Abnormal Litter Induced by Typhoon Disturbances Had Higher Rates of Mass Loss and Carbon Release than Physiological Litter in Coastal Subtropical Urban Forest Ecosystems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Litter Collection and Experimental Design
2.3. Sampling and Chemical Analyses
2.4. Statistical Analysis and Calculation
3. Results
3.1. Initial Litter Quality of Abnormal Foliar Litter
3.2. Litter Mass Loss
3.3. Litter Carbon Release
3.4. Key Drivers of Mass Loss and Carbon Release of Abnormal Litter
4. Discussion
4.1. Effects of Typhoon Disturbance on Litter Quality
4.2. Effects of Typhoon Disturbance on Abnormal Litter Mass Loss
4.3. Effects of Typhoon Disturbance on Abnormal Litter Carbon Release
5. Main Findings, Conclusions and Perspectives
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lu, X.; Yu, H.; Ying, M.; Zhao, B.; Zhang, S.; Lin, L.; Bai, L.; Wan, R. Western North Pacific tropical cyclone database created by the China Meteorological Administration. Adv. Atmos. Sci. 2021, 38, 690–699. [Google Scholar] [CrossRef]
- Xi, W. Synergistic effects of tropical cyclones on forest ecosystems: A global synthesis. J. For. Res. 2015, 26, 1–21. [Google Scholar] [CrossRef]
- Pruitt, J.N.; Little, A.G.; Majumdar, S.J.; Schoener, T.W.; Fisher, D.N. Call-to-action: A global consortium for tropical cyclone ecology. Trends Ecol. Evol. 2019, 34, 588–590. [Google Scholar] [CrossRef] [PubMed]
- Vandermeer, J.; Granzow, D.L.; Cerda, I.; Boucher, D.; Perfecto, I.; Ruiz, J.E. Hurricane disturbance and tropical tree species diversity. Science 2000, 290, 788–791. [Google Scholar] [CrossRef] [PubMed]
- Zeng, H.; Chamber, J.Q.; Negron-Juarez, R.I.; Hurtt, G.C.; Baker, D.B.; Powell, M.D. Impacts of tropical cyclones on U.S. Forest tree mortality and carbon flux from 1851 to 2000. Proc. Natl. Acad. Sci. USA 2009, 106, 7888–7892. [Google Scholar] [CrossRef] [Green Version]
- Chambers, J.Q.; Fisher, J.; Zeng, H.; Chapman, E.L.; Baker, D.B.; Hurtt, G.C. Hurricane Katrina’s carbon footprint on U.S. Gulf coast forests. Science 2007, 318, 1107. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Climate Change 2021: The Physical Science Basis; Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Vitousek, P.M. Litterfall, nutrient cycling, and nutrient limitation in tropical forests. Ecology 1984, 65, 285–298. [Google Scholar] [CrossRef]
- Krishna, M.P.; Mohan, M. Litter decomposition in forest ecosystems: A review. Energy Ecol. Environ. 2017, 2, 236–249. [Google Scholar] [CrossRef]
- Bray, J.R.; Gorham, E. Litter production in forests of the world. Adv. Ecol. Res. 1964, 2, 101–157. [Google Scholar]
- Malhi, Y.; Doughty, C.; Galbraith, D. The allocation of ecosystem net primary productivity in tropical forests. Philos. Trans. R Soc. Lond. 2011, 366, 3225–3245. [Google Scholar] [CrossRef] [Green Version]
- Berg, B.; McClaugherty, C. Plant Litter: Decomposition, Humus Formation, Carbon Sequestration, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Raich, J.W.; Schlesinger, W.H. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus B 1992, 44, 81–99. [Google Scholar] [CrossRef]
- Xu, X.; Hirata, E.; Enoki, T.; Tokashiki, Y. Leaf litter decomposition and nutrient dynamics in a subtropical forest after typhoon disturbance. Plant Ecol. 2004, 173, 161–170. [Google Scholar] [CrossRef]
- Wang, W.; Sardans, J.; Tong, C.; Wang, C.; Ouyang, L.; Bartrons, M.; Penuelas, J. Typhoon enhancement of N and P release from litter and changes in the litter N:P ratio in a subtropical tidal wetland. Environ. Res. Lett. 2016, 11, 014003. [Google Scholar] [CrossRef] [Green Version]
- Beard, K.H.; Vogt, K.A.; Vogt, D.J.; Scatena, F.N.; Covich, A.P.; Sigurdardottir, R.; Siccama, T.G.; Crowl, T.A. Structural and functional responses of a subtropical forest to 10 years of hurricanes and droughts. Ecol. Monogr. 2005, 75, 345–361. [Google Scholar] [CrossRef] [Green Version]
- Lodge, D.J.; Scatena, F.N.; Asbury, C.E.; Sanchez, M.J. Fine litterfall and related nutrient inputs resulting from hurricane Hugo in subtropical wet and lower montane rain forests of Puerto Rico. Biotropica 1991, 23, 336–342. [Google Scholar] [CrossRef]
- Liu, X.; Zeng, X.; Zou, X.; González, G.; Wang, C.; Yang, S. Litterfall production prior to and during hurricanes Irma and Maria in four Puerto Rican forests. Forests 2018, 9, 367. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.C.; Wang, S.; Lin, K.; Shaner, P.J.L.; Lin, T.C. Litterfall and element fluxes in a natural hardwood forest and a Chinese-fir plantation experiencing frequent typhoon disturbance in central Taiwan. Biotropica 2013, 45, 541–548. [Google Scholar] [CrossRef]
- Yang, Q.; Xu, M.; Chi, Y.; Zheng, Y.; Ruichang, S.; Wang, S. Effects of freeze damage on litter production, quality and decomposition in a loblolly pine forest in central China. Plant Soil 2014, 374, 449–458. [Google Scholar] [CrossRef]
- Wu, Z.; Li, Y.; Zhou, G.; Chen, B. Abnormal litterfall and its ecological significance. Sci. Silvae Sin. 2008, 44, 28–31. [Google Scholar]
- Coûteaux, M.M.; Bottner, P.; Berg, B. Litter decomposition, climate and liter quality. Trends Ecol. Evol. 1995, 10, 63–66. [Google Scholar] [CrossRef]
- Parton, W.; Silver, W. Global-scale similarities in nitrogen release patterns during long-term decomposition. Science 2007, 315, 940. [Google Scholar] [CrossRef] [PubMed]
- González, G.; Seastedt, T.R. Soil fauna and plant litter decomposition in tropical and subalpine forests. Ecology 2001, 82, 955–964. [Google Scholar] [CrossRef]
- Yan, J.; Wang, L.; Hu, Y.; Tsang, Y.F.; Zhang, Y.; Wu, J.; Fu, X.; Sun, Y. Plant litter composition selects different soil microbial structures and in turn drives different litter decomposition pattern and soil carbon sequestration capability. Geoderma 2018, 319, 194–203. [Google Scholar] [CrossRef]
- Xiao, Y.; Liu, S.; Tong, F.; Chen, B.; Wu, Z.; Luo, X. Effects of abnormal litter input on forest soil organic carbon after ice-storm: A case of Nanling. Ecol. Environ. Sci. 2013, 22, 1504–1513. [Google Scholar]
- Li, R.; Zhang, Y.; Yu, D.; Wang, Y.; Zhao, X.; Zhang, R.; Zhang, W.; Wang, Q.; Xu, M.; Chen, L.; et al. The decomposition of green leaf litter is less temperature sensitive than that of senescent leaf litter: An incubation study. Geoderma 2021, 381, 114691. [Google Scholar] [CrossRef]
- Lin, T.C.; Hamburg, S.P.; Lin, K.C.; Wang, L.J.; Chang, C.T.; Hsia, Y.; Vadeboncoeur, M.; McMullen, C.; Liu, C.P. Typhoon disturbance and forest dynamics: Lessons from a Northwest Pacific subtropical forest. Ecosystems 2011, 14, 127–143. [Google Scholar] [CrossRef]
- Liu, D.; Pang, L.; Xie, B. Typhoon disaster in China: Prediction, prevention, and mitigation. Nat. Hazards 2009, 49, 421–436. [Google Scholar] [CrossRef]
- Xuan, W.; Ma, C.; Kang, L.; Gu, H.; Pan, S.; Xu, Y. Evaluating historical simulations of CMIP5 GCMs for key climatic variables in Zhejiang province, China. Theor. Appl. Climatol. 2017, 128, 207–222. [Google Scholar] [CrossRef]
- Xie, F.; Liu, Y. China Meteorological Yearbook; Meteorological Press: Beijing, China, 2020. [Google Scholar]
- Huang, S.; Shen, H.; Chen, Z. Investigation on the influence of typhoon Mangkhut on urban trees in Guangdong-Hongkong-Macao Greater Bay Area. Guangdong Landsc. Archit. 2020, 42, 26–31. [Google Scholar]
- Gavito, M.; Sandoval-Pérez, A.; Castillo, K.; Cohen-Salgado, D.; Colarte-Avilés, M.; Mora, F.; Santibáñez-Rentería, A.; Siddique, I.; Urquijo-Ramos, C. Resilience of soil nutrient availability and organic matter decomposition to hurricane impact in a tropical dry forest ecosystem. For. Ecol. Manag. 2018, 426, 81–90. [Google Scholar] [CrossRef]
- Kominoski, J.; Weaver, C.; Armitage, A.; Pennings, S. Coastal carbon processing rates increase with mangrove cover following a hurricane in Texas, USA. Ecosphere 2022, 13, e4007. [Google Scholar] [CrossRef]
- Wang, H.; Xu, X.; Yang, W.; Cao, R.; Wang, Z.; Zheng, B.; Lv, H.; Liu, T. The ecological stoichiometry of carbon, nitrogen and phosphorus in urban garden plants with different life forms and its response to typhoon Hagupit. Acta Ecol. Sin. 2021, 41, 8931–8938. [Google Scholar]
- Wang, H.; Xu, X.; Yang, W.; Cao, R.; Wang, Z.; Li, F.; Zheng, B.; Liang, Y. Responses of metallic nutrient concentrations in urban garden plants leaves with different life forms to typhoon Hagupit. Chin. J. Appl. Environ. Biol. 2022, 28, 1–10. [Google Scholar]
- Wang, L.; Li, X.; Xu, Z. Analysis on climatic characteristics of typhoon over the past 50 years at Zhoushan. Mar. Forecast. 2011, 28, 36–43. [Google Scholar]
- Dong, J.; Huang, X. Typhoon track classification and storm fallout analysis for landfall in Zhejiang. Zhejiang Meteorol. 2019, 40, 13–19. [Google Scholar]
- Swift, M.; Heal, O.; Anderson, J. Decomposition in Terrestrial Ecosystems; University of California Press: Berkeley, CA, USA, 1979. [Google Scholar]
- Klotzbücher, T.; Kaiser, K.; Guggenberger, G.; Gatzek, C.; Kalbitz, K. A new conceptual model for the fate of lignin in decomposing plant litter. Ecology 2011, 92, 1052–1062. [Google Scholar] [CrossRef]
- Lengauer, W. On the application of the Dumas technique for the determination of nitrogen in refractory nitrides. Talanta 1991, 38, 659–663. [Google Scholar] [CrossRef]
- Lu, R.K. Soil and Agro-Chemical Analytical Methods; Agricultural Science and Technology Press: Beijing, China, 2000. [Google Scholar]
- Rowland, A.P.; Roberts, J.D. Lignin and cellulose fractionation in decomposition studies using acid-detergent fibre methods. Commun. Soil Sci. Plant Anal. 1994, 25, 269–277. [Google Scholar] [CrossRef]
- He, W.; Wu, F.; Yang, W.; Tan, B.; Zhao, Y.; Wu, Q.; He, M. Lignin degradation in foliar litter of two shrub species from the gap center to the closed canopy in an alpine fir forest. Ecosystems 2016, 19, 115–128. [Google Scholar] [CrossRef]
- Peng, Y.; Yang, W.; Li, J.; Wang, B.; Zhang, C.; Yue, K.; Wu, F. Contribution of soil fauna to foliar litter-mass loss in winter in an ecotone between dry valley and montane forest in the upper reaches of the Minjiang river. PLoS ONE 2015, 10, e0124605. [Google Scholar] [CrossRef]
- Zhu, J.; Wu, F.; Yang, W.; Tan, B. Decomposition of Abies faxoniana litter varies with freeze–thaw stages and altitudes in subalpine/alpine forests of southwest China. Scand. J. For. Res. 2012, 27, 586–596. [Google Scholar] [CrossRef]
- Ma, Z.; Yang, W.; Wu, F.; Tan, B. Effects of light intensity on litter decomposition in a subtropical region. Ecosphere 2017, 8, e01770. [Google Scholar] [CrossRef]
- Berg, B. Decomposing litter; limit values; humus accumulation, locally and regionally. Appl. Soil Ecol. 2018, 123, 494–508. [Google Scholar] [CrossRef] [Green Version]
- Petraglia, A.; Cacciatori, C.; Chelli, S.; Fenu, G.; Calderisi, G.; Gargano, D.; Abeli, T.; Orsenigo, S.; Carbognani, M. Litter decomposition: Effects of temperature driven by soil moisture and vegetation type. Plant Soil 2019, 435, 187–200. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, L.; Li, H.; He, H.; Wei, Y.; Luo, J.; Zhang, G.; Huang, Y.; Li, Y.; Zhou, H. Soil physicochemical properties and vegetation structure along an elevation gradient and implications for the response of alpine plant development to climate change on the northern slopes of the Qilian Mountains. J. Mt. Sci. 2018, 15, 1006–1019. [Google Scholar] [CrossRef]
- Wollenweber, B. Nitrogen in terrestrial ecosystems: Questions of productivity, vegetational changes and ecosystem stability. Holocene 1992, 2, 187. [Google Scholar] [CrossRef]
- Berg, B.; Ekbohm, G.; Söderström, B.; Staaf, H. Reduction of decomposition rates of scots pine needle litter due to heavy-metal pollution. Water Air Soil Pollut. 1991, 59, 165–177. [Google Scholar] [CrossRef]
- Silver, W.L.; Hall, S.J.; González, G. Differential effects of canopy trimming and litter deposition on litterfall and nutrient dynamics in a wet subtropical forest. For. Ecol. Manag. 2014, 332, 47–55. [Google Scholar] [CrossRef]
- Gosz, J. Nitrogen cycling in coniferous ecosystems. Ecol. Bull. 1981, 33, 405–426. [Google Scholar]
- Bellingham, P.J.; Tanner, E.V.J.; Healey, J.R. Damage and responsiveness of Jamaican montane tree species after disturbance by a hurricane. Ecology 1995, 76, 2562–2580. [Google Scholar] [CrossRef]
- Hernandez, J.; Maldia, L.; Park, B. Research Trends and Methodological Approaches of the Impacts of Windstorms on Forests in Tropical, Subtropical, and Temperate Zones: Where Are We Now and How Should Research Move Forward? Plants 2020, 9, 1709. [Google Scholar] [CrossRef] [PubMed]
- Berg, B.; Berg, M.P.; Bottner, P.; Box, E.; Breymeyer, A.; de Anta, R.C.; Coûteaux, M.; Escudero, A.; Gallardo, A.; Kratz, W.; et al. Litter mass loss rates in pine forests of Europe and Eastern United States: Some relationships with climate and litter quality. Biogeochemistry 1993, 20, 127–159. [Google Scholar] [CrossRef]
- Xu, X.; Hirata, E. Decomposition patterns of leaf litter of seven common canopy species in a subtropical forest: N and P dynamics. Plant Soil 2005, 273, 279–289. [Google Scholar] [CrossRef]
- Pérez-Harguindeguy, N.; Díaz, S.; Cornelissen, J.; Vendramini, F.; Cabido, M.; Castellanos, A. Chemistry and toughness predict leaf litter decomposition rates over a wide spectrum of functional types and taxa in central Argentina. Plant Soil 2000, 218, 21–30. [Google Scholar] [CrossRef]
- Taylor, B.; Parkinson, D.; Parkinson, W. Nitrogen and lignin content as predictors of litter decay rates: A microcosm test. Ecology 1989, 70, 97–104. [Google Scholar] [CrossRef]
- Camiré, C.; Trofymow, J.A.; Duschene, L.; Moore, T.; Kozak, L.M.; Titus, B.; Kranabetter, J.; Prescott, C.; Visser, S.; Morrison, I.; et al. Rates of litter decomposition over 6 years in Canadian forests: Influence of litter quality and climate. Can. J. For. Res. 2002, 32, 789–804. [Google Scholar]
- Garcia-Pausas, J.; Casals, P.; Romanyà, J. Litter decomposition and faunal activity in Mediterranean forest soils: Effects of N content and the moss layer. Soil Biol. Biochem. 2004, 36, 989–997. [Google Scholar] [CrossRef]
- Moore, T.R.; Trofymow, J.A.; Prescott, C.E.; Titus, B.D. Nature and nurture in the dynamics of C, N and P during litter decomposition in Canadian forests. Plant Soil 2011, 339, 163–175. [Google Scholar] [CrossRef]
- Yang, X.; Chen, J. Plant litter quality influences the contribution of soil fauna to litter decomposition in humid tropical forests, southwestern China. Soil Biol. Biochem. 2009, 41, 910–918. [Google Scholar] [CrossRef]
- Salinas, N.; Malhi, Y.; Meir, P.; Silman, M.; Roman, C.R.; Huaman, J.; Salinas, D.; Huaman, V.; Gibaja, A.; Mamani, M.; et al. The sensitivity of tropical leaf litter decomposition to temperature: Results from a large-scale leaf translocation experiment along an elevation gradient in Peruvian forests. New Phytol. 2011, 189, 967–977. [Google Scholar] [CrossRef]
- Kirschbaum, M.U.F. The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage. Soil Biol. Biochem. 1995, 27, 753–760. [Google Scholar] [CrossRef]
- Zhou, Y.; Clark, M.; Su, J.; Xiao, C. Litter decomposition and soil microbial community composition in three Korean pine (Pinus koraiensis) forests along an altitudinal gradient. Plant Soil 2015, 386, 171–183. [Google Scholar] [CrossRef]
- Yue, K.; Wu, F.; Yang, W.; Zhang, C.; Peng, Y.; Tan, B.; Xu, Z.; Huang, C. Cellulose Dynamics during Foliar Litter Decomposition in an Alpine Forest Meta-Ecosystem. Forests 2016, 7, 176. [Google Scholar] [CrossRef] [Green Version]
- He, W.; Yang, W. Loss of total phenols from leaf litter of two shrub species: Dual responses to alpine forest gap disturbance during winter and the growing season. J. Plant Ecol. 2020, 13, 369–377. [Google Scholar] [CrossRef]
- Jaramillo, V.; Martínez-Yrízar, A.; Machado, L. Hurricane-Induced Massive Nutrient Return via Tropical Dry Forest Litterfall: Has Forest Biogeochemistry Resilience Changed? Ecosystems 2022. [Google Scholar] [CrossRef]
Species | Litter Source | C Con. (mg/g) | N Con. (mg/g) | P Con. (mg/g) | Lignin Con. (%) | Cellulose Con. (%) | C/N Ratio | C/P Ratio | N/P Ratio | Lignin/N Ratio | Lignin/P Ratio |
---|---|---|---|---|---|---|---|---|---|---|---|
Goldenrain tree | PL | 382.20 Ba (10.03) | 17.50 Aa (0.29) | 1.63 Aa (0.18) | 16.60 Aa (0.65) | 14.35 Aa (2.37) | 21.84 Cb (0.21) | 236.94 Ba (19.06) | 10.86 Aa (0.97) | 9.48 Ca (0.21) | 102.76 Ba (7.26) |
AL | 401.03 Ba (2.03) | 16.80 Aa (0.36) | 2.09 Aa (0.17) | 10.82 Bb (0.54) | 4.91 Cb (0.46) | 23.88 Ca (0.44) | 193.45 Ba (15.64) | 8.09 Ab (0.50) | 6.44 Bb (0.22) | 52.04 Bb (2.56) | |
Camphor tree | PL | 407.63 Aa (8.46) | 12.03 Bb (0.09) | 0.86 Bb (0.15) | 16.77 Aa (1.71) | 10.76 Aa (0.71) | 33.87 Ba (0.50) | 487.14 Aa (83.22) | 14.41 Aa (2.63) | 13.93 Ba (1.33) | 197.69 Aa (20.14) |
AL | 420.13 Aa (2.40) | 14.17 Ca (0.12) | 1.38 Ba (0.17) | 18.17 Aa (0.63) | 7.65 Ab (0.24) | 29.66 Ab (0.15) | 308.43 Ab (35.17) | 10.40 Aa (1.15) | 12.82 Aa (0.34) | 132.9 Ab (11.71) | |
Weeping willow tree | PL | 394.23 ABb (0.93) | 8.00 Cb (0.22) | 0.84 Bb (0.14) | 15.60 Aa (1.23) | 3.56 Bb (0.44) | 49.31 Aa (1.20) | 480.02 Aa (68.59) | 9.71 Aa (1.18) | 19.47 Aa (1.00) | 187.87 Aa (15.08) |
AL | 420.77 Aa (2.46) | 15.40 Ba (0.22) | 1.55 Ba (0.15) | 8.71 Cb (0.53) | 5.98 Ba (0.24) | 27.33 Bb (0.23) | 274.23 Ab (23.74) | 10.03 Aa (0.82) | 5.65 Bb (0.27) | 56.55 Bb (3.30) |
Species | Litter Source | Regression Equation | Decomposition Coefficient K T/d | Correlation Coefficient R2 | Half Life (days) | Turnover Period (days) |
---|---|---|---|---|---|---|
Goldenrain tree | PL | y = 97.75e−0.0025t | 0.0025 | 0.9339 | 277.26 | 1198.29 |
AL | y = 100.04e−0.0027t | 0.0027 | 0.9227 | 256.72 | 1109.53 | |
Camphor tree | PL | y = 98.63e−0.0014t | 0.0014 | 0.8929 | 495.11 | 2139.81 |
AL | y = 96.92e−0.0020t | 0.0020 | 0.9035 | 346.57 | 1497.87 | |
Weeping willow tree | PL | y = 101.08e−0.0025t | 0.0025 | 0.9588 | 277.29 | 1198.29 |
AL | y = 92.28e−0.0030t | 0.0030 | 0.8812 | 231.05 | 998.58 |
Factor | Accumulative Mass Loss Rate | Carbon Concentration | Accumulative Carbon Release Rate |
---|---|---|---|
Critical periods | <0.001 | <0.001 | <0.001 |
Species | <0.001 | <0.001 | <0.001 |
Litter source | <0.001 | <0.001 | <0.001 |
Critical periods * Species | <0.001 | <0.001 | <0.001 |
Critical periods * Litter source | <0.001 | <0.001 | <0.001 |
Species * Litter source | <0.001 | <0.001 | <0.001 |
Critical periods * Species * Litter source | <0.001 | <0.001 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Xu, X.; Wang, Z.; Cao, R.; Zheng, B.; Song, S.; Jiang, Y.; Zhu, Q.; Yang, W. Abnormal Litter Induced by Typhoon Disturbances Had Higher Rates of Mass Loss and Carbon Release than Physiological Litter in Coastal Subtropical Urban Forest Ecosystems. Forests 2022, 13, 1819. https://doi.org/10.3390/f13111819
Wang H, Xu X, Wang Z, Cao R, Zheng B, Song S, Jiang Y, Zhu Q, Yang W. Abnormal Litter Induced by Typhoon Disturbances Had Higher Rates of Mass Loss and Carbon Release than Physiological Litter in Coastal Subtropical Urban Forest Ecosystems. Forests. 2022; 13(11):1819. https://doi.org/10.3390/f13111819
Chicago/Turabian StyleWang, Huaibin, Xiao Xu, Zhihui Wang, Rui Cao, Bingqian Zheng, Siyu Song, Yurui Jiang, Qianyu Zhu, and Wanqin Yang. 2022. "Abnormal Litter Induced by Typhoon Disturbances Had Higher Rates of Mass Loss and Carbon Release than Physiological Litter in Coastal Subtropical Urban Forest Ecosystems" Forests 13, no. 11: 1819. https://doi.org/10.3390/f13111819