Soil Carbon Pool and Carbon Fluxes Estimation in 26 Years after Selective Logging Tropical Forest at Sabah, Malaysia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design
2.3. Soil Carbon Pool Estimation
2.4. Organic-Layer Carbon-Pool Estimation
2.5. Litterfall Carbon Pool Estimation
2.6. Soil Respiration Measurement
2.7. Statistical Analysis
3. Results
3.1. Soil Physicochemical Properties
3.2. Litterfall Production
3.3. Soil Carbon Pool
3.4. Total Carbon Pool (Organic Layer, Litterfall, and Soil Carbon Pool)
3.5. Soil Respiration Rates
4. Discussion
4.1. Soil Physicochemical Properties of the Forest 26 Years after Being Logged
4.2. Litterfall and Organic Layer Carbon Pools
4.3. Soil Carbon Pool
4.4. Total Soil, Organic Layer, and Litterfall Carbon Pool
4.5. Soil Respiration Rates in Logged Forest
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gaudel, G.; Wen Hui, Z.; Quang Hung, D.; Thi Hien, L. The Global Terrestrial Carbon Stocks, Status of Carbon in Forest and Shrub Land of Nepal, and Relationship between Carbon Stock and Diversity. Int. J. Res. 2016, 3, 2348–6848. [Google Scholar]
- Suhaili, N.S.; Hatta, S.M.; James, D.; Hassan, A.; Jalloh, M.B.; Phua, M.H.; Besar, N.A. Soils Carbon Stocks and Litterfall Fluxes from the Bornean Tropical Montane Forests, Sabah, Malaysia. Forests 2021, 12, 1621. [Google Scholar] [CrossRef]
- Chen, L.C.; Guan, X.; Li, H.M.; Wang, Q.K.; Zhang, W.D.; Yang, Q.P.; Wang, S.L. Spatiotemporal Patterns of Carbon Storage in Forest Ecosystems in Hunan Province, China. For. Ecol. Manag. 2019, 432, 656–666. [Google Scholar] [CrossRef]
- Chinade, A.A.; Siwar, C.; Ismail, S.M.; Isahak, A. A Review on Carbon Sequestration in Malaysian Forest Soils: Opportunities and Barriers. Int. J. Soil Sci. 2015, 10, 17–27. [Google Scholar] [CrossRef]
- Sadono, R.; Pujiono, E.; Lestari, L. Land Cover Changes and Carbon Storage before and after Community Forestry Program in Bleberan Village, Gunungkidul, Indonesia, 1999–2018. Forest Sci. Technol. 2020, 16, 134–144. [Google Scholar] [CrossRef]
- FAO. Global Soil Organic Carbon Map. 2017. Available online: https://www.fao.org/3/i8195e/i8195e.pdf (accessed on 10 October 2022).
- Takada, M.; Yamada, T.; Shamsudin, I.; Okuda, T. Spatial Variation in Soil Respiration in Relation to a Logging Road in an Upper Tropical Hill Forest in Peninsular Malaysia. Tropics 2015, 24, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Propa, M.J.; Hossain, M.I.; Ahmed, A. Carbon Stock and Respiration of Rhizosphere Soils of Sal (Shorea Robusta Roxb. Ex. Gaertn. f.) in Relation to Some Environmental Variables of Different Sal Forest Stands of Bangladesh. Bangladesh J. Bot. 2021, 50, 685–693. [Google Scholar] [CrossRef]
- Cindy, U.S.; Hazandy, A.H.; Ahmad-Ainuddin, N.; Mohd-Kamil, I. Soil CO2 Efflux in Relation to Soil Temperature and Relative Humidity in Gmelina, Mahogany and Pine Stands in Malaysia. J. Trop. For. Sci. 2018, 30, 207–215. [Google Scholar] [CrossRef]
- Xiao, W.; Ge, X.; Zeng, L.; Huang, Z.; Lei, J.; Zhou, B.; Li, M. Rates of Litter Decomposition and Soil Respiration in Relation to Soil Temperature and Water in Different-Aged Pinus Massoniana Forests in the Three Gorges Reservoir Area, China. PLoS ONE 2014, 9, e101890. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zou, J.; Meng, D.; Dang, S.; Zhou, J.; Osborne, B.; Ren, Y.; Liang, T.; Yu, K. Effect of Soil Microorganisms and Labile C Availability on Soil Respiration in Response to Litter Inputs in Forest Ecosystems: A Meta-Analysis. Ecol. Evol. 2020, 10, 13602–13612. [Google Scholar] [CrossRef]
- Hosea, M.K.; Abdullah, A.M.; Aris, A.Z.; Nuruddin, A.A.; Suleman, N.E.; Kasham, J.S.; Julius, B.; Deborah, B.; Douglas, S.; Gugong, K.B.; et al. Soil Carbon Dioxide Efflux and Atmospheric Impact in a 10-Year-Old Dipterocarpus Recovering Lowland Tropical Forest, Peninsular Malaysia. J. Earth Sci. Eng. 2017, 7, 37–50. [Google Scholar] [CrossRef]
- Tian, Q.; Wang, D.; Tang, Y.; Li, Y.; Wang, M.; Liao, C.; Liu, F. Topographic Controls on the Variability of Soil Respiration in a Humid Subtropical Forest. Biogeochemistry 2019, 145, 177–192. [Google Scholar] [CrossRef]
- Riutta, T.; Kho, L.K.; Teh, Y.A.; Ewers, R.; Majalap, N.; Malhi, Y. Major and Persistent Shifts in Below-Ground Carbon Dynamics and Soil Respiration Following Logging in Tropical Forests. Glob. Chang. Biol. 2021, 27, 2225–2240. [Google Scholar] [CrossRef] [PubMed]
- Cazzolla Gatti, R.; Castaldi, S.; Lindsell, J.A.; Coomes, D.A.; Marchetti, M.; Maesano, M.; Di Paola, A.; Paparella, F.; Valentini, R. The Impact of Selective Logging and Clearcutting on Forest Structure, Tree Diversity and above-Ground Biomass of African Tropical Forests. Ecol. Res. 2015, 30, 119–132. [Google Scholar] [CrossRef]
- Lussetti, D.; Axelsson, E.P.; Ilstedt, U.; Falck, J.; Karlsson, A. Supervised Logging and Climber Cutting Improves Stand Development: 18 Years of Post-Logging Data in a Tropical Rain Forest in Borneo. For. Ecol. Manag. 2016, 381, 335–346. [Google Scholar] [CrossRef]
- Forshed, O.; Udarbe, T.; Karlsson, A.; Falck, J. Initial Impact of Supervised Logging and Pre-Logging Climber Cutting Compared with Conventional Logging in a Dipterocarp Rainforest in Sabah, Malaysia. For. Ecol. Manag. 2006, 221, 233–240. [Google Scholar] [CrossRef]
- Lussetti, D.; Kuljus, K.; Ranneby, B.; Ilstedt, U.; Falck, J.; Karlsson, A. Using Linear Mixed Models to Evaluate Stand Level Growth Rates for Dipterocarps and Macaranga Species Following Two Selective Logging Methods in Sabah, Borneo. For. Ecol. Manage. 2019, 437, 372–379. [Google Scholar] [CrossRef]
- Forshed, O.; Karlsson, A.; Falck, J.; Cedergren, J. Stand Development after Two Modes of Selective Logging and Pre-Felling Climber Cutting in a Dipterocarp Rainforest in Sabah, Malaysia. For. Ecol. Manag. 2008, 255, 993–1001. [Google Scholar] [CrossRef]
- Sukhbaatar, G.; Baatarbileg, N.; Battulga, P.; Batsaikhan, G.; Khishigjargal, M.; Batchuluun, T.; Gradel, A. Which Selective Logging Intensity Is Most Suitable for the Maintenance of Soil Properties and the Promotion of Natural Regeneration in Highly Continental Scots Pine Forests?—Results 19 Years after Harvest Operations in Mongolia. Forests 2019, 10, 141. [Google Scholar] [CrossRef] [Green Version]
- Okuda, T.; Shima, K.; Yamada, T.; Hosaka, T.; Niiyama, K.; Kosugi, Y.; Yoneda, T.; Hashim, M.; Quah, E.S.; Saw, L.G. Spatiotemporal changes in biomss after selective logging in a lowland tropical rainforest in Peninsular Malaysia. Tropics 2021, 30, 11–23. [Google Scholar] [CrossRef]
- Sadeghi, S.M.; Faridah-Hanum, I.; Wan Razali, W.M.; Kudus, K.A.; Hakeem, K.R. Tree composition and diversity of a hill dipterocarp forest after logging. Malays. Nat. 2014, 66, 1–15. [Google Scholar]
- Malaysian Meterological Department. Records of Monthly Rainfall Amount and Records of 24 Hours Temperature, 2018–2020; Malaysian Meterological Department: Petaling Jaya, Malaysia, Unpublished Report.
- Han, Y.; Zhang, J.; Mattson, K.G.; Zhang, W.; Weber, T.A. Sample Sizes to Control Error Estimates in Determining Soil Bulk Density in California Forest Soils. Soil Sci. Soc. Am. J. 2016, 80, 756–764. [Google Scholar] [CrossRef]
- Day, P.R. Particle Fractionation and Particle-Size Analysis. Methods Soil Anal. Part 1 Phys. Mineral. Prop. Incl. Stat. Meas. Sampl. 1965, 9, 545–567. [Google Scholar] [CrossRef]
- Hossain, M.Z.; Aziz, C.B.; Saha, M.L. Relationships between Soil Physico-Chemical Properties and Total Viable Bacterial Counts in Sunderban Mangrove Forests, Bangladesh. Dhaka Univ. J. Biol. Sci. 2012, 21, 169–175. [Google Scholar] [CrossRef] [Green Version]
- Heiri, O.; Lotter, A.F.; Lemcke, G. Loss on Ignition as a Method for Estimating Organic and Carbonate Content in Sediments: Reproducibility and Comparability of Results. J. Paleolimnol. 2001, 25, 101–110. [Google Scholar] [CrossRef]
- Kauffman, J.B.; Donato, D.C. Protocols for the Measurement, Monitoring and Reporting of Structure, Biomass and Carbon Stocks in Mangrove Forests; Working Paper 86; CIFOR: Bogor, Indonesia, 2012. [Google Scholar]
- Zhou, X.; Zhou, Y.; Zhou, C.; Wu, Z.; Zheng, L.; Hu, X.; Chen, H.; Gan, J. Effects of Cutting Intensity on Soil Physical and Chemical Properties in a Mixed Natural Forest in Southeastern China. Forests 2015, 6, 4495–4509. [Google Scholar] [CrossRef]
- Yin, X.; Zhao, L.; Fang, Q.; Ding, G. Differences in Soil Physicochemical Properties in Different-Aged Pinus Massoniana Plantations in Southwest China. Forests 2021, 12, 987. [Google Scholar] [CrossRef]
- Mishra, G.; Giri, K.; Jangir, A.; Vasu, D.; Rodrigo-Comino, J. Understanding the Effect of Shifting Cultivation Practice (Slash-Burn-Cultivation-Abandonment) on Soil Physicochemical Properties in the North-Eastern Himalayan Region. Investig. Geogr. 2021, 76, 243–261. [Google Scholar] [CrossRef]
- Cleophas, F.; Musta, B.; How, P.M.; Bidin, K. Runoff and Soil Erosion in Selectively-Logged Over Forest, Danum Valley Sabah, Malaysia. Trans. Sci. Technol. 2017, 4, 449–459. [Google Scholar]
- Aşkin, T.; Özdemir, N. Soil Bulk Density as Related to Soil Particle Size Distribution and Organic Matter Content. Poljopr. Agric. 2003, 9, 52–55. [Google Scholar]
- Amlin, G.; Suratman, M.N.; Isa, N.N.M. Soil Chemical Analysis of Secondary Forest 30 Years after Logging Activities at Krau Wildlife Reserve, Pahang, Malaysia. APCBEE Procedia 2014, 9, 75–81. [Google Scholar] [CrossRef] [Green Version]
- Turgut, B. Comparison of Wheat and Safflower Cultivation Areas in Terms of Total Carbon and Some Soil Properties under Semi-Arid Climate Conditions. Solid Earth 2015, 6, 719–725. [Google Scholar] [CrossRef] [Green Version]
- Jeyanny, V.; Husni, M.H.A.; Rasidah, K.W.; Kumar, B.S.; Arifin, A.; Hisham, M.K. Carbon Stocks in Different Carbon Pools of a Tropical Lowland Forest and a Montane Forest with Varying Topography. J. Trop. For. Sci. 2014, 26, 560–571. [Google Scholar]
- Voltr, V.; Menšík, L.; Hlisnikovský, L.; Hruška, M.; Pokorný, E.; Pospíšilová, L. The Soil Organic Matter in Connection with Soil Properties and Soil Inputs. Agronomy 2021, 11, 779. [Google Scholar] [CrossRef]
- Keen, Y.C.; Jalloh, M.B.; Ahmed, O.H.; Sudin, M.; Besar, N.A. Soil Organic Matter and Related Soil Properties in Forest, Grassland and Cultivated Land Use Types. Int. J. Phys. Sci. 2011, 6, 7410–7415. [Google Scholar] [CrossRef]
- Okeke, E.S.; Okoye, C.O.; Atakpa, E.O.; Ita, R.E.; Nyaruaba, R.; Mgbechidinma, C.L.; Akan, O.D. Microplastics in Agroecosystems-Impacts on Ecosystem Functions and Food Chain. Resour. Conserv. Recycl. 2022, 177, 105961. [Google Scholar] [CrossRef]
- Navarro-Pedreño, J.; Almendro-Candel, M.B.; Zorpas, A.A. The Increase of Soil Organic Matter Reduces Global Warming, Myth or Reality? Science 2021, 3, 18. [Google Scholar] [CrossRef]
- Kotowska, M.M.; Leuschner, C.; Triadiati, T.; Hertel, D. Conversion of Tropical Lowland Forest Reduces Nutrient Return through Litterfall, and Alters Nutrient Use Efficiency and Seasonality of Net Primary Production. Oecologia 2016, 180, 601–618. [Google Scholar] [CrossRef]
- Park, B.B.; Rahman, A.; Han, S.H.; Youn, W.B.; Hyun, H.J.; Hernandez, J.; An, J.Y. Carbon and Nutrient Inputs by Litterfall in Evergreen and Deciduous Forests in Korea. Forests 2020, 11, 143. [Google Scholar] [CrossRef] [Green Version]
- Hung, T.C.; Awang Besar, N.; Boyie Jalloh, M.; Mahali, M.; Masri, N. Above and belowground carbon stock of acacia mangium stand in Sabah, Malaysia. Borneo Sci. 2020, 48, 9–18. [Google Scholar]
- Dent, D.H.; Bagchi, R.; Robinson, D.; Majalap-Lee, N.; Burslem, D.F.R.P. Nutrient Fluxes via Litterfall and Leaf Litter Decomposition Vary across a Gradient of Soil Nutrient Supply in a Lowland Tropical Rain Forest. Plant Soil 2006, 288, 197–215. [Google Scholar] [CrossRef]
- Inagaki, M.; Kamo, K.; Titin, J.; Jamalung, L.; Lapongan, J.; Miura, S. Nutrient Dynamics through Fine Litterfall in Three Plantations in Sabah, Malaysia, in Relation to Nutrient Supply to Surface Soil. Nutr. Cycl. Agroecosyst. 2010, 88, 381–395. [Google Scholar] [CrossRef]
- Jasinska, J.; Sewerńiak, P.; Puchałka, R. Litterfall in a Scots Pine Forest on Inland Dunes in Central Europe: Mass, Seasonal Dynamics and Chemistry. Forests 2020, 11, 678. [Google Scholar] [CrossRef]
- Zhou, G.; Guan, L.; Wei, X.; Zhang, D.; Zhang, Q.; Yan, J.; Wen, D.; Liu, J.; Liu, S.; Huang, Z.; et al. Litterfall Production along Successional and Altitudinal Gradients of Subtropical Monsoon Evergreen Broadleaved Forests in Guangdong, China. Plant Ecol. 2007, 188, 77–89. [Google Scholar] [CrossRef]
- Ngo, K.M.; Turner, B.L.; Muller-Landau, H.C.; Davies, S.J.; Larjavaara, M.; Hassan, N.F.; Lum, S. Carbon Stocks in Primary and Secondary Tropical Forests in Singapore. For. Ecol. Manag. 2013, 296, 81–89. [Google Scholar] [CrossRef]
- Besar, N.A.; Suardi, H.; Phua, M.H.; James, D.; Mokhtar, M.B.; Ahmed, M.F. Carbon Stock and Sequestration Potential of an Agroforestry System in Sabah, Malaysia. Forests 2020, 11, 210. [Google Scholar] [CrossRef]
- Abdullahi, A.C.; Siwar, C.; Shaharudin, M.I.; Anizan, I. The effects of forest type and land use on soil carbon stock in Malaysian Dipterocarps Forests. Int. J. Adv. Appl. Sci. 2018, 5, 11–17. [Google Scholar] [CrossRef]
- Xiao, S.; Zhang, J.; Duan, J.; Liu, H.; Wang, C.; Tang, C. Soil organic carbon sequestration and active carbon component changes following different vegetation restoration ages on severely eroded red soils in Subtropical China. Forests. 2020, 11, 1304. [Google Scholar] [CrossRef]
- Saner, P.; Lim, R.; Burla, B.; Ong, R.C.; Scherer-Lorenzen, M.; Hector, A. Reduced Soil Respiration in Gaps in Logged Lowland Dipterocarp Forests. For. Ecol. Manag. 2009, 258, 2007–2012. [Google Scholar] [CrossRef] [Green Version]
- da Silva, W.B.; Périco, E.; Dalzochio, M.S.; Santos, M.; Cajaiba, R.L. Are Litterfall and Litter Decomposition Processes Indicators of Forest Regeneration in the Neotropics? Insights from a Case Study in the Brazilian Amazon. For. Ecol. Manag. 2018, 429, 189–197. [Google Scholar] [CrossRef] [Green Version]
- Jia, B.; Zhou, G.; Xu, Z. Forest Litterfall and Its Composition: A New Data Set of Observational Data from China. Ecology 2016, 97, 1365. [Google Scholar] [CrossRef] [Green Version]
- Paudel, E.; Dossa, G.G.O.; Xu, J.; Harrison, R.D. Litterfall and Nutrient Return along a Disturbance Gradient in a Tropical Montane Forest. For. Ecol. Manag. 2015, 353, 97–106. [Google Scholar] [CrossRef]
- Saner, P.; Loh, Y.Y.; Ong, R.C.; Hector, A. Carbon Stocks and Fluxes in Tropical Lowland Dipterocarp Rainforests in Sabah, Malaysian Borneo. PLoS ONE 2012, 7, e29642. [Google Scholar] [CrossRef] [Green Version]
- Geng, A.; Tu, Q.; Chen, J.; Wang, W.; Yang, H. Improving Litterfall Production Prediction in China under Variable Environmental Conditions Using Machine Learning Algorithms. J. Environ. Manag. 2022, 306, 114515. [Google Scholar] [CrossRef] [PubMed]
- Leff, J.W.; Wieder, W.R.; Taylor, P.G.; Townsend, A.R.; Nemergut, D.R.; Grandy, A.S.; Cleveland, C.C. Experimental Litterfall Manipulation Drives Large and Rapid Changes in Soil Carbon Cycling in a Wet Tropical Forest. Glob. Change Biol. 2012, 18, 2969–2979. [Google Scholar] [CrossRef]
- Hansen, E.M.Ø.; Hauggaard-Nielsen, H.; Justes, E.; Ambus, P.; Mikkelsen, T.N. The Influence of Grain Legume and Tillage Strategies on Co2 and N2o Gas Exchange under Varied Environmental Conditions. Agriculture 2021, 11, 464. [Google Scholar] [CrossRef]
- Adachi, M.; Bekku, Y.S.; Rashidah, W.; Okuda, T.; Koizumi, H. Differences in Soil Respiration between Different Tropical Ecosystems. Appl. Soil Ecol. 2006, 34, 258–265. [Google Scholar] [CrossRef]
- Katayama, A.; Kume, T.; Komatsu, H.; Ohashi, M.; Nakagawa, M.; Yamashita, M.; Otsuki, K.; Suzuki, M.; Kumagai, T. Effect of Forest Structure on the Spatial Variation in Soil Respiration in a Bornean Tropical Rainforest. Agric. For. Meteorol. 2009, 149, 1666–1673. [Google Scholar] [CrossRef]
- Zhao, X.; Li, F.; Zhang, W.; Ai, Z.; Shen, H.; Liu, X.; Cao, J.; Manevski, K. Soil Respiration at Different Stand Ages (5, 10, and 20/30 Years) in Coniferous (Pinus Tabulaeformis Carrière) and Deciduous (Populus Davidiana Dode) Plantations in a Sandstorm Source Area. Forests 2016, 7, 153. [Google Scholar] [CrossRef]
Study Areas | Stand Density (Trees ha−1) | Mean DBH (cm) | Basal Area (m2 ha−1) | Aboveground Biomass (Mg ha−1) * | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1992 | 1993 | 2017 | 1992 | 1993 | 2017 | 1992 | 1993 | 2017 | 1992 | 1993 | 2017 | |
SLCC 1 | 519 | 420 | 532 | 22.57 | 22.01 | 24.31 | 32.67 | 23.14 | 35.54 | 266.20 | 182.51 | 285.66 |
CL 2 | 509 | 397 | 538 | 23.35 | 23.34 | 23.99 | 33.63 | 26.08 | 37.31 | 278.11 | 213.03 | 307.02 |
VF 3 | 535 | 534 | 518 | 23.24 | 23.04 | 23.81 | 35.96 | 35.30 | 37.35 | 295.66 | 290.29 | 311.13 |
Depth (cm) | Bulk Density (g cm−3) | Clay (%) | Silt (%) | Sand (%) | Soil Texture | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SLCC 1 | CL 2 | VF 3 | SLCC 1 | CL 2 | VF 3 | SLCC 1 | CL 2 | VF 3 | SLCC 1 | CL 2 | VF 3 | SLCC 1 | CL 2 | VF 3 | |
0–10 | 1.19 ± 0.03 a | 1.22 ± 0.05 a | 1.07 ± 0.08 a | 52 ± 5.32 | 26 ± 1.28 | 29 ± 4.13 | 8 ± 1.22 | 3 ± 0.98 | 13 ± 1.97 | 33 ± 1.11 | 71 ± 2.76 | 54 ± 5.67 | Clay | Sandy Clay Loam | Sandy Clay Loam |
10–20 | 1.29 ± 0.03 a | 1.30 ± 0.04 a | 1.22 ± 0.11 a | 3 ± 1.22 | 31 ± 4.89 | 29 ± 3.18 | 21 ± 2.31 | 3 ± 0.98 | 5 ± 2.11 | 69 ± 4.76 | 65 ± 2.75 | 64 ± 3.48 | Sandy Loam | Sandy Clay Loam | Sandy Clay Loam |
20–50 | 1.34 ± 0.03 a | 1.43 ± 0.03 a | 1.29 ± 0.05 a | 23 ± 1.43 | 21 ± 4.12 | 44 ± 2.19 | 10 ± 1.32 | 8 ± 1.01 | 8 ± 2.93 | 65 ± 3.85 | 69 ± 2.91 | 44 ± 3.29 | Sandy Clay Loam | Sandy Clay Loam | Clay |
50–100 | 1.44 ± 0.02 a | 1.46 ± 0.05 a | 1.42 ± 0.02 a | 8 ± 0.79 | 26 ± 4.10 | 47 ± 2.87 | 26 ± 1.54 | 5 ± 1.63 | 3 ± 1.76 | 65 ± 3.29 | 67 ± 1.65 | 43 ± 3.88 | Sandy Loam | Sandy Clay Loam | Clay |
Depth (cm) | pH Value | Organic Matter (%) | Carbon (%) | Nitrogen (%) | C:N | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SLCC 1 | CL 2 | VF 3 | SLCC 1 | CL 2 | VF 3 | SLCC 1 | CL 2 | VF 3 | SLCC 1 | CL 2 | VF 3 | SLCC 1 | CL 2 | VF 3 | |
0–10 | 4.13 ± 0.26 a | 4.36 ± 0.12 a | 3.87 ± 0.09 a | 7.40 ± 1.06 a | 4.98 ± 0.40 a | 7.33 ± 0.59 a | 1.73 ± 0.24 a | 1.31 ± 0.16 a | 1.99 ± 0.31 a | 0.18 ± 0.05 a | 0.11 ± 0.04 a | 0.17 ± 0.04 a | 13.07 ± 4.37 a | 15.22 ± 2.71 a | 12.91 ± 2.24 a |
10–20 | 4.38 ± 0.21 a | 4.50 ± 0.07 a | 4.00 ± 0.16 a | 6.00 ± 1.27 a | 4.59 ± 0.54 a | 5.89 ± 0.70 a | 0.95 ± 0.18 a | 0.91 ± 0.23 a | 1.01 ± 0.17 a | 0.07 ± 0.02 a | 0.08 ± 0.04 a | 0.05 ± 0.01 a | 16.25 ± 2.82 a | 15.59 ± 3.11 a | 20.98 ± 2.06 a |
20–50 | 4.42 ± 0.16 a | 4.41 ± 0.18 a | 4.24 ± 0.08 a | 6.07 ± 1.08 a | 4.22 ± 0.59 a | 5.27 ± 0.48 a | 0.64 ± 0.11 a | 0.52 ± 0.09 a | 0.68 ± 0.16 a | 0.04 ± 0.13 a | 0.03 ± 0.01 a | 0.04 ± 0.01 a | 18.38 ± 5.66 a | 19.74 ± 2.57 a | 18.94 ± 2.73 a |
50–100 | 4.21 ± 0.09 a | 4.54 ± 0.15 a | 4.39 ± 0.02 a | 5.93 ± 1.08 a | 4.15 ± 0.55 a | 5.06 ± 0.68 a | 0.42 ± 0.09 a | 0.30 ± 0.08 a | 0.36 ± 0.05 a | 0.04 ± 0.01 a | 0.02 ± 0.01 a | 0.02 ± 0.01 a | 12.61 ± 2.89 a | 16.05 ± 1.28 a | 17.31 ± 1.26 a |
Study Areas | Soil Carbon Pool (Mg C ha−1) | Total Soil Carbon Pool (Mg C ha−1) | |||
---|---|---|---|---|---|
0–10 cm | 10–20 cm | 20–50 cm | 50–100 cm | ||
SLCC 1 | 20.49 ± 2.56 a | 12.13 ± 2.09 a | 25.22 ± 3.99 a | 30.12 ± 5.87 a | 87.95 ± 13.67 a |
CL 2 | 15.84 ± 1.62 a | 11.74 ± 2.70 a | 21.96 ± 3.48 a | 21.63 ± 5.50 a | 71.17 ± 12.09 a |
VF 3 | 20.76 ± 2.50 a | 11.97 ± 1.57 a | 25.46 ± 5.30 a | 25.02 ± 3.57 a | 83.20 ± 11.97 a |
Study Areas | Carbon Pools (Mg C ha−1) | Total Carbon Pools (Mg C ha−1) | ||
Organic Layer | Litterfall | Soil | ||
SLCC 1 | 1.28 ± 0.17 a | 5.95 ± 0.20 a | 87.95 ± 13.67 a | 95.17 ± 13.66 a |
CL 2 | 2.00 ± 0.27 a | 5.50 ± 0.39 a | 71.17 ± 12.09 a | 78.66 ± 11.92 a |
VF 3 | 1.58 ± 0.34 a | 7.64 ± 0.36 b | 83.20 ± 11.97 a | 92.41 ± 13.69 a |
Location | Altitude (a.s.l) | Land Use/Forest Type | Soil Depth (cm) | Total Soil Carbon Pool (Mg C ha−1) | Reference |
---|---|---|---|---|---|
Sabah, Malaysia | 1000–1600 m | Intact Forest | 30 | 96.42 | [2] |
Logged-Over Forest | 30 | 91.14 | |||
Plantation Forest | 30 | 88.92 | |||
Singapore | 164 m | Primary Forest | 100 | 77.50 | [48] |
Secondary Forest | 100 | 103.9 | |||
Sabah, Malaysia | 300–470 m | Agroforestry system (Oil palm × Agarwood) | 30 | 39.12–49.75 | [49] |
Monoculture plantation (Oil palm) | 30 | 43.09–45.46 | |||
Natural Tropical Forest | 30 | 36.30 | |||
Peninsular Malaysia, Malaysia | ~600 m | Unlogged Forest | 100 | 87.86 | [50] |
Logged Forest | 100 | 65.55 | |||
Rubber Smallholder | 100 | 67.50 | |||
Rehabilitated Forest | 100 | 76.00 | |||
Degraded Forest | 100 | 44.80 | |||
Jiangxi Province, China | 127–1207 m | Bare Land | 100 | 19.86 | [51] |
Restored Forest | 100 | 21.87–39.65 | |||
Undisturbed Forest | 100 | 75.90 | |||
Sabah, Malaysia | 300–600 m | Supervised logging with climber cutting | 100 | 87.95 | This study |
Conventional logging | 100 | 71.17 | |||
Virgin forest | 100 | 83.20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suhaili, N.S.; Anuar, S.N.; Chiong Wong, W.V.; Lussetti, D.; Axelsson, E.P.; Hasselquist, N.; Ilstedt, U.; Besar, N.A. Soil Carbon Pool and Carbon Fluxes Estimation in 26 Years after Selective Logging Tropical Forest at Sabah, Malaysia. Forests 2022, 13, 1890. https://doi.org/10.3390/f13111890
Suhaili NS, Anuar SN, Chiong Wong WV, Lussetti D, Axelsson EP, Hasselquist N, Ilstedt U, Besar NA. Soil Carbon Pool and Carbon Fluxes Estimation in 26 Years after Selective Logging Tropical Forest at Sabah, Malaysia. Forests. 2022; 13(11):1890. https://doi.org/10.3390/f13111890
Chicago/Turabian StyleSuhaili, Nurul Syakilah, Syazwani Nisa Anuar, Wilson Vun Chiong Wong, Daniel Lussetti, Erik Petter Axelsson, Niles Hasselquist, Ulrik Ilstedt, and Normah Awang Besar. 2022. "Soil Carbon Pool and Carbon Fluxes Estimation in 26 Years after Selective Logging Tropical Forest at Sabah, Malaysia" Forests 13, no. 11: 1890. https://doi.org/10.3390/f13111890
APA StyleSuhaili, N. S., Anuar, S. N., Chiong Wong, W. V., Lussetti, D., Axelsson, E. P., Hasselquist, N., Ilstedt, U., & Besar, N. A. (2022). Soil Carbon Pool and Carbon Fluxes Estimation in 26 Years after Selective Logging Tropical Forest at Sabah, Malaysia. Forests, 13(11), 1890. https://doi.org/10.3390/f13111890