Wood Quality along the Trunk Height of Birch and Aspen Growing in the Restoring Forests of Central Russia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Model Tree Selection
2.2. Sample Preparation, Measurement and Analysis
2.3. Data Analysis
3. Results
4. Discussion
4.1. How Does the Microstructure of Birch and Aspen Stemwood Differ along the Height of the Trunk?
4.2. What Effect Does the Wood Species Have on the Wood Microstructure?
4.3. How Can We Rationally Use Knowledge about the Wood Microstructure to Improve the Wood Quality?
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Toth, L.A.; Anderson, D.H. Developing expectations for ecosystem restoration. In Proceedings of the Transactions of the North American Wildlife and Natural Resources Conference; Wildlife Management Institute: Orlando, FL, USA, 1998; Volume 63, pp. 122–134. [Google Scholar]
- Novikova, T.P. The choice of a set of operations for forest landscape restoration technology. Inventions 2022, 7, 1. [Google Scholar] [CrossRef]
- Stanturf, J.A.; Palik, B.J.; Dumroese, R.K. Contemporary forest restoration: A review emphasizing function. For. Ecol. Manage. 2014, 331, 292–323. [Google Scholar] [CrossRef]
- Löf, M.; Madsen, P.; Metslaid, M.; Witzell, J.; Jacobs, D.F. Restoring forests: Regeneration and ecosystem function for the future. New For. 2019, 50, 139–151. [Google Scholar] [CrossRef] [Green Version]
- Jalonen, R.; Valette, M.; Boshier, D.; Duminil, J.; Thomas, E. Forest and landscape restoration severely constrained by a lack of attention to the quantity and quality of tree seed: Insights from a global survey. Conserv. Lett. 2018, 11, e12424. [Google Scholar] [CrossRef]
- Novikov, A.I.; Sokolov, S.V.; Drapalyuk, M.V.; Zelikov, V.A.; Ivetić, V. Performance of Scots Pine Seedlings from Seeds Graded by Colour. Forests 2019, 10, 1064. [Google Scholar] [CrossRef] [Green Version]
- Ivetić, V.; Devetaković, J.; Nonić, M.; Stanković, D.; Šijačić-Nikolić, M. Genetic diversity and forest reproductive material-from seed source selection to planting. iForest-Biogeosciences For. 2016, 9, 801–812. [Google Scholar] [CrossRef] [Green Version]
- Ivetić, V.; Devetaković, J. Concerns and evidence on genetic diversity in planted forests. Reforesta 2017, 3, 196–207. [Google Scholar] [CrossRef] [Green Version]
- Ivetić, V.; Novikov, A.I. The role of forest reproductive material quality in forest restoration. For. Eng. J. 2019, 9, 56–65. [Google Scholar] [CrossRef]
- Novikov, A.I.; Ivetić, V.; Novikova, T.P.; Petrishchev, E.P. Scots Pine Seedlings Growth Dynamics Data Reveals Properties for the Future Proof of Seed Coat Color Grading Conjecture. Data 2019, 4, 106. [Google Scholar] [CrossRef] [Green Version]
- Novikova, T.P. Study of a set of technological operations for the preparation of coniferous seed material for reforestation. For. Eng. J. 2021, 11, 150–160. [Google Scholar] [CrossRef]
- Rabko, S.; Kozel, A.; Kimeichuk, I.; Yukhnovskyi, V. Comparative Assessment of Some Physical and Mechanical Properties of Wood of Different Scots Pine Climatypes. Sci. Horizons 2021, 24, 27–36. [Google Scholar] [CrossRef]
- Heräjärvi, H. Variation of basic density and Brinell hardness within mature Finnish Betula pendula and B. pubescens stems. Wood Fiber Sci. 2007, 36, 216–227. [Google Scholar]
- Morkovina, S.S.; Panyavina, E.A.; Platonov, A.D.; Kolesnichenko, E.A. Economic aspects of organizing high-technology resource saving production in the Forest Sector of Russia. Int. J. Econ. Bus. Adm. 2019, 1, 395–402. [Google Scholar]
- Snegireva, S.; Platonov, A.; Kiseleva, A.; Kantieva, E. Variability of the hardness of pine wood damaged by strong grassroots and rampant riding fire. For. Eng. J. 2022, 11, 79–87. [Google Scholar] [CrossRef]
- Vanin, S.I. Wood Science; Goslesbumizdat: Moscow-Leningrad, Russia, 1949. [Google Scholar]
- Puchałka, R.; Koprowski, M.; Gričar, J.; Przybylak, R. Does tree-ring formation follow leaf phenology in Pedunculate oak (Quercus robur L.)? Eur. J. For. Res. 2017, 136, 259–268. [Google Scholar] [CrossRef] [Green Version]
- Horvath, B.; Peszlen, I.; Peralta, P.; Kasal, B.; Li, L. Effect of Lignin Genetic Modification on Wood Anatomy of Aspen Trees. IAWA J. 2010, 31, 29–38. [Google Scholar] [CrossRef]
- Ahmed, S.A.; Morén, T.; Hagman, O.; Cloutier, A.; Fang, C.-H.; Elustondo, D. Anatomical properties and process parameters affecting blister/blow formation in densified European aspen and downy birch sapwood boards by thermo-hygro-mechanical compression. J. Mater. Sci. 2013, 48, 8571–8579. [Google Scholar] [CrossRef]
- Gubanova, N.V. Antifriction properties of nanocomposites based on modified wood. For. Eng. J. 2013, 3, 82–89. [Google Scholar] [CrossRef]
- Sun, X.; He, M.; Li, Z. Experimental investigation on the influence of lamination aspect ratios on rolling shear strength of cross-laminated timber. Arch. Civ. Mech. Eng. 2022, 22, 22. [Google Scholar] [CrossRef]
- Iwakiri, S.; Sanches, F.G.; Potulski, D.C.; Silva, J.B.; De Andrade, M.; Marchesan, R. Evaluation of potential use of species of tropical pine and eucalyptus for UF plywood manufacture. FLORESTA 2012, 42, 277. [Google Scholar] [CrossRef]
- Borůvka, V.; Dudík, R.; Zeidler, A.; Holeček, T. Influence of Site Conditions and Quality of Birch Wood on Its Properties and Utilization after Heat Treatment. Part I—Elastic and Strength Properties, Relationship to Water and Dimensional Stability. Forests 2019, 10, 189. [Google Scholar] [CrossRef] [Green Version]
- Grigorev, I.V.; Grigorev, G.V.; Nikiforova, A.I.; Kunitckaia, O.A.; Dmitrieva, I.N.; Khitrov, E.G.; Pásztory, Z. Experimental Study of Impregnation Birch and Aspen Samples. BioResources 2014, 9, 7018–7026. [Google Scholar] [CrossRef]
- Khukhryansky, P.N. Pressing of Wood, 2nd ed.; Forestry Industry: Moscow, Russia, 1964. [Google Scholar]
- Cown, D.J.; Ball, R.D. Wood densitometry of 10 Pinus radiata families at seven contrasting sites: Influence of tree age, site, and genotype. N. Z. J. For. Sci. 2001, 31, 88–100. [Google Scholar]
- Lachowicz, H.; Bieniasz, A.; Wojtan, R. Variability in the basic density of silver birch wood in Poland. Silva. Fenn. 2019, 53, 9968. [Google Scholar] [CrossRef]
- Liepiņš, K.; Rieksts-Riekstiņš, J. Stemwood Density of juvenile Silver Birch trees (Betula pendula Roth.) from plantations on former farmlands. Balt. For. 2013, 19, 179–186. [Google Scholar]
- Luostarinen, K.; Möttönen, V. Radial variation in the anatomy of Betula pendula wood from different growing sites. Balt. For. 2010, 16, 209–216. [Google Scholar]
- Machado, J.S.; Louzada, J.L.; Santos, A.J.A.; Nunes, L.; Anjos, O.; Rodrigues, J.; Simões, R.M.S.; Pereira, H. Variation of wood density and mechanical properties of blackwood (Acacia melanoxylon R. Br.). Mater. Des. 2014, 56, 975–980. [Google Scholar] [CrossRef]
- Repola, J. Models for vertical wood density of Scots pine, Norway spruce and birch stems, and their application to determine average wood density. Silva. Fenn. 2006, 40, 673–685. [Google Scholar] [CrossRef] [Green Version]
- Angyalossy, V.; Bass, P.; Carlquist, S.; Peres, J.; Rauber, V.; Détienne, P.; Gasson, P.E.; Grosser, D.; Ilic, J.; Kuroda, K.; et al. IAWA List of microscopic features for hardwood identification. IAWA J. 1989, 10, 219–332. [Google Scholar]
- Platonov, A.; Mikheevskaya, M.; Snegireva, S.; Kuryanova, T.; Kiseleva, A.; Topcheev, A.N. The influence of vessels variability on wood quality of birch and aspen in the trunk of the tree. For. Eng. J. 2018, 8, 212–221. [Google Scholar] [CrossRef]
- Moya, D.; Espelta, J.M.; Verkaik, I.; López-Serrano, F.; Las Heras, J. Tree density and site quality influence on Pinus halepensis Mill. reproductive characteristics after large fires. Ann. For. Sci. 2007, 64, 649–656. [Google Scholar] [CrossRef] [Green Version]
- Blokhina, N.I.; Bondarenko, O.V.; Osipov, S.V. Effect of site conditions on the formation of wood anatomical structure in the cajander larch (Larix cajanderi Mayr) in the Amur region. Russ. J. Ecol. 2012, 43, 415–425. [Google Scholar] [CrossRef]
- Islam, M. Impacts of Climate on Wood Anatomical Features in Tree Species with Different Anatomical Structure from Tropical Monsoon Asia. Ph.D. Thesis, Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen, Germany, 2019. [Google Scholar]
- Poluboyarinov, O.I. Density of Wood; Forestry Industry: Moscow, Russia, 1976. [Google Scholar]
- Schulgasser, K.; Witztum, A. How the relationship between density and shrinkage of wood depends on its microstructure. Wood Sci. Technol. 2015, 49, 389–401. [Google Scholar] [CrossRef]
- Shamaev, V.A. Receiving modified wood chemi-mechanical process and investigation of its properties. For. Eng. J. 2015, 5, 177–187. [Google Scholar] [CrossRef]
- Lutter, R.; Tullus, A.; Kanal, A.; Tullus, T.; Vares, A.; Tullus, H. Growth development and plant–soil relations in midterm silver birch (Betula pendula Roth) plantations on previous agricultural lands in hemiboreal Estonia. Eur. J. For. Res. 2015, 134, 653–667. [Google Scholar] [CrossRef]
- Platonov, A.D.; Snegireva, S.N.; Stepanova, Y.N.; Bryndina, L. V Production of compressed wood with target quality indicators from different parts of tree trunk. IOP Conf. Ser. Earth Environ. Sci. 2019, 392, 012063. [Google Scholar] [CrossRef]
Features | Betula pendula Roth. | Populus tremula L. |
---|---|---|
Age, years | 57–62 | 31–40 |
Diameter at breast height in two mutually perpendicular directions, cm | 28–32 | 30–34 |
Tree height, m | 22–24 | 23–26 |
Distance to the crown base, m | 9.5–11.0 | 10.5–12.0 |
Cutting Microsection on Distance from the Base of the Trunk, m | Vessel Lumina Measurement Directions | Vessels per Square Millimeter | Diameter of Vessel Lumina, µm | ||||
---|---|---|---|---|---|---|---|
Mean ± SE | Min | Max | SD | CV | |||
1 (Stem base) | Tg | 34 | 54.58a ± 2.74 | 16.49 | 78.57 | 16.00 | 29,31 |
Rad | 34 | 80.02b ± 4.63 | 25.29 | 128.54 | 26,98 | 33.71 | |
5 (Middle part) | Tg | 57 | 39.31c ± 1.42 | 24.00 | 72.11 | 10.75 | 27.36 |
Rad | 57 | 47.23ac ± 1.79 | 20.40 | 82.46 | 13.51 | 28.60 | |
9 (Top of the trunk) | Tg | 39 | 44.74acd ± 2.51 | 18.86 | 99.04 | 15.67 | 35.02 |
Rad | 39 | 56.54a ± 3.03 | 9.48 | 87.62 | 18.95 | 33.51 |
Cutting Microsection on Distance from the Base of the Trunk, m | Vessels per Square Millimeter | Diameter of Vessel Lumina, µm | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mean ± SE | Min | Max | SD | CV | |||||||
Rad | Tg | Rad | Tg | Rad | Tg | Rad | Tg | Rad | Tg | ||
1 (Stem base) | 68 | 55.72b ± 2.36 | 40.90a ± 1.63 | 13.41 | 12.00 | 99.40 | 85.99 | 19.42 | 13.41 | 34.86 | 32.79 |
5 (Middle part) | 86 | 39.79a ± 1.80 | 34.59ac ± 1.27 | 9.00 | 6.00 | 71.02 | 57.33 | 16.65 | 11.74 | 41.85 | 33.94 |
9 (Top of the trunk) | 167 | 45.32a ± 1.29 | 31.91c ± 0.91 | 12.34 | 3.90 | 87.05 | 74.19 | 16.61 | 11.70 | 36.66 | 36.67 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Platonov, A.D.; Snegireva, S.N.; Drapalyuk, M.V.; Novikov, A.I.; Kantyeva, E.V.; Novikova, T.P. Wood Quality along the Trunk Height of Birch and Aspen Growing in the Restoring Forests of Central Russia. Forests 2022, 13, 1758. https://doi.org/10.3390/f13111758
Platonov AD, Snegireva SN, Drapalyuk MV, Novikov AI, Kantyeva EV, Novikova TP. Wood Quality along the Trunk Height of Birch and Aspen Growing in the Restoring Forests of Central Russia. Forests. 2022; 13(11):1758. https://doi.org/10.3390/f13111758
Chicago/Turabian StylePlatonov, Aleksey D., Svetlana N. Snegireva, Michael V. Drapalyuk, Arthur I. Novikov, Ekaterina V. Kantyeva, and Tatyana P. Novikova. 2022. "Wood Quality along the Trunk Height of Birch and Aspen Growing in the Restoring Forests of Central Russia" Forests 13, no. 11: 1758. https://doi.org/10.3390/f13111758
APA StylePlatonov, A. D., Snegireva, S. N., Drapalyuk, M. V., Novikov, A. I., Kantyeva, E. V., & Novikova, T. P. (2022). Wood Quality along the Trunk Height of Birch and Aspen Growing in the Restoring Forests of Central Russia. Forests, 13(11), 1758. https://doi.org/10.3390/f13111758