). Grana 2009, 48, 205–213. [Google Scholar] [CrossRef]
- Paoletti, E. Impact of ozone on Mediterranean Forests: A review. Environ. Pollut. 2006, 144, 463–474. [Google Scholar] [CrossRef] [PubMed]
- Gottardini, E.; Cristofolini, F.; Paoletti, E.; Lazzeri, P.; Pepponi, G. Pollen viability for Air Pollution Bio-Monitoring. J. Atmos. Chem. 2004, 49, 149–154. [Google Scholar] [CrossRef]
- Pereira, S.; Fernández-González, M.; Guedes, A.; Abreu, I.; Ribeiro, H. The strong and the stronger: The effects of increasing ozone and nitrogen dioxide concentrations in pollen of different forests species. Forests 2021, 12, 88. [Google Scholar] [CrossRef]
- Agencia Estatal de Meteorologia (AEMET). Informe Annual de la Agencia Estatal de Meteorologia; Ministerio de Agricultura, Pesca, Alimentación y Medio Ambiente. Gobierno de España: Madrid, Spain, 2017.
- Delgado-Capel, M.; Cariñanos, P. Towards a standard framework to identify green infrastructure key elements in dense Mediterranean cities. Forests 2020, 11, 1246. [Google Scholar] [CrossRef]
- Pauleit, S.; Jones, N.; Garcia-Martin, G.; Garcia-Valdecantos, J.; Riviére, L.; Vidal-Beaudet, L.; Bodson, M.; Randrup, T. Tree establishment practice in towns and cities–results from a European survey. Urban For. Urban Green. 2002, 1, 83–96. [Google Scholar] [CrossRef]
- Llodrá-Llabrés, J.; Cariñanos, P. Enhancing pollination ecosystem service in urban green areas: An opportunity for the conservation of pollinators. Urban For. Urban Green. 2022, 74, 127621. [Google Scholar] [CrossRef]
- Alba, F.; Díaz de la Guardia, C.; Sabariego, S.; Nieto, D. Aerobiología en Andalucía: Estación de Granada (2000–2001). Rea 2002, 7, 65–70. [Google Scholar]
- Cariñanos, P.; Foyo-Moreno, I.; Alados, I.; Guerrero-Rascado, J.; Ruiz-Peñuela, S.; Titos, G.; Cazorla, A.; Alados-Arboledas, L.; Díaz de la Guardia, C. Bioaerosols in urban environments: Trends and interactions with pollutants and meteorological variables based on quasi-climatological series. J. Environ. Manag. 2021, 282, 111963. [Google Scholar] [CrossRef]
- Cariñanos, P.; Guerrero-Rascado, J.L.; Valle, A.M.; Cazorla, A.; Titos, G.; Foyo-Moreno, I.; Alados-Arboledas, L.; Díaz de la Guardia, C. Assessing pollen extreme events over a Mediterranean site: Role of local surface meteorology. Atmos. Environ. 2022, 272, 118928. [Google Scholar] [CrossRef]
- Casquero-Vera, J.A.; Titos, G.; Alados-Arboledas, L. Diagnóstico de la Calidad del Aire del área metropolitana de Granada. Agenda 21. Ayuntamiento de Granada. Available online: https://www.granada.org/inet/agenda21.nsf/cff91acc5fede7f9c125727500305ef9/0aae130c836640acc1257f88002dc457/$FILE/Diagnostico%20Calidad%20Aire.pdf (accessed on 15 November 2022).
- Report on the Evaluation of the Quality of the Air in Spain. 2021; Ministerio para la Transición Ecológica y el reto Demográfico. Secretaria General Técnica. Centro de Publicaciones: Madrid, Spain, 2022; 189p.
- Heywood, V.H. The nature and composition of urban plant diversity in the Mediterranean. Flora Mediterr. 2017, 20, 195–220. [Google Scholar]
- Cariñanos, P.; Adinolfi, C.; Díaz de la Guardia, C.; De Linares, C.; Casares-Porcel, M. Characterization of allergen emission sources in urban areas. J. Environ. Qual. 2016, 45, 244–252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piotrowska, K. Pollen production in selected species of anemophilous plants. Acta Agrobot. 2008, 61, 41–52. [Google Scholar] [CrossRef]
- Canale, A.; Loni, A. Insects visiting olive flowers (Olea europaea L.) in a Tuscan olive grove. J. Zool. 2010, 92, 95–98. [Google Scholar]
- Cariñanos, P.; Casares-Porcel, M.; Valle, A.; De la Cruz-Márquez, R.; Díaz de la Guardia, C. Charting trends in the evolution of the La Alhambra forest (Granada, Spain) through analysis of pollen-emission dynamics over time. Clim. Change 2016, 135, 453–466. [Google Scholar] [CrossRef]
- Foyo-Moreno, I.; Vida, J.; Alados-Arboledas, L. A simple all weather model to estimate ultraviolet solar radiation (290–385 nm). J. Appl. Meteorol. 1999, 38, 1020–1026. [Google Scholar] [CrossRef]
- Foyo-Moreno, I.; Alados, I.; Alados-Arboledas, L. Adaptation of an empirical model for erythemal ultraviolet irradiance. Ann. Geophys. 2017, 25, 1499–1508. [Google Scholar] [CrossRef]
- Foyo-Moreno, I.; Alados, I.; Alados-Arboledas, L. A new conventional regression model to estimate hourly photosynthetic photon flux density under all sky conditions. Int. J. Climatol. 2007, 37, 1067–1075. [Google Scholar] [CrossRef] [Green Version]
- Kopp, R.; Maynard, C.; Rocha, P.; Smart, L.; Abrahamson, L. Collection and storage of pollen from Salix (Salicaceae). Am. J. Bot. 2002, 89, 248–252. [Google Scholar] [CrossRef]
- Calic, D.; Milojevic, J.; Belic, M.; Miletic, R.; Zdravkovik-Korak, S. Impact of storage temperature on pollen viability and germinavility of four Serbian Autochthon Apple cultivars. Front. Plant Sci. 2021, 12, 709231. [Google Scholar] [CrossRef] [PubMed]
- Becker, W.; Ewart, L. Pollination, seed set and pollen tube growth investigation in Viola pedata L. Acta Hortic. 1990, 272, 33–36. [Google Scholar] [CrossRef]
- Dafni, A.; Firmage, D. Pollen viability and longevity: Practical, ecological and evolutionary implications. Plant Syst. Evol. 2000, 222, 113–132. [Google Scholar] [CrossRef]
- Bolat, I.; Pirlak, L. An investigation on pollen viability, germination and tube growth in some stone fruits. Turk. J. Agric. For. 1999, 23, 383–388. [Google Scholar]
- Melloni, M.; Salles, M.; De Mendonça, J.; Perecin, D.; De Andrade, M.; Pinto, L. Comparison of two staining methods for pollen viability studies in sugarcane. Sugar Technol. 2013, 15, 103–107. [Google Scholar] [CrossRef]
- Impe, D.; Reitz, J.; Köpnick, C.; Rolletscheck, H.; Börner, A.; Senula, A.; Nagel, M. Assessment of pollen viability for wheat. Front. Plant Sci. 2020, 10, 1588. [Google Scholar] [CrossRef] [PubMed]
- Camayo-Mosquera, J.; Cayón-Salinas, D.G.; Ligaretto-Moreno, G.A. Pollen viability and germination in Elaeis oleifera, Elaeis guineensis and their interspecific hybrid. Pesq. Agropec.Trop. Goiania 2021, 51, e68076. [Google Scholar]
- Silva, M.; Ribeiro, H.; Abreu, I.; Cruz, A.; Esteves da Silva, J. Effects of CO2 on Acer negundo pollen fertility, protein content, allergenic properties, and carbohydrates. Environ. Sci. Pollut. Res. 2015, 22, 6904–6911. [Google Scholar] [CrossRef]
- Strober, W. Trypan blue exclusion test of cell viability. Curr. Protoc. Immunol. 2001. [CrossRef]
- Melgar, M.; Trigo, M.; Recio, M.; Docampo, S.; García-Sánchez, J.; Cabezudo, B. Atmospheric pollen dynamics in 3Münster, north-western Germany: A three-year study (2004–2006). Aerobiología 2012, 28, 423–434. [Google Scholar] [CrossRef]
- Paupière, M.J.; van Heusden, A.W.; Bovy, A.G. The metabolic basis of pollen thermo-tolerance: Perspectives for breeding. Metabolites 2014, 30, 889–920. [Google Scholar] [CrossRef] [Green Version]
- Torabinejad, J.; Caldwell, M.; Flint, S.; Durham, S. Susceptibility of pollen to UV-B Radiation: An Assay of 34 taxa. American J. Bot. 1998, 85, 360. [Google Scholar] [CrossRef]
- Mesihovic, A.; Iannacone, R.; Firon, N.; Fragkostefanakis, S. Heat stress regimes for the investigation of pollen thermotolerance in crop plants. Plant Reprod. 2016, 29, 93–105. [Google Scholar] [CrossRef] [PubMed]
- Conde-Álvarez, R. Variaciones Espacio-Temporales y Ecofisiología de los Macrófitos Acuáticos de la Laguna Atalosohalina de Fuente de Piedra (Sur de la Península Ibérica); Tesis Doctoral, Universidad de Málaga: Málaga, Spain, 2001. [Google Scholar]
- Sousa, R.; Duque, L.; Duarte, A.; Gomes, C.; Ribeiro, H.; Cruz, A.; Esteves da Silva, J.; Abreu, I. In Vitro Exposure of Acer negundo pollen to atmospheric levels of SO2 and NO2: Effects on Allergenicity and Germination. Environ. Sci. Technol. 2012, 46, 2406–2412. [Google Scholar] [CrossRef] [PubMed]
- Galveias, A.; Costa, A.; Bortoli, D.; Alpizar-Jar, R.; Salgado, R.; Costa, M.; Antunez, C. Cupressaceae pollen in the city of Evora, South of Portugal: Disruption of the pollen during air transport facilitates allergen exposure. Forest 2021, 12, 64. [Google Scholar] [CrossRef]
- Peñuelas, J.; Filella, I.; Llusiá, J.; Siscart, D.; Piñol, J. Comparative field study of spring and summer leaf gas exchange and photobiology of the Mediterranean trees Quercus ilex and Phillyrea latifolia. J. Exp. Bot. 1998, 49, 229–238. [Google Scholar] [CrossRef] [Green Version]
- Del Valle, J.; Buide, M.; Whittall, J.; Valladares, F.; Narbona, E. UV radiation increases phenolic compound protection but decreases reproduction in Silene littorea. PLoS ONE 2020, 15, 231611. [Google Scholar] [CrossRef]
- Basuny, A.; Arafat, S.; Soliman, H. Chemical analysis of olive and palm pollen: Antioxidant and antimicrobial activation properties. Her. J. Agric. Food Sci. Res. 2013, 2, 91–97. [Google Scholar]
- Sénéchal, H.; Visez, N.; Charpin, D.; Shahali, Y.; Peltre, G.; Biolley, J.; Lhuissier, F.; Couderc, R.; Yamada, O.; Malrat-Domenge, A.; et al. A Review of the effects of major atmospheric pollutants on pollen grains, pollen content and allergenicity. Sci. World J. 2015, 53, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Danti, R.; Della Rocca, G.; Calamassi, R.; Mori, B.; Mariotti, M. Insights into a hydration regulating system in Cupressus pollen grains. Ann. Bot. 2011, 108, 299–306. [Google Scholar] [CrossRef] [Green Version]
- Aboulaïch, N.; Bouziane, H.; Kadiri, M.; Riadi, H. Male phenology and pollen production of Cupressus sempervirens in Tetouan (Morocco). Grana 2008, 47, 130–138. [Google Scholar] [CrossRef] [Green Version]
- Plaza, M.; Alcázar, P.; Oteros, J.; Galán, C. Atmospheric pollutants and their association with olive and grass aeroallergen concentrations in Córdoba (Spain). Environ. Sci. Pollut. Res. 2020, 27, 45447–45459. [Google Scholar] [CrossRef] [PubMed]
- Rugini, E.; Gutiérrez, P. Genetic improvement of olive. Pomol. Croat. 2006, 12, 43–72. [Google Scholar]
- Bracci, T.; Busconi, M.; Fogher, C.; Sebastiani, L. Molecular studies in olive (Olea europaea L.): Overview on DNA markers applications and recent advances in genome analysis. Plant Cell Rep. 2011, 30, 449–462. [Google Scholar] [CrossRef] [PubMed]
- Rugini, E.; Biasi, R.; Muleo, R. Olive (Olea europaea var. sativa) transformation. In Molecular Biology of Woody Plants; Springer: Cham, Switzerland, 2000; pp. 245–279. [Google Scholar] [CrossRef]
- Alché, J.; Castro, A.; Jiménez-López, J.; Morales, S.; Zafra, A.; Hamman-Khalifa, A.; Rodríguez-García, M. Differential characteristics of olive pollen from different cultivars: Biological and clinical implications. J. Investig. Allergol. Clin. Immunol. 2007, 17, 17–23. [Google Scholar] [PubMed]
- Oteros, J.; Orlandi, F.; García-Mozo, H.; Aguilera, F.; Dhiab, A.; Bonofiglio, T.; Abichou, M.; Ruiz-Valenzuela, L.; Mar del Trigo, M.; Díaz de la Guardia, C.; et al. Better prediction of Mediterranean olive production using pollen-based models. Agron. Sustain. Dev. 2014, 34, 685–694. [Google Scholar] [CrossRef] [Green Version]
- Mattei, F.; Della, G.; Schiavoni, G.; Paoletti, E.; Afferni, C. Traffic-related NO2 affects expression of Cupressus sempervirens L. pollen allergens. Ann. Agric. Environ. Med. 2022, 29, 232–237. [Google Scholar] [CrossRef]
- Chichiriccó, G.; Picozzi, P. Reversible inhibition of the pollen germination and the stigma penetration in Crocus vernus spp. Vernus (Iridaceae) following fumigation with NO2, CO and O3 gases. Plant Biol. 2007, 9, 730–735. [Google Scholar] [CrossRef]
- Sheng, Q.; Song, M.; Zhu, Z.; Cao, F. Physiological and biochemical responses of two precious Carpinus species to high-concentration NO2 stress and their natural recovery. Sci. Rep. 2021, 11, 9500. [Google Scholar] [CrossRef]
- Sikkema, R.; Caudullo, G.; de Rigo, D. Carpinus betulus in Europe: Distribution, habitats, usage an threats. In European Atlas of Forest Tree Species; San Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., Muri, A., Eds.; Publications Office of the EU: Luxembourg, 2016. [Google Scholar]
- López-Lillo, A.; Sánchez de Lorenzo Cáceres, J.M. Árboles de España. Manual de Identificación; Mundi-Prensa: Madrid, Spain, 2001. [Google Scholar]
- Strashock, O. Comparative Analysis of Heat Resistance of Ornamental Urban Plants in Kyiv. J. Ecol. Eng. 2022, 23, 145–153. [Google Scholar] [CrossRef]
- Hidalgo-García, D.; Arco-Díaz, J. Modeling the Surface Urban Heat Island (SUHI) to study of its relationship with variations in the thermal field and with the indices of land use in the metropolitan area of Granada (Spain). Sustain. Cities Soc. 2022, 87, 104166. [Google Scholar] [CrossRef]
Sampling Area | Stress Factor | Reference Air Quality Station | Reference Meteorological Station |
---|---|---|---|
1. Fuentenueva Campus | i, ii, iii, iv | 1 | 2 |
2. Cartuja Campus | i, ii, iii | 2 | 1 |
3. La Alhambra Forests | CONTROL | 2 | 1 |
4. Bola de Oro Sport Center | ii, iii | 1 | 3 |
Granada Norte | Palacio de Congresos Monthly Average Value | |
---|---|---|
Monthly Average Value | (µg/m3) | |
SO2(µg/m3) | 8.5 | 16.0 |
NO2(µg/m3) | 47.3 | 36.3 |
CO(mg/ m3) | 0.6 | 0.4 |
UV-B (10 kJ/m2) | |
---|---|
Month | Average |
January | 2.467 |
February | 2.956 |
March | 4.325 |
April | 5.428 |
May | 6.293 |
Trypan Blue | Pyrogallol Red | |||
---|---|---|---|---|
Control | Sample * | Control | Sample * | |
Viable (%) | Viable (%) | Mature (%) | Mature (%) | |
Acer negundo | 60.5 | 20.0 | 82.8 | 88.9 |
Carpinus betulus | 81.8 | 58.9 | 17.4 | 32.5 |
Cupressus spp. | 56.0 | 39.5 | 31.7 | 49.3 |
Olea europaea | 84.9 | 60.9 | 84.5 | 67.7 |
Pollen Type | Location | Viability | UV-B February | UV-B March | SO2 February | SO2 March | NO2 February | NO2 March | CO February | CO March |
---|---|---|---|---|---|---|---|---|---|---|
Acer negundo | Alhambra | Viable | 0.018 | −0.102 | −0.127 | 0.119 | 0.070 | 0.046 | 0.121 | −0.013 |
Non-viable | −0.126 | 0.257 | −0.008 | −0.126 | 0.204 | 0.086 | 0.141 | 0.118 | ||
Fuentenueva | Viable | 0.192 | −0.064 | −0.331 | −0.078 | −0.302 | −0.331 | 0.508 ** | 0.112 | |
Non-viable | −0.412 * | 0.367 * | 0.067 | −0.053 | 0.052 | −0.109 | 0.269 | 0.312 | ||
Carpinus betulus | Alhambra | Viable | 0.089 | −0.030 | 0.074 | 0.128 | 0.030 | −0.071 | 0.074 | −0.034 |
Non-viable | 0.320 * | −0194 | 0.077 | 0.543 ** | −0.219 | −0.041 | 0.028 | −0.483 ** | ||
Bola de oro | Viable | −0.200 | −0.311 | 0.003 | −0.423 * | −0.053 | −0.083 | −0.277 | 0.326 | |
Non-viable | 0.101 | −0.102 | 0.178 | −0.262 | 0.106 | 0.078 | −0.037 | 0.444 * | ||
Cupressus spp. | Alhambra | Viable | 0.196 | −0.199 | −0.013 | 0.173 | −0.245 | −0.020 | −0.099 | −0.157 |
Non-viable | 0.1068 | −0.445 * | −0.078 | 0.199 | 0.027 | 0.199 | −0.022 | −0.151 | ||
Fuentenueva | Viable | −0.105 | −0.084 | −0.466 ** | −0.075 | −0.349 | −0.100 | −0.227 | 0.070 | |
Non-viable | −0.027 | 0.388 * | −0.324 | −0.177 | −0.274 | −0.186 | −0.067 | −0.003 | ||
Olea europaea | Alhambra | Viable | −0.409 | −0.097 | 0.157 | 0.077 | 0.128 | 0.323 | 0.030 | 0.380 * |
Non-viable | −0.190 | −0.086 | −0.035 | 0.217 | 0.070 | −0.050 | 0.142 | −0.148 | ||
Cartuja | Viable | 0.295 | 0.240 | −0.180 | −0.099 | −0.051 | −0.080 | −0.062 | 0.119 | |
Non-viable | 0.025 | −0360 * | 0.086 | −0.442 * | 0.043 | −0.424 * | −0.103 | −0.296 |
Pollen Type | Location | Maturity | UV-B February | UV-B March | SO2 February | SO2 March | NO2 February | NO2 March | CO February | CO March |
---|---|---|---|---|---|---|---|---|---|---|
Acer negundo | Alhambra | Mature | −0.173 ** | −0.162 | −0.214 | −0.032 | −0.084 | −0.314 | −0.013 | −0.356 * |
Immature | 0.054 * | −0.096 | −0.241 | −0.039 | −0.190 | 0.424 | −0.334 | 0.227 | ||
Fuentenueva | Mature | −0.182 | −0.372 | −0.205 | −0.081 | −0.207 | −0.289 | 0.101 | −0.036 | |
Immature | 0.100 | −0.157 | −0.229 | −0.205 | −0.120 | −0.458 | 0.0 | −0.422 | ||
Carpinus betulus | Alhambra | Mature | −0.02 | 0.0581 | −0.270 | 0.161 | −0.221 | −0.228 | −0.143 | −0.176 |
Immature | −0.016 | −0.244 | 0.035 | 0.249 | 0.007 | 0.071 | −0.093 | −0.229 | ||
Bola de oro | Mature | −0.438 * | 0.175 | −0.160 | 0.027 | −0.168 | −0.007 | −0.085 | −0.265 | |
Immature | 0.163 | 0.147 | −0.086 | 0.051 | 0.017 | 0.038 | −0.074 | 0.036 | ||
Cupressus spp. | Alhambra | Mature | −0.036 | −0.076 | 0.182 | −0.042 | 0.022 | 0.322 | 0.086 | 0.025 |
Immature | −0.109 | −0.110 | 0.330 | −0.185 | −0.094 | 0.119 | −0.086 | 0.063 | ||
Fuentenueva | Mature | −0.238 * | 0.179 | −0.166 | −0.327 | −0.079 | −0.279 | −0.093 | −0.103 | |
Immature | −0.042 | −0.110 | 0.308 | −0.398 * | 0.387 * | −0.391 * | 0.348 | −0.501 ** | ||
Olea europaea | Alhambra | Mature | −0.064 | 0.177 | 0.086 | −0.123 | −0.051 | −0.180 | −0.193 | 0.068 |
Immature | −0.129 | −0.111 | 0.008 | −0.123 | −0.028 | −0.204 | 0.088 | 0.132 | ||
Cartuja | Mature | 0.371 | 0.047 | −0.006 | −0.151 | 0.088 | −0.104 | −0.149 | 0.106 | |
Immature | 0.377 * | −0.180 | −0.088 | 0.332 | −0.098 | 0.203 | −0.299 | 0.148 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramírez-Aliaga, P.; Foyo-Moreno, I.; Cariñanos, P. Effects of Environmental Stress on the Pollen Viability of Ornamental Tree-Species in the City of Granada (South-Eastern Spain). Forests 2022, 13, 2131. https://doi.org/10.3390/f13122131
Ramírez-Aliaga P, Foyo-Moreno I, Cariñanos P. Effects of Environmental Stress on the Pollen Viability of Ornamental Tree-Species in the City of Granada (South-Eastern Spain). Forests. 2022; 13(12):2131. https://doi.org/10.3390/f13122131
Chicago/Turabian StyleRamírez-Aliaga, Priscila, Inmaculada Foyo-Moreno, and Paloma Cariñanos. 2022. "Effects of Environmental Stress on the Pollen Viability of Ornamental Tree-Species in the City of Granada (South-Eastern Spain)" Forests 13, no. 12: 2131. https://doi.org/10.3390/f13122131
APA StyleRamírez-Aliaga, P., Foyo-Moreno, I., & Cariñanos, P. (2022). Effects of Environmental Stress on the Pollen Viability of Ornamental Tree-Species in the City of Granada (South-Eastern Spain). Forests, 13(12), 2131. https://doi.org/10.3390/f13122131