Novel Recursive BiFPN Combining with Swin Transformer for Wildland Fire Smoke Detection
Abstract
1. Introduction
2. Datasets
3. Methods
3.1. The Architecture of Wildfire Smoke Detection Network
3.2. Workflow of Network Structure
4. Experiments
4.1. Experimental Configuration
4.2. Evaluation of Feature Extraction
4.3. Anti-Interference
4.4. Identification of the Challenging Smoke Images
4.5. Comparison of the Model
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Guo, Y.; Chen, G.; Wang, Y.-N.; Zha, X.-M.; Xu, Z. Wildfire Identification Based on an Improved Two-Channel Convolutional Neural Network. Forests 2022, 13, 1302. [Google Scholar] [CrossRef]
- Zhang, J.; Li, W.; Han, N.; Kan, J. Forest fire detection system based on a zigbee wireless sensor network. Front. For. China 2008, 3, 369–374. [Google Scholar] [CrossRef]
- Aslan, Y.E.; Korpeoglu, I.; Ulusoy, Ö. A framework for use of wireless sensor networks in forest fire detection and monitoring. Comput. Environ. Urban Syst. 2012, 36, 614–625. [Google Scholar] [CrossRef]
- Dener, M.; Özkök, Y.; Bostancıolu, C. Fire detection systems in wireless sensor networks. Procedia-Soc. Behav. Sci. 2015, 195, 1846–1850. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, L.; Li, T.; Shi, P. A Smoke Detection Model Based on Improved YOLOv5. Mathematics 2022, 10, 1190. [Google Scholar] [CrossRef]
- Jiang, H.; Yuan, W.; Ru, Y.; Chen, Q.; Wang, J.; Zhou, H. Feasibility of identifying the authenticity of fresh and cooked mutton kebabs using visible and near-infrared hyperspectral imaging. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 282, 121689. [Google Scholar] [CrossRef]
- Shi, F.; Wang, J.; Shi, J.; Wu, Z.; Wang, Q.; Tang, Z.; He, K.; Shi, Y.; Shen, D. Review of Artificial Intelligence Techniques in Imaging Data Acquisition, Segmentation, and Diagnosis for COVID-19. IEEE Rev. Biomed. Eng. 2021, 14, 4–15. [Google Scholar] [CrossRef]
- Zhu, Z.; Wei, H.; Hu, G.; Li, Y.; Qi, G.; Mazur, N. A Novel Fast Single Image Dehazing Algorithm Based on Artificial Multiexposure Image Fusion. IEEE Trans. Instrum. Meas. 2021, 70, 1–23. [Google Scholar] [CrossRef]
- Wang, T.; Shi, L.; Yuan, P.; Bu, L.; Hou, X. A new fire detection method based on flame color dispersion and similarity inconsecutive frames. In Proceedings of the 2017 Chinese Automation Congress (CAC), Jinan, China, 20–22 October 2017; pp. 151–156. [Google Scholar]
- Gubbi, J.; Marusic, S.; Palaniswami, M. Smoke detection in video using wavelets and support vector machines. Fire Saf. J. 2009, 44, 1110–1115. [Google Scholar] [CrossRef]
- Gunay, O.; Toreyin, B.U.; Kose, K.; Cetin, A.E. Entropy-functional-based online adaptive decision fusion framework with application to wildfire detection in video. IEEE Trans. Image Process. 2012, 21, 2853–2865. [Google Scholar] [CrossRef]
- Jia, Y.; Chen, W.; Yang, M.; Wang, L.; Liu, D.; Zhang, Q. Video smoke detection with domain knowledge and transfer learning from deep convolutional neural networks. OPTIK 2021, 240, 166947. [Google Scholar] [CrossRef]
- He, L.; Gong, X.; Zhang, S.; Wang, L.; Li, F. Efficient attention based deep fusion CNN for smoke detection in fog environment. Neurocomputing 2021, 434, 224–238. [Google Scholar] [CrossRef]
- Pan, J.; Ou, X.; Xu, L. A Collaborative Region Detection and Grading Framework for Forest Fire Smoke Using Weakly Supervised Fine Segmentation and Lightweight Faster-RCNN. Forests 2021, 12, 768. [Google Scholar] [CrossRef]
- Zhao, E.; Liu, Y.; Zhang, J.; Tian, Y. Forest Fire Smoke Recognition Based on Anchor Box Adaptive Generation Method. Electronics 2021, 10, 566. [Google Scholar] [CrossRef]
- Li, F.S.; Yao, D.F.; Jiang, M.H.; Kang, X.C. Smoking behavior recognition based on a two-level attention fine-grained model and EfficientDet network. J. Intell. Fuzzy Syst. 2022, 43, 5733–5747. [Google Scholar] [CrossRef]
- Wu, S.X.; Zhang, L.B. Using Popular Object Detection Methods for Real Time Forest Fire Detection. In Proceedings of the 11th International Symposium on Computational Intelligence and Design (ISCID), Hangzhou, China, 8–9 December 2018; pp. 280–284. [Google Scholar]
- Luo, Y.; Zhao, L.; Liu, P.; Huang, D. Fire smoke detection algorithm based on motion characteristic and convolutional neural networks. Multimed. Tools Appl. 2018, 77, 15075–15092. [Google Scholar] [CrossRef]
- Li, X.; Xu, Z.H.; Shen, X.; Zhou, Y.; Xiao, B.; Li, T.Q. Detection of Cervical Cancer Cells in Whole Slide Images Using Deformable and Global Context Aware Faster RCNN-FPN. Curr. Oncol. 2021, 28, 3585–3601. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zell, A. Yolo+FPN: 2D and 3D Fused Object Detection with an RGB-D Camera. In Proceedings of the 2020 25th International Conference on Pattern Recognition (ICPR), Milan, Italy, 10–15 January 2020; pp. 4657–4664. [Google Scholar]
- Yu, Y.; Zhang, K.; Yang, L.; Zhang, D. Fruit detection for strawberry harvesting robot in non-structural environment based on Mask-RCNN. Comput. Electron. Agric. 2019, 163, 104846. [Google Scholar] [CrossRef]
- Yu, J.M.; Zhang, W. Face Mask Wearing Detection Algorithm Based on Improved YOLO-v4. Sensors 2021, 21, 3263. [Google Scholar] [CrossRef]
- Ghiasi, G.; Lin, T.Y.; Le, Q.V. NAS-FPN: Learning Scalable Feature Pyramid Architecture for Object Detection. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 7029–7038. [Google Scholar]
- Wang, Y.F.; Hua, C.C.; Ding, W.L.; Wu, R. Real-time detection of flame and smoke using an improved YOLOv4 network. Signal Image Video Process. 2022, 16, 1109–1116. [Google Scholar] [CrossRef]
- Qiao, S.Y.; Chen, L.C.; Yuile, A. DetectoRS: Detecting Objects with Recursive Feature Pyramid and Switchable Atrous Convolution. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2022; pp. 10208–10219. [Google Scholar]
- Zhu, X.; Lyu, S.; Wang, X.; Zhao, Q. TPH-YOLOv5: Improved YOLOv5 Based on Transformer Prediction Head for Object Detection on Drone-captured Scenarios. In Proceedings of the 2021 IEEE International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 11–17 October 2021. [Google Scholar]
- Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV 2021), Montreal, QC, Canada, 11–17 October 2021; pp. 9992–10002. [Google Scholar]
- Li, Z.; Zou, H.; Sun, X.; Zhu, T.; Ni, C. 3d expression-invariant face verification based on transfer learning and siamese network for small sample size. Electronics 2021, 10, 2128. [Google Scholar] [CrossRef]
- Fukui, H.; Hirakawa, T.; Yamashita, T.; Fujiyoshi, H. Attention branch network: Learning of attention mechanism for visual explanation. arXiv 2021, arXiv:1812.10025. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. Adv. Neural Inf. Process. Syst. 2017, 5998–6008. [Google Scholar]
- He, H.; Liu, J.; Pan, Z.; Cai, J.; Zhang, J.; Tao, D.; Zhuang, B. Pruning Self-attentions into Convolutional Layers in Single Path. arXiv 2021, arXiv:2111.11802. [Google Scholar]
- Zhu, M.; Han, K.; Tang, Y.; Wang, Y. Visual Transformer Pruning. arXiv 2021, arXiv:2104.08500. [Google Scholar]
- Mehta, S.; Rastegari, M. MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer. arXiv 2021, arXiv:2110.02178. [Google Scholar]
Datasets | Fire Smoke Image | Interference Images |
---|---|---|
Total number | 700 | 300 |
Training | 630 | 270 |
Testing | 70 | 30 |
Models | Precision | Map |
---|---|---|
BiFPN + GIOU_Loss | 0.764 | 0.728 |
RBiFPN + GIOU_Loss | 0.765 | 0.736 |
BiFPN + TPH | 0.774 | 0.765 |
RBiFPN + TPH | 0.821 | 0.805 |
BiFPN + Swin-TPH | 0.764 | 0.751 |
RBiFPN + Swin-TPH | 0.858 | 0.823 |
Models | Precision | Recall | Map |
---|---|---|---|
Faster RCNN | 0.378 | 0.701 | 0.584 |
Efficientdet | 0.728 | 0.406 | 0.497 |
SSD | 0.780 | 0.131 | 0.411 |
BiFPN + GIOU_Loss | 0.845 | 0.631 | 0.632 |
RBiFPN + GIOU_Loss | 0.894 | 0.636 | 0.647 |
RBiFPN + TPH | 0.819 | 0.671 | 0.663 |
Ours (RBiFPN + Swin-TPH) | 0.847 | 0.674 | 0.674 |
Framework | Neckbone | Prediction Head | AP | AR | Map | FPR | Param(M) | FPS | FLOPs(G) |
---|---|---|---|---|---|---|---|---|---|
Faster RCNN | None | Sparse-Prediction | 0.750 | 0.817 | 0.752 | 0.387 | 28.48 | 11.5 | 939.6 |
Efficientdet | BiFPN | Class + Box prediction net | 0.729 | 0.469 | 0.611 | - | 3.874 | 25.9 | 5.1 |
SSD | None | None | 0.820 | 0.278 | 0.599 | - | 26.3 | 93.8 | 62.8 |
YOLOV5 | PANet | GIOU_Loss | 0.760 | 0.781 | 0.717 | 0.203 | 46.14 | 10.6 | 107.8 |
YOLOV5 | BiFPN | GIOU_Loss | 0.764 | 0.783 | 0.728 | 0.093 | 46.86 | 10.4 | 114.9 |
YOLOV5 | RBiFPN | GIOU_Loss | 0.785 | 0.787 | 0.796 | 0.060 | 101.04 | 6.1 | 199.4 |
YOLOV5 | BiFPN | TPH | 0.774 | 0.803 | 0.765 | 0.058 | 51.94 | 5.5 | 111.3 |
YOLOV5 | RBiFPN | TPH | 0.821 | 0.812 | 0.805 | 0.054 | 106.56 | 4.0 | 202.9 |
Ours | RBiFPN | Swin-TPH | 0.858 | 0.826 | 0.823 | 0.053 | 103.14 | 4.1 | 407.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, A.; Zhao, Y.; Zheng, Z. Novel Recursive BiFPN Combining with Swin Transformer for Wildland Fire Smoke Detection. Forests 2022, 13, 2032. https://doi.org/10.3390/f13122032
Li A, Zhao Y, Zheng Z. Novel Recursive BiFPN Combining with Swin Transformer for Wildland Fire Smoke Detection. Forests. 2022; 13(12):2032. https://doi.org/10.3390/f13122032
Chicago/Turabian StyleLi, Ao, Yaqin Zhao, and Zhaoxiang Zheng. 2022. "Novel Recursive BiFPN Combining with Swin Transformer for Wildland Fire Smoke Detection" Forests 13, no. 12: 2032. https://doi.org/10.3390/f13122032
APA StyleLi, A., Zhao, Y., & Zheng, Z. (2022). Novel Recursive BiFPN Combining with Swin Transformer for Wildland Fire Smoke Detection. Forests, 13(12), 2032. https://doi.org/10.3390/f13122032