Axial Compression Behaviors of Columns Fabricated from Bamboo Oriented Strand Boards
Abstract
:1. Introduction
2. Materials and Method
2.1. Sample Design and Preparation
2.2. Test Setup
3. Results and Discussions
3.1. Failure Modes
3.2. Analysis on Ultimate Bearing Capacity
3.3. Column Lateral Deflection and Strain
3.4. Empirical Theoretical Calculation
3.5. Finite Element Modeling
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, F.; Shao, Z. Study on the variation law of bamboo fibers’ tensile properties and the organization structure on the radial direction of bamboo stem. Ind. Crops Prod. 2020, 152, 112521. [Google Scholar] [CrossRef]
- Nkeuwa, W.N.; Zhang, J.; Semple, K.E.; Chen, M.; Xia, Y.; Dai, C. Bamboo-based composites: A review on fundamentals and processes of bamboo bonding. Compos. Part B Eng. 2022, 235, 109776. [Google Scholar] [CrossRef]
- Li, Z.; Chen, C.; Mi, R.; Gan, W.; Dai, J.; Jiao, M.; Xie, H.; Yao, Y.; Xiao, S.; Hu, L. A Strong, Tough, and Scalable Structural Material from Fast-Growing Bamboo. Adv. Mater. 2020, 32, 1906308. [Google Scholar] [CrossRef] [PubMed]
- Sharma, B.; Gatoo, A.; Bock, M.; Mulligan, H.; Ramage, M. Engineered bamboo: State of the art. Proc. Inst. Civ. Eng. Constr. Mater. 2015, 168, 57–67. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Guagliano, M.; Shi, M.; Jiang, X.; Zhou, H. A comprehensive overview of bamboo scrimber and its new development in China. Eur. J. Wood Wood Prod. 2021, 79, 363–379. [Google Scholar] [CrossRef]
- Yu, Y.; Liu, R.; Huang, Y.; Meng, F.; Yu, W. Preparation, physical, mechanical, and interfacial morphological properties of engineered bamboo scrimber. Constr. Build. Mater. 2017, 157, 1032–1039. [Google Scholar] [CrossRef]
- Nugroho, N.; Ando, N. Development of structural composite products made from bamboo II: Fundamental properties of laminated bamboo lumber. J. Wood Sci. 2001, 47, 237–242. [Google Scholar] [CrossRef]
- Han, S.; Chen, F.; Li, H.; Wang, G. Effect of off-axis angle on tension failures of laminated moso bamboo-poplar veneer composites: An in situ characterization. Mater. Des. 2021, 212, 110254. [Google Scholar] [CrossRef]
- Liu, D.; Song, J.; Anderson, D.P.; Chang, P.R.; Hua, Y. Bamboo fiber and its reinforced composites: Structure and properties. Cellulose 2012, 19, 1449–1480. [Google Scholar] [CrossRef]
- Semple, K.E.; Zhang, P.K.; Smola, M.; Smith, G.D. Hybrid Oriented Strand Boards made from Moso bamboo (Phyllostachys pubescens Mazel) and Aspen (Populus tremuloides Michx.): Uniformly mixed single layer uni-directional boards. Eur. J. Wood Wood Prod. 2015, 73, 515–525. [Google Scholar] [CrossRef]
- Sumardi, I.; Suzuki, S.; Rahmawati, N. Effect of board type on some properties of bamboo strandboard. J. Math. Fundam. Sci. 2015, 47, 51–59. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Du, F.; Zhang, F.; Liao, Z.; Ye, X.; Zheng, Z.; Wang, W. Research and Development of Production Technology of Bamboo Waferboard and Oriented Strand Board Based on Biological Characteristics and Timber Adaptability. J. Bamboo Res. 2006, 26, 43–48. [Google Scholar]
- Sun, Y.; Yahui, Z.; Huang, Y.; Wei, X.; Yu, W. Influence of Board Density on the Physical and Mechanical Properties of Bamboo Oriented Strand Lumber. Forests 2020, 11, 567. [Google Scholar] [CrossRef]
- Dixon, P.G.; Gibson, L.J. The structure and mechanics of Moso bamboo material. J. R. Soc. Interface 2014, 11, 20140321. [Google Scholar] [CrossRef]
- Viguier, J.; Bourreau, D.; Bocquet, J.F.; Pot, G.; Bléron, L.; Lanvin, J.D. Modelling mechanical properties of spruce and Douglas fir timber by means of X-ray and grain angle measurements for strength grading purpose. Eur. J. Wood Wood Prod. 2017, 75, 527–541. [Google Scholar] [CrossRef] [Green Version]
- Sumardi, I.; Ono, K.; Suzuki, S. Effect of board density and layer structure on the mechanical properties of bamboo oriented strandboard. J. Wood Sci. 2007, 53, 510–515. [Google Scholar] [CrossRef] [Green Version]
- Rilatupa, J. Prospects of sustainable wood building architecture. IOP Conf. Ser. Earth Environ. Sci. 2021, 878, 012017. [Google Scholar] [CrossRef]
- Febrianto, F.; Hidayat, W.; Bakar, E.S.; Kwon, G.J.; Kwon, J.H.; Hong, S.I.; Kim, N.H. Properties of oriented strand board made from Betung bamboo (Dendrocalamus asper (Schultes.f) Backer ex Heyne). Wood Sci. Technol. 2012, 46, 53–62. [Google Scholar] [CrossRef]
- Chaowana, P. Bamboo: An Alternative Raw Material for Wood and Wood-Based Composites. J. Mater. Sci. Res. 2013, 2, 90. [Google Scholar] [CrossRef]
- Rudnev, I.; Zhadanov, V.; Garipov, V. Validation of the calculation of a wooden column with a support unit on glued steel plates. E3S Web Conf. 2021, 263, 02054. [Google Scholar] [CrossRef]
- Harte, A.M. Introduction to aluminium as an engineering material. In APA Engineered Wood Handbook; McGraw-Hill: New York, NY, USA, 2009; pp. 1–9. [Google Scholar] [CrossRef]
- Li, H.; Su, J.; Zhang, Q.; Deeks, A.J.; Hui, D. Mechanical performance of laminated bamboo column under axial compression. Compos. Part B Eng. 2015, 79, 374–382. [Google Scholar] [CrossRef]
- Su, X. Axial Behavior of Bamboo Scrimber Columns with Three Different Cross-Sections. Ph.D. Thesis, Yangzhou University, Yangzhou, China, 2017. (In Chinese). [Google Scholar]
- Dewi, S.M.; Soehardjono, A. The Strength of Axially Loaded Square Hollow-Section Column Made of Laminated Asian Bamboo (Dendrocalamus asper Becker). Res. J. Appl. Sci. Eng. Technol. 2018, 15, 337–343. [Google Scholar] [CrossRef]
- Harries, K.A.; Petrou, M.F.; Brooks, G. Structural Characterization of Built-Up Timber Columns. J. Archit. Eng. 2000, 6, 58–65. [Google Scholar] [CrossRef] [Green Version]
- GB/T50329; Standard for Test Methods of Timber Structures. Chinese National Standard: Beijing, China, 2012. (In Chinese)
- ASTM D198-15; Standard Test Methods of Static Tests of Lumber in Structural Sizes. ASTM International: West Conshohocken, PA, USA, 2010.
- LaLone, B.M. Effect of Loading Rate and Peak Stress on the Elastic Limit of Dynamically Compressed Brittle Single Crystals. Ph.D. Thesis, Washington State University, Washington, DC, USA, 2011. [Google Scholar]
- Zhou, S.C.; Chu, F.Z.; Lv, X.H.; Xiao, Y. Experimental studies on glubam columns under axial compression. J. Build. Eng. 2022, 49, 103453. [Google Scholar] [CrossRef]
- Lv, X. Experimental Rasearch and Finite Elemem Analysis of GluBam Columns under Axial Compression. Ph.D. Thesis, Hunan University, Hunan, China, 2011. (In Chinese). [Google Scholar]
- GB50005; Code for Design of Timber Structures. China National Standard: Beijing, China, 2003. (In Chinese)
- National Design Specification, National Design Specification (NDS) for Wood Construction; American Wood Council: Leesburg, VA, USA, 2015.
- ASTM D1037; Annual Book of ASTM Standard Test Methods for Evaluating Properties of Wood-Base Fiber and Particle Panel Materials. ASTM International: West Conshohocken, PA, USA, 2016.
- Taheri, F.; Nagaraj, M.; Khosravi, P. Buckling response of glue-laminated columns reinforced with fiber-reinforced plastic sheets. Compos. Struct. 2009, 88, 481–490. [Google Scholar] [CrossRef]
- Qi, Y.; Xie, L.; Bai, Y.; Liu, W.; Fang, H. Axial compression behaviours of pultruded GFRP–wood composite columns. Sensors 2019, 19, 755. [Google Scholar] [CrossRef]
Sample | Column Height (mm) | Slenderness Ratio | Ultimate Load (kN) | Axial Displacement (mm) | Ultimate Stress (Fc) (MPa) |
---|---|---|---|---|---|
S1000 | 1000 | 21 | 1298 | 10.88 | 44.65 |
S2800 | 2800 | 59 | 1073 | 18.25 | 36.91 |
F1000 | 1000 | 17 | 1209 | 10.51 | 41.85 |
F1000-Finger | 1000 | 17 | 1188 | 9.50 | 41.12 |
F2800 | 2800 | 47 | 959 | 18.62 | 33.19 |
H1000 | 1000 | 20 | 1179 | 9.92 | 40.51 |
H2800 | 2800 | 56 | 1102 | 18.15 | 37.87 |
Column Length (mm) | d-NDS (%) | d-GB50005 (%) | ||||
---|---|---|---|---|---|---|
F | S | H | F | S | H | |
1000 | 6.40 | 7.96 | 9.45 | 4.59 | 6.73 | 8.04 |
2800 | 14.54 | −5.31 | −11.10 | 11.07 | 8.75 | −2.64% |
Material | E-L (GPa) | E-R | E-T | G-LT (GPa) | G-RT | G-LR | v-LT | v-RT | v-LR |
---|---|---|---|---|---|---|---|---|---|
Bamboo column | 9.33 | 2.6 | 3.99 | 1.44 | 0.52 | 0.54 | 0.27 | 0.08 | 0.4 |
Column Length (mm) | d-Eigenvalue Analysis Stress (%) | d-Non-Linear Buckling Analysis (%) | ||||
---|---|---|---|---|---|---|
F | S | H | F | S | H | |
1000 | 372.10 | 435.87 | 406.05 | 9.76 | 1.35 | 3.51 |
2800 | 104.02 | 35.28 | 46.93 | 9.62 | 8.13 | −0.36 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Gong, J.; Liu, H.; Fang, C. Axial Compression Behaviors of Columns Fabricated from Bamboo Oriented Strand Boards. Forests 2022, 13, 1817. https://doi.org/10.3390/f13111817
Sun Y, Gong J, Liu H, Fang C. Axial Compression Behaviors of Columns Fabricated from Bamboo Oriented Strand Boards. Forests. 2022; 13(11):1817. https://doi.org/10.3390/f13111817
Chicago/Turabian StyleSun, Yuhui, Jingya Gong, Huanrong Liu, and Changhua Fang. 2022. "Axial Compression Behaviors of Columns Fabricated from Bamboo Oriented Strand Boards" Forests 13, no. 11: 1817. https://doi.org/10.3390/f13111817
APA StyleSun, Y., Gong, J., Liu, H., & Fang, C. (2022). Axial Compression Behaviors of Columns Fabricated from Bamboo Oriented Strand Boards. Forests, 13(11), 1817. https://doi.org/10.3390/f13111817