Predicting Changes in Forest Growing Season (FGS) in the Transitional Climate of Poland on the Basis of Current Grid Datasets
Abstract
:1. Introduction
2. Materials and Methods
2.1. Determination of FGSy and FGSr Based on Data from Meteorological Stations
2.2. Determination of FGSg Based on Grid Data
2.3. Determination of FGSc Based on Correction Model
2.4. Determination of FGSp Based on Climate Change Scenarios
3. Results
3.1. Assessing the Accuracy of WorldClim Data for Determining the FGS in the Period 1970–2000
3.2. Forecast of Changes of FGS According to Climate Scenarios
4. Discussion
4.1. Usefullness of WorldClim Grid Dataset for FGS Determination
4.2. Observed and Projected Changes of the Growing Season
4.3. Expected Consequences of Changes in the Length of the Growing Season
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Menzel, A.; Fabian, P. Growing season extended in Europe. Nature 1999, 397, 659. [Google Scholar] [CrossRef]
- Hanewinkel, M.; Cullmann, D.A.; Schelhaas, M.J.; Nabuurs, G.J.; Zimmermann, N.E. Climate change may cause severe loss in the economic value European forest land. Nat. Clim. Chang. 2013, 3, 203–207. [Google Scholar] [CrossRef]
- Milad, M.; Schaich, H.; Bürgi, M.; Konold, W. Climate change and nature conservation in Central European forests: A review of consequences, concepts and challenges. For. Ecol. Manag. 2011, 261, 829–843. [Google Scholar] [CrossRef]
- Parks, C.G.; Bernier, P. Adaptation of forests and forest management to changing climate with emphasis on forest health: A review of science, policies and practices. For. Ecol. Manag. 2010, 259, 657–659. [Google Scholar] [CrossRef]
- Allen, C.D.; Macalady, A.K.; Chenchouni, H.; Bachelet, D.; McDowell, N.; Vennetier, M.; Kitzberger, T.; Rigling, A.; Breshears, D.D.; (Ted)Hogg, E.H.; et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 2010, 259, 660–684. [Google Scholar] [CrossRef] [Green Version]
- Frich, P.; Alexander, L.V.; Della-Marta, P.; Gleason, B.; Haylock, M.; Tank Klein, A.M.G.; Peterson, T. Observed coherent changes in climatic extremes during the second half of the twentieth century. Clim. Res. 2002, 19, 193–212. [Google Scholar] [CrossRef] [Green Version]
- Williams, A.P.; Allen, C.D.; Macalady, A.K.; Griffin, D.; Woodhouse, C.A.; Meko, D.M.; Swetnam, T.W.; Rauscher, S.A.; Seager, R.; Grissino-Mayer, H.D.; et al. Temperature as a potent driver of regional forest drought stress and tree mortality. Nat. Clim. Chang. 2013, 3, 292–297. [Google Scholar] [CrossRef]
- Waltari, E.; Schroeder, R.; Mcdonald, K.; Anderson, R.P.; Carnaval, A. Bioclimatic variables derived from remote sensing: Assessment and application for species distribution modelling. Methods Ecol. Evol. 2014, 5, 1033–1042. [Google Scholar] [CrossRef]
- Anderson-Teixeira, K.J.; Miller, A.D.; Mohan, J.E.; Hudiburg, T.W.; Duval, B.D.; DeLucia, E.H. Altered dynamics of forest recovery under a changing climate. Glob. Chang. Biol. 2013, 19, 2001–2021. [Google Scholar] [CrossRef]
- Lebourgeois, F.; Rathgeber, C.B.K.; Ulrich, E. Sensitivity of French temperate coniferous forests to climate variability and extreme events (Abies alba, Picea abies and Pinus sylvestris). J. Veg. Sci. 2010, 21, 364–376. [Google Scholar] [CrossRef]
- Bertini, G.; Amoriello, T.; Fabbio, G.; Piovosi, M. Forest growth and climate change: Evidences from the ICP-Forests intensive monitoring in Italy. IForest 2011, 4, 262–267. [Google Scholar] [CrossRef] [Green Version]
- Parmesan, C.; Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 2003, 421, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Cornes, R.C.; van der Schrier, G.; Squintu, A.A. A reappraisal of the thermal growing season length across Europe. Int. J. Climatol. 2019, 39, 1787–1795. [Google Scholar] [CrossRef] [Green Version]
- Menzel, A.; Jakobi, G.; Ahas, R.; Scheifinger, H.; Estrella, N. Variations of the climatological growing season (1951–2000) in Germany compared with other countries. Int. J. Climatol. 2003, 23, 793–812. [Google Scholar] [CrossRef]
- Graczyk, D.; Kundzewicz, Z.W. Changes of temperature-related agroclimatic indices in Poland. Theor. Appl. Climatol. 2016, 124, 401–410. [Google Scholar] [CrossRef] [Green Version]
- Spiecker, H. Overview of Recent Growth Trends in European Forests. In Forest Growth Responses to the Pollution Climate of the 21st Century; Springer: Dordrecht, The Netherlands, 1999; Volume 116, pp. 33–46. [Google Scholar] [CrossRef]
- Pretzsch, H. Forest Dynamics, Growth and Yield; Springer: Berlin/Heidelberg, Germany, 2010; ISBN 978-3-540-88306-7. [Google Scholar]
- Lenoir, J.; Gégout, J.C.; Marquet, P.A.; De Ruffray, P.; Brisse, H. A significant upward shift in plant species optimum elevation during the 20th century. Science 2008, 320, 1768–1771. [Google Scholar] [CrossRef]
- Küchler, M.; Küchler, H.; Bedolla, A.; Wohlgemuth, T. Response of Swiss forests to management and climate change in the last 60 years. Ann. For. Sci. 2015, 72, 311–320. [Google Scholar] [CrossRef] [Green Version]
- Meinshausen, M.; Smith, S.J.; Calvin, K.; Daniel, J.S.; Kainuma, M.L.T.; Lamarque, J.; Matsumoto, K.; Montzka, S.A.; Raper, S.C.B.; Riahi, K.; et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim. Chang. 2011, 109, 213–241. [Google Scholar] [CrossRef] [Green Version]
- Meinshausen, M.; Nicholls, Z.R.J.; Lewis, J.; Gidden, M.J.; Vogel, E.; Freund, M.; Beyerle, U.; Gessner, C.; Nauels, A.; Bauer, N.; et al. The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500. Geosci. Model Dev. 2020, 13, 3571–3605. [Google Scholar] [CrossRef]
- Pretzsch, H.; Biber, P.; Durskı, J.; Ďurský, J.; Durskı, J. The single tree-based stand simulator SILVA: Construction, application and evaluation. For. Ecol. Manage. 2002, 162, 3–21. [Google Scholar] [CrossRef]
- Fabrika, M. Simulátor Biodynamiky Lesa SIBYLA. Koncepcia, Konštrukcia a Programové Riešenie; Habilitacná práca; Technická univerzita vo Zvolene: Zvolen, Slovakia, 2005. [Google Scholar]
- Fabrika, M.; Ďurský, J. Implementing tree growth models in Slovakia. In Sustainable Forest Management: Growth Models for Europe; Hasenauer, H., Ed.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 315–341. ISBN 3540260986. [Google Scholar]
- Chmielewski, F.M.; Rötzer, T. Response of tree phenology to climate change across Europe. Agric. For. Meteorol. 2001, 108, 101–112. [Google Scholar] [CrossRef]
- Schwartz, M.D.; Ahas, R.; Aasa, A. Onset of spring starting earlier across the Northern Hemisphere. Glob. Chang. Biol. 2006, 12, 343–351. [Google Scholar] [CrossRef]
- Fu, Y.H.; Piao, S.; Op de Beeck, M.; Cong, N.; Zhao, H.; Zhang, Y.; Menzel, A.; Janssens, I.A. Recent spring phenology shifts in western Central Europe based on multiscale observations. Glob. Ecol. Biogeogr. 2014, 23, 1255–1263. [Google Scholar] [CrossRef]
- Kolářová, E.; Nekovář, J.; Adamík, P. Long-term temporal changes in central European tree phenology (1946−2010) confirm the recent extension of growing seasons. Int. J. Biometeorol. 2014, 58, 1739–1748. [Google Scholar] [CrossRef]
- Danielewska, A.; Urbaniak, M.; Olejnik, J. Growing season length as a key factor of cumulative net ecosystem exchange overthe pine forest ecosystems in Europe. Int. Agrophysics 2015, 29, 129–135. [Google Scholar] [CrossRef]
- Menzel, A. Trends in phenological phases in Europe between 1951 and 1996. Int. J. Biometeorol. 2000, 44, 76–81. [Google Scholar] [CrossRef]
- Iverson, L.R.; Prasad, A.M.; Matthews, S.N.; Peters, M.P. Lessons Learned While Integrating Habitat, Dispersal, Disturbance, and Life-History Traits into Species Habitat Models Under Climate Change. Ecosystems 2011, 14, 1005–1020. [Google Scholar] [CrossRef]
- McKenney, D.W.; Pedlar, J.H.; Lawrence, K.; Campbell, K.; Hutchinson, M.F. Potential Impacts of Climate Change on the Distribution of North American Trees. Bioscience 2007, 57, 939–948. [Google Scholar] [CrossRef]
- Linderholm, H.W.; Walther, A.; Chen, D. Twentieth-century trends in the thermal growing season in the Greater Baltic Area. Clim. Chang. 2008, 87, 405–419. [Google Scholar] [CrossRef]
- Ahas, R.; Aasa, R.; Menzel, A.; Fedotova, V.G.; Scheifinger, H. Changes in European spring phenology. Int. J. Climatol. 2002, 22, 1727–1738. [Google Scholar] [CrossRef]
- Xu, L.; Myneni, R.B.; Chapin, F.S.; Callaghan, T.V.; Pinzon, J.E.; Tucker, C.J.; Zhu, Z.; Bi, J.; Ciais, P.; Tømmervik, H.; et al. Temperature and vegetation seasonality diminishment over northern lands. Nat. Clim. Chang. 2013, 3, 581–586. [Google Scholar] [CrossRef] [Green Version]
- Cui, L.; Shi, J.; Ma, Y. A Comparison of Thermal Growing Season Indices for the Northern China during 1961-2015. Adv. Meteorol. 2017, 2017, 6718729. [Google Scholar] [CrossRef] [Green Version]
- Linderholm, H.W. Growing season changes in the last century. Agric. For. Meteorol. 2006, 137, 1–14. [Google Scholar] [CrossRef]
- Seeman, J.Y.; Chirkov, I.; Lomas, J.; Primault, B. Agrometeorology; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1979. [Google Scholar]
- Duursma, R.A.; Landsberg, J.; Sands, P. Physiological ecology of forest production: Principles, processes, and models. Tree Physiol. 2011, 31, 680–681. [Google Scholar] [CrossRef]
- Primault, B. Temperature data used to determine a theoretical start to forest tree growth in spring. Theor. Appl. Climatol. 1992, 45, 139–143. [Google Scholar] [CrossRef]
- Dittmar, C.; Elling, W. Phenological phases of common beech (Fagus sylvatica L.) and their dependence on region and altitude in southern germany. Eur. J. For. Res. 2006, 125, 181–188. [Google Scholar] [CrossRef]
- Durło, G. Leśny okres wegetacyjny na obszarze LKP Lasy Beskidu Śląskiego. Sylwan 2010, 154, 577–584. [Google Scholar]
- Dragańska, E.; Szwejkowski, Z.; Cymes, I.; Panfil, M. Charakterystyka leśnego okresu wegetacyjnego w Polsce na podstawie wybranego scenariusza zmian klimatu. Sylwan 2017, 161, 303–311. [Google Scholar]
- Kossowska-Cezak, U.; Martyn, D.; Olszewski, K.; Kopacz−Lembowicz, M. Meteorologia i Klimatologia. Pomiary, Obserwacje, Opracowania; PWN: Warszawa, Poland, 2000. [Google Scholar]
- Fick, S.E.; Hijmans, R.J.; Fick, S.E. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Wango, T.J.L.; Musiega, D.; Mundia, C.N. Assessing the Suitability of the WorldClim Dataset for Ecological Studies in Southern Kenya. J. Geogr. Inf. Syst. 2018, 10, 643–658. [Google Scholar] [CrossRef] [Green Version]
- Cerasoli, F.; D’Alessandro, P.; Biondi, M. WorldClim 2.1 versus WorldClim 1.4: Climatic niche and grid resolution affect between-version mismatches in Habitat Suitability Models predictions across Europe. Ecol. Evol. 2022, 12, e8430. [Google Scholar] [CrossRef]
- Liang, J.; Crowther, T.W.; Picard, N.; Wiser, S.; Zhou, M.; Alberti, G.; Schulze, E.D.; McGuire, A.D.; Bozzato, F.; Pretzsch, H.; et al. Positive biodiversity-productivity relationship predominant in global forests. Science 2016, 354, aaf8957. [Google Scholar] [CrossRef] [Green Version]
- Brandl, S.; Mette, T.; Falk, W.; Vallet, P.; Rötzer, T.; Pretzsch, H. Static site indices from different national forest inventories: Harmonization and prediction from site conditions. Ann. For. Sci. 2018, 75, 59. [Google Scholar] [CrossRef] [Green Version]
- Team, R.C. R: A Language and Environment for Statistical Computing 2022; R Foundation for Statistical Computing: Vienna, Austria, 2022. [Google Scholar]
- Czernecki, B.; Glogowski, A.; Nowosad, J. Climate: An R package to access free in-situ meteorological and hydrological datasets for environmental assessment. Sustainability 2020, 12, 394. [Google Scholar] [CrossRef] [Green Version]
- Harris, I.; Jones, P.D.; Osborn, T.J.; Lister, D.H. Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 Dataset. Int. J. Climatol. 2014, 34, 623–642. [Google Scholar] [CrossRef] [Green Version]
- Tomczyk, A.M.; Szyga–Pluta, K. Period of Intense Vegetation in Poland in the Years 1966–2015. Badania Fizjogr. Ser. A Geogr. Fiz. 2018, 9, 239–248. [Google Scholar] [CrossRef]
- Tomczyk, A.M.; Szyga-Pluta, K. Variability of thermal and precipitation conditions in the growing season in Poland in the years 1966–2015. Theor. Appl. Climatol. 2019, 135, 1517–1530. [Google Scholar] [CrossRef] [Green Version]
- Czernecki, B.; Miętus, M. The thermal seasons variability in Poland, 1951–2010. Theor. Appl. Climatol. 2017, 127, 481–493. [Google Scholar] [CrossRef] [Green Version]
- Hastie, T.J.; Tibshirani, R.J. Generalized additive models. Gen. Addit. Model. 2017, 4, 249–307. [Google Scholar]
- Wood, S.N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. Ser. B Stat. Methodol. 2011, 73, 3–36. [Google Scholar] [CrossRef] [Green Version]
- Fasiolo, M.; Nedellec, R.; Goude, Y.; Wood, S.N. Scalable visualisation methods for modern Generalized Additive Models. J. Comput. Graph. Stat. 2018, 29, 78–86. [Google Scholar] [CrossRef] [Green Version]
- Haylock, M.R.; Hofstra, N.; Klein Tank, A.M.G.; Klok, E.J.; Jones, P.D.; New, M. A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J. Geophys. Res. Atmos. 2008, 113, 20119. [Google Scholar] [CrossRef]
- Muñoz, E.; Álvarez, C.; Billib, M.; Arumí, J.L.; Rivera, D. Comparison of Gridded and Measured Rainfall Data for Basin-scale Hydrological Studies. Chil. J. Agric. Res. 2011, 71, 459–468. [Google Scholar] [CrossRef] [Green Version]
- Schamm, K.; Ziese, M.; Becker, A.; Finger, P.; Meyer-Christoffer, A.; Schneider, U.; Schröder, M.; Stender, P. Global gridded precipitation over land: A description of the new GPCC First Guess Daily product. Earth Syst. Sci. Data 2014, 6, 49–60. [Google Scholar] [CrossRef] [Green Version]
- Chojnacka-Ożga, L.; Ożga, W.; Bolibok, L. Ocena przydatności danych gridowych w badaniach dendroklimatologicznych. Stud. I Mater. CEPL W Rogowie R. 2016, 18, 71–79. [Google Scholar]
- Kożuchowski, K.; Degirmendžić, J. Contemporary changes of climate in Poland: Trends and variation in thermal and solar conditions related to plant vegetation. Polish J. Ecol. 2005, 53, 283–297. [Google Scholar]
- Tomczyk, A.M.; Szyga-Pluta, K. Okres wegetacyjny w Polsce w latach 1971-2010. Prz. Geogr. 2016, 88, 75–86. [Google Scholar] [CrossRef]
- Nieróbca, A.; Kozyra, J.; Żyłowska, K.; Wróblewska, E. Changing length of the growing season in Poland. Woda-Sr. -Obsz. Wiej. 2013, 13, 81–94. [Google Scholar]
- Kijowska, M. Charakterystyka okresu wegetacyjnego w Szymbarku w latach 1968–2009. Rocz. Świętokrzyski. Ser. B Nauk. Przyr. 2010, 31, 29–43. [Google Scholar]
- Tylkowski, J. The variability of climatic vegetative seasons and thermal resources at the polish baltic sea coastline in the context of potential composition of coastal forest communities. Balt. For. 2015, 21, 73–82. [Google Scholar]
- Feliksik, E.; Wilczyński, S.; Durło, G. Variability of air temperatures of the temperate climatic belt of the Beskid Sądecki mountains in the period 1971-2000 as exemplified by the climatological station in Kopciowa. EJPAU Ser. For. 2001, 4, 1–17. [Google Scholar]
- Allen, C.D.; Breshears, D.D.; Mcdowell, N.G.; Allen, C.; Breshears, D.D.; Mcdowell, N.G. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 2015, 6, 1–55. [Google Scholar] [CrossRef]
- De Wergifosse, L.; André, F.; Goosse, H.; Caluwaerts, S.; de Cruz, L.; de Troch, R.; Van Schaeybroeck, B.; Jonard, M. CO2 fertilization, transpiration deficit and vegetation period drive the response of mixed broadleaved forests to a changing climate in Wallonia. Ann. For. Sci. 2020, 77, 70. [Google Scholar] [CrossRef]
- Kauppi, P.E.; Ciais, P.; Högberg, P.; Nordin, A.; Lappi, J.; Lundmark, T.; Wernick, I.K. Carbon benefits from Forest Transitions promoting biomass expansions and thickening. Glob. Chang. Biol. 2020, 26, 5365. [Google Scholar] [CrossRef]
- Wang, Y.; Shen, X.; Tong, S.; Zhang, M.; Jiang, M.; Lu, X. Aboveground Biomass of Wetland Vegetation Under Climate Change in the Western Songnen Plain. Front. Plant Sci. 2022, 13, 2068. [Google Scholar] [CrossRef]
- Song, X.; Li, F.; Harrison, S.P.; Luo, T.; Arneth, A.; Forrest, M.; Hantson, S.; Lasslop, G.; Mangeon, S.; Ni, J.; et al. Vegetation biomass change in China in the 20th century: An assessment based on a combination of multi-model simulations and field observations. Environ. Res. Lett. 2020, 15, 094026. [Google Scholar] [CrossRef]
- Feliksik, E.; Durło, G. Climatological characterisation of the area of the Carpathian Regional Gene Bank in the Wisła Forest District. Dendrobiology 2004, 51, 43–51. [Google Scholar]
- Socha, J.; Tyminska-Czabanska, L.; Grabska, E.; Orzeł, S. Site index models for main forest-forming tree species in poland. Forests 2020, 11, 301. [Google Scholar] [CrossRef] [Green Version]
- Bałazy, R.; Zasada, M.; Ciesielski, M.; Waraksa, P.; Zawiła-Niedźwiecki, T. Forest dieback processes in the Central European Mountains in the context of terrain topography and selected stand attributes. For. Ecol. Manag. 2019, 435, 106–119. [Google Scholar] [CrossRef]
- Hunziker, S.; Begert, M.; Scherrer, S.C.; Rigling, A.; Gessler, A. Below Average Midsummer to Early Autumn Precipitation Evolved Into the Main Driver of Sudden Scots Pine Vitality Decline in the Swiss Rhône Valley. Front. For. Glob. Chang. 2022, 5, 103. [Google Scholar] [CrossRef]
- Garamvölgyi, Á.; Hufnagel, L. Impacts of climate change on vegetation distribution No. 1: Climate change induced vegetation shifts in the palearctic region. Appl. Ecol. Environ. Res. 2013, 11, 79–122. [Google Scholar] [CrossRef]
- Pickell, P.D.; Hermosilla, T.; Coops, N.C.; Masek, J.G.; Franks, S.; Huang, C. Monitoring anthropogenic disturbance trends in an industrialized boreal forest with Landsat time series. Remote Sens. Lett. 2014, 5, 783–792. [Google Scholar] [CrossRef]
- Chakraborty, A. Mountains as vulnerable places: A global synthesis of changing mountain systems in the Anthropocene. GeoJournal 2019, 86, 585–604. [Google Scholar] [CrossRef]
- Loreau, M.; Naeem, S.; Inchausti, P.; Bengtsson, J.; Grime, J.P.; Hector, A.; Hooper, D.U.; Huston, M.A.; Raffaelli, D.; Schmid, B.; et al. Ecology: Biodiversity and ecosystem functioning: Current knowledge and future challenges. Science 2001, 294, 804–808. [Google Scholar] [CrossRef] [Green Version]
- Yachi, S.; Loreau, M. Biodiversity and ecosystem productivity in a fluctuating environment: The insurance hypothesis. Proc. Natl. Acad. Sci. USA 1999, 96, 1463–1468. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wertz, B.; Wilczyński, S. Predicting Changes in Forest Growing Season (FGS) in the Transitional Climate of Poland on the Basis of Current Grid Datasets. Forests 2022, 13, 2019. https://doi.org/10.3390/f13122019
Wertz B, Wilczyński S. Predicting Changes in Forest Growing Season (FGS) in the Transitional Climate of Poland on the Basis of Current Grid Datasets. Forests. 2022; 13(12):2019. https://doi.org/10.3390/f13122019
Chicago/Turabian StyleWertz, Bogdan, and Sławomir Wilczyński. 2022. "Predicting Changes in Forest Growing Season (FGS) in the Transitional Climate of Poland on the Basis of Current Grid Datasets" Forests 13, no. 12: 2019. https://doi.org/10.3390/f13122019
APA StyleWertz, B., & Wilczyński, S. (2022). Predicting Changes in Forest Growing Season (FGS) in the Transitional Climate of Poland on the Basis of Current Grid Datasets. Forests, 13(12), 2019. https://doi.org/10.3390/f13122019