Changing Relationships between Nitrogen Content and Leaf Spectral Characteristics of Moso Bamboo Leaves under Pantana phyllostachysae Chao Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection
2.3. Determination of Leaf Spectra and Nitrogen Content
2.4. Spectral Data Processing
2.5. Relationship Model Construction
2.6. Study Workflow
3. Results
3.1. Analysis of Changes in Nitrogen Content
3.2. Analysis of Variation in Leaf Spectral Characteristics
3.3. Model Construction and Change Analysis
3.3.1. Model Construction and Analysis of Whole Leaf Sample
3.3.2. Model Construction and Analysis for Leaves in Different Damage States
3.3.3. Multivariate Model Construction and Analysis
4. Discussion
4.1. Discriminatory Ability of Nitrogen Content-Sensitive Spectra for PPC Stress
4.2. Effect of Spectral Feature Index Screening on Model Results
4.3. Relationship between Pests and Leaf Nitrogen Content and Leaf Spectrum
5. Conclusions
- (1)
- The overall nitrogen content of leaves gradually declined with increasing insect damage, with the fastest rate of decline in the H to Mi damaged states. These results provide a reference for the early monitoring of insect pests. The overall nitrogen content of leaves in off-years was lower than that in on-years.
- (2)
- The spectral curve of Moso bamboo leaves changed significantly under PPC damage. The “green peak” and “red valley” gradually disappeared in the visible range, and the slope of the spectral curve in the red range gradually decreased.
- (3)
- In the whole leaf samples, the wavelength regions strongly correlated with the nitrogen content of leaves were around 540, 687, 740, 1690, 1733, 1784, 1840, 2071, and 2251 nm. The wavelength region with the strongest correlation between the nitrogen content and spectral characteristics changed significantly in leaves in different damage states. The mean of the absolute value of the correlation between the nitrogen content and spectral characteristics in the red-edge range tended to gradually decrease with an increase in the degree of pest damage. The number of wavelengths with a strong correlation with the nitrogen content in the wavelength range from 400 to 2500 nm first increased and then decreased with an increasing degree of pest damage. The number of wavelengths with a strong correlation between the nitrogen content and spectral data was highest in the Mi state.
- (4)
- The SVR model outperformed the PLS model in the Mo and S states, and the fits of both were significantly improved compared with those of the univariate models. For both the univariate and multivariate models, the model fit followed the same trend, i.e., the fit of both models decreased and then increased as the pest damage level increased. The fit of both models in the Mo state was the worst, and that of the models in the off-year state was better than that in the on-year state.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wei, C.J. Plague division and application of Pantana phyllostachysae Chao in Fujian Province. J. For. Environ. 2003, 23, 79–83. [Google Scholar]
- Su, J.; Zhang, F.P.; Huang, W.L.; Chen, D.L.; Chen, S.L. Influence of different types of Phyllostachys pubescens (Poales: Poaceae) leaves on population parameters of Pantana phyllostachysae (Lepidoptera: Lymantriidae) and parasitic effects of Beauveria bassiana (Moniliales: Moniliaceae). J. Insect Sci. 2015, 15, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, J.L.; Yang, X.H.; Yang, Z.W.; Luo, J.T.; Lei, X.F. New technology for using meteorological information in forest insect pest forecast and warning systems. Pest. Manag. Sci. 2017, 73, 2509–2518. [Google Scholar] [CrossRef] [PubMed]
- Pasquarella, V.J.; Elkinton, J.S.; Bradley, B.A. Extensive gypsy moth defoliation in Southern New England characterized using Landsat satellite observations. Biol. Invasions. 2018, 20, 3047–3053. [Google Scholar] [CrossRef]
- Zhang, J.C.; Huang, Y.B.; Pu, R.L.; Gonzalez-Moreno, P.; Yuan, L.; Wu, K.H.; Huang, W.J. Monitoring plant diseases and pests through remote sensing technology: A review. Comput. Electron. Agric. 2019, 165, 104943. [Google Scholar] [CrossRef]
- Ye, S.; Rogan, J.; Zhu, Z.; Hawbaker, T.J.; Hart, S.J.; Andrus, R.A.; Meddens, A.J.H.; Hicke, J.A.; Eastman, J.R.; Kulakowski, D. Detecting subtle change from dense Landsat time series: Case studies of mountain pine beetle and spruce beetle disturbance. Remote Sens. Environ. 2021, 263, 112560. [Google Scholar] [CrossRef]
- Apan, A.; Held, A.; Phinn, S.; Markley, J. Detecting sugarcane ‘orange rust’ disease using EO-1 Hyperion hyperspectral imagery. Int. J. Remote Sens. 2004, 25, 489–498. [Google Scholar] [CrossRef] [Green Version]
- Görlich, F.; Marks, E.; Mahlein, A.K.; König, K.; Lottes, P.; Stachniss, C. UAV-based classification of cercospora leaf spot using RGB images. Drones 2021, 5, 34. [Google Scholar] [CrossRef]
- Feng, Z.H.; Wang, L.Y.; Yang, Z.Q.; Zhang, Y.Y.; Li, X.; Song, L.; He, L.; Duan, J.Z.; Feng, W. Hyperspectral monitoring of powdery mildew disease severity in wheat based on machine learning. Front. Plant Sci. 2022, 13, 828454. [Google Scholar] [CrossRef]
- Leite, R.M.V.B.C.; Amorim, L.; Bergamin Filho, A. Relationships of disease and leaf area variables with yield in the Alternaria helianthi–sunflower pathosystem. Plant Pathol. 2006, 55, 73–81. [Google Scholar] [CrossRef]
- Wijesinghe, R.E.; Lee, S.Y.; Kim, P.; Jung, H.Y.; Jeon, M.; Kim, J. Optical inspection and morphological analysis of Diospyros kaki plant leaves for the detection of circular leaf spot disease. Sensors 2016, 16, 1282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macedo, T.B.; Weaver, D.K.; Peterson, R.K.D. Characterization of the impact of wheat stem sawfly, Cephus cinctus Norton, on pigment composition and photosystem II photochemistry of wheat heads. Environ. Entomol. 2006, 35, 1115–1120. [Google Scholar] [CrossRef] [Green Version]
- Wu, D.K.; Ma, C.W.; Du, S.F. Influences of different damaged degrees of leafminer-infected leaves on the near infrared spectral reflectance. Trans. Chin. Soc. Agric. Eng. 2007, 23, 156–159. [Google Scholar]
- Goławska, S.; Krzyżanowski, R.; Łukasik, I. Relationship between aphid infestation and chlorophyll content in Fabaceae species. Acta Biol. Cracov. Ser. Bot. 2010, 52, 76–80. [Google Scholar] [CrossRef]
- Errard, A.; Ulrichs, C.; Kühne, S.; Mewis, I.; Drungowski, M.; Schreiner, M.; Baldermann, S. Single-versus multiple-pest infestation affects differently the biochemistry of tomato (Solanum lycopersicum ‘Ailsa Craig’). J. Agric. Food. Chem. 2015, 63, 10103–10111. [Google Scholar] [CrossRef] [PubMed]
- Polyakova, L.V.; Gamayunova, S.G.; Zhurova, P.T.; Litvinenko, V.I. Biochemical specifics of English oak trees with dry crown. Contemp. Probl. Ecol. 2015, 8, 885–891. [Google Scholar] [CrossRef]
- Chavana-Bryant, C.; Malhi, Y.; Anastasiou, A.; Enquist, B.J.; Cosio, E.G.; Keenan, T.F.; Gerard, F.F. Leaf age effects on the spectral predictability of leaf traits in Amazonian canopy trees. Sci. Total Environ. 2019, 666, 1301–1315. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Yu, H.Y.; Zhang, J.H.; Zhou, H.G.; Kong, L.J.; Zhang, L.; Dang, J.M.; Sui, Y.Y. Study on inversion model of chlorophyll content in soybean leaf based on optimal spectral indices. Spectrosc. Spectral Anal. 2021, 41, 1912–1919. [Google Scholar]
- Minaei, S.; Soltanikazemi, M.; Shafizadeh-Moghadam, H.; Mahdavian, A. Field-scale estimation of sugarcane leaf nitrogen content using vegetation indices and spectral bands of Sentinel-2: Application of random forest and support vector regression. Comput. Electron. Agric. 2022, 200, 107130. [Google Scholar]
- Rubio-Delgado, J.; Perez, C.J.; Vega-Rodríguez, M.A. Predicting leaf nitrogen content in olive trees using hyperspectral data for precision agriculture. Precis. Agric. 2021, 22, 1–21. [Google Scholar] [CrossRef]
- Lian, L.; Wang, Z.X.; Gao, Y.L.; Shi, Y.Q.; Yang, Y.Q.; Li, P.; Yusun, T.S.J. Hyperspectral estimation model of water content in coronal layer of jujube damaged by Tetranychus truncatus. Southwest Chin. J. Agr. Sci. 2020, 33, 2524–2529. [Google Scholar]
- Bai, X.Q.; Zhang, X.L.; Zhang, L.; Zhang, L.S.; Ma, Y.B. Monitoring model of Dendrolimus tabulaeformis disaster using hyperspectral remote sensing technology. J. Beijing For. Univ. 2016, 38, 16–22. [Google Scholar]
- Feng, W.; Zhu, Y.; Tian, Y.C.; Cao, W.X.; Yao, X.; Li, Y.X. Monitoring leaf nitrogen accumulation with hyper-spectral remote sensing in wheat. Acta Ecol. Sin. 2008, 28, 23–32. [Google Scholar]
- Khan, A.; Yan, L.; Hasan, M.M.; Wang, W.; Xu, K.; Zou, G.W.; Liu, X.D.; Fang, X.W. Leaf traits and leaf nitrogen shift photosynthesis adaptive strategies among functional groups and diverse biomes. Ecol. Indic. 2022, 141, 109098. [Google Scholar] [CrossRef]
- McNeil, B.E.; de Beurs, K.M.; Eshleman, K.N.; Foster, J.R.; Townsend, P.A. Maintenance of ecosystem nitrogen limitation by ephemeral forest disturbance: An assessment using MODIS, Hyperion, and Landsat ETM+. Geophys. Res. Lett. 2007, 34, 1–5. [Google Scholar] [CrossRef]
- Camino, C.; Calderón, R.; Parnell, S.; Dierkes, H.; Chemin, Y.; Román-Écija, M.; Montes-Borrego, M.; Landa, B.B.; Navas-Cortes, J.A.; Zarco-Tejada, P.J.; et al. Detection of Xylella fastidiosa in almond orchards by synergic use of an epidemic spread model and remotely sensed plant traits. Remote Sens. Environ. 2021, 260, 112420. [Google Scholar] [CrossRef]
- Chen, Y.Z.; Fu, B.J.; Feng, X.M. Overview and outlook of remote sensing inversion of vegetation nitrogen content. Acta Ecol. Sin. 2017, 37, 6240–6252. [Google Scholar]
- Mutanga, O.; Skidmore, A.K. Integrating imaging spectroscopy and neural networks to map grass quality in the Kruger National Park, South Africa. Remote Sens. Environ. 2004, 90, 104–115. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, F.M.; Huang, J.F.; Wang, X.Z.; Liu, Z.Y. Validation of artificial neural network techniques in the estimation of nitrogen concentration in rape using canopy hyperspectral reflectance data. Int. J. Remote Sens. 2009, 30, 4493–4505. [Google Scholar] [CrossRef]
- Li, M.; Zhu, X.C.; Li, W.; Tang, X.Y.; Yu, X.Y.; Jiang, Y.M. Retrieval of nitrogen content in apple canopy based on unmanned aerial vehicle hyperspectral images using a modified correlation coefficient method. Sustainability 2022, 14, 1992. [Google Scholar] [CrossRef]
- Lin, M.Y.; Lynch, V.; Ma, D.D.; Maki, H.; Jin, J.; Tuinstra, M. Multi-species prediction of physiological traits with hyperspectral modeling. Plants 2022, 11, 676. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.C.; Deng, S.; Ma, S.M.; Xiao, F.X. Estimation model of leaf nitrogen content based on GEP and leaf spectral reflectance. Comput. Electr. Eng. 2022, 98, 107648. [Google Scholar] [CrossRef]
- Xu, Q.B.; Guo, B.H.; Fan, S.H.; Su, W.H.; Zhao, J.C. Aboveground biomass pattern and nutrient dynamic changes of Phyllostachys edulis during the spring shoot and young bamboo growing period. Chin. J. Trop Crops 2014, 35, 1481–1486. [Google Scholar]
- Nawar, S.; Buddenbaum, H.; Hill, J.; Kozak, J.; Mouazen, A.M. Estimating the soil clay content and organic matter by means of different calibration methods of vis-NIR diffuse reflectance spectroscopy. Soil Till. Res. 2016, 155, 510–522. [Google Scholar] [CrossRef] [Green Version]
- Sanches, I.D.A.; Souza Filho, C.R.; Kokaly, R.F. Spectroscopic remote sensing of plant stress at leaf and canopy levels using the chlorophyll 680 nm absorption feature with continuum removal. ISPRS J. Photogramm. Remote Sens. 2014, 97, 111–122. [Google Scholar] [CrossRef]
- Guo, C.F.; Guo, X.Y. Estimation of wetland plant leaf chlorophyll content based on continuum removal in the visible domain. Acta Ecol. Sin. 2016, 36, 6538–6546. [Google Scholar]
- Cheng, C.M.; Wei, Y.C.; Sun, X.P.; Zhou, Y. Estimation of chlorophyll-a concentration in turbid lake using spectral smoothing and derivative analysis. Int. J. Environ. Res. Public Health. 2013, 10, 2979–2994. [Google Scholar] [CrossRef] [Green Version]
- Faix, O.; Böttcher, J.H. Determination of phenolic hydroxyl group contents in milled wood lignins by FTIR spectroscopy applying partial least-squares (PLS) and principal components regression (PCR). Holzforschung 1993, 47, 45–49. [Google Scholar] [CrossRef]
- Yu, L.; Hong, Y.S.; Geng, L.; Zhou, Y.; Zhu, Q.; Cao, J.J.; Nie, Y. Hyperspectral estimation of soil organic matter content based on partial least squares regression. Trans. Chin. Soc. Agric. Eng. 2015, 31, 103–109. [Google Scholar]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Mutanga, O.; Skidmore, A.K.; Van Wieren, S. Discriminating tropical grass (Cenchrus ciliaris) canopies grown under different nitrogen treatments using spectroradiometry. ISPRS J. Photogramm. Remote Sens. 2003, 57, 263–272. [Google Scholar]
- Mitchell, J.J.; Glenn, N.F.; Sankey, T.T.; Derryberry, D.R.; Germino, M.J. Remote sensing of sagebrush canopy nitrogen. Remote Sens. Environ. 2012, 124, 217–223. [Google Scholar] [CrossRef]
- Chen, J.Q.; Li, X.M.; Wang, K.; Zhang, S.Y.; Li, J.; Zhang, J.; Gao, W.C. Variable optimization of seaweed spectral response characteristics and species identification in Gouqi island. Sensors. 2022, 22, 4656. [Google Scholar] [CrossRef] [PubMed]
- Shafizadeh-Moghadam, H. Fully component selection: An efficient combination of feature selection and principal component analysis to increase model performance. Expert Syst. Appl. 2021, 186, 115678. [Google Scholar] [CrossRef]
- Huang, X.Y.; Xu, Z.H.; Yang, X.; Shi, J.M.; Hu, X.Y.; Ju, W.M. Monitoring the severity of Pantana phyllostachysae Chao on bamboo using leaf hyperspectral data. Remote Sens. 2021, 13, 4146. [Google Scholar] [CrossRef]
- Asner, G.P.; Martin, R.E.; Keith, L.M.; Heller, W.P.; Hughes, M.A.; Vaughn, N.R.; Hughes, R.F.; Balzotti, C. A spectral mapping signature for the rapid ohia death (ROD) pathogen in Hawaiian forests. Remote Sens. 2018, 10, 404. [Google Scholar] [CrossRef] [Green Version]
- Xi, G.L.; Huang, X.J.; Xie, Y.W.; Gang, B.; Bao, Y.H.; Dashzebeg, G.; Nanzad, T.; Dorjsuren, A.; Enkhnasan, D.; Ariunaa, M. Detection of larch forest stress from Jas’s larch inchworm (Erannis jacobsoni Djak) attack using hyperspectral remote sensing. Remote Sens. 2021, 14, 124. [Google Scholar] [CrossRef]
- Xu, Z.H.; Zhang, Q.; Xiang, S.Y.; Li, Y.F.; Huang, X.Y.; Zhang, Y.W.; Zhou, X.; Li, Z.L.; Yao, X.; Li, Q.S.; et al. Monitoring the severity of Pantana phyllostachysae Chao infestation in Moso bamboo forests based on UAV multi-spectral remote sensing feature selection. Forests 2022, 13, 418. [Google Scholar] [CrossRef]
- Huang, X.Y.; Xu, Z.H.; Lin, L.; Liu, J.; Zhong, Z.Q.; Zhou, H.K. Spectral characteristic wavelengths of Moso bamboo leaves damaged by Pantana phyllostachysae Chao. Spectrosc. Spectral Anal. 2018, 38, 3829–3838. [Google Scholar]
State | Index | Best Estimate Model Equation | R2 | RMSE |
---|---|---|---|---|
H | CR-FD696 | 0.674 | 0.127 | |
CR-FD751 | 0.805 | 0.098 | ||
CR-FD2049 | 0.541 | 0.151 | ||
Mi | CR-FD524 | 0.551 | 0.145 | |
CR-FD637 | 0.533 | 0.148 | ||
CR-FD2143 | 0.659 | 0.127 | ||
Mo | CR-FD534 | 0.097 | 0.163 | |
CR-FD735 | −0.146 | 0.184 | ||
CR-FD2252 | 0.275 | 0.157 | ||
S | CR-FD1103 | 0.312 | 0.206 | |
CR-FD1731 | 0.530 | 0.170 | ||
CR-FD2252 | 0.604 | 0.156 | ||
O | CR-FD534 | 0.690 | 0.126 | |
CR-FD689 | 0.487 | 0.162 | ||
CR-FD739 | 0.604 | 0.142 |
Pest Level | PLS | SVR | ||||||
---|---|---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | |||||
t | p | t | p | t | p | t | p | |
H-Mi | 7.178 | 0.002 ** | 17.920 | 0.000 ** | 5.913 | 0.004 ** | 5.714 | 0.005 ** |
H-Mo | 91.625 | 0.000 ** | −61.388 | 0.000 ** | 13.460 | 0.000 ** | −8.572 | 0.001 ** |
H-S | 5.027 | 0.007 ** | −6.802 | 0.002 ** | −10.846 | 0.000 ** | 6.662 | 0.003 ** |
H-O | −22.823 | 0.000 ** | 12.113 | 0.000 ** | −14.366 | 0.000 ** | 6.152 | 0.004 ** |
Mi-Mo | 327.916 | 0.000 ** | −72.838 | 0.000 ** | 13.118 | 0.000 ** | −6.906 | 0.002 ** |
Mi-S | 2.254 | 0.087 | −26.315 | 0.000 ** | −12.159 | 0.000 ** | −2.159 | 0.097 |
Mi-O | −102.374 | 0.000 ** | −7.791 | 0.001 ** | −20.803 | 0.000 ** | 1.325 | 0.256 |
Mo-S | −61.473 | 0.000 ** | 32.152 | 0.000 ** | −19.199 | 0.000 ** | 8.056 | 0.001 ** |
Mo-O | −23.948 | 0.000 ** | 54.194 | 0.000 ** | −27.815 | 0.000 ** | 7.260 | 0.002 ** |
S-O | −299.605 | 0.000 ** | 24.890 | 0.000 ** | −2.930 | 0.043 * | 3.581 | 0.023 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Z.; Yu, H.; Li, B.; Hao, Z.; Li, Y.; Xiang, S.; Huang, X.; Li, Z.; Guo, X. Changing Relationships between Nitrogen Content and Leaf Spectral Characteristics of Moso Bamboo Leaves under Pantana phyllostachysae Chao Stress. Forests 2022, 13, 1752. https://doi.org/10.3390/f13111752
Xu Z, Yu H, Li B, Hao Z, Li Y, Xiang S, Huang X, Li Z, Guo X. Changing Relationships between Nitrogen Content and Leaf Spectral Characteristics of Moso Bamboo Leaves under Pantana phyllostachysae Chao Stress. Forests. 2022; 13(11):1752. https://doi.org/10.3390/f13111752
Chicago/Turabian StyleXu, Zhanghua, Hui Yu, Bin Li, Zhenbang Hao, Yifan Li, Songyang Xiang, Xuying Huang, Zenglu Li, and Xiaoyu Guo. 2022. "Changing Relationships between Nitrogen Content and Leaf Spectral Characteristics of Moso Bamboo Leaves under Pantana phyllostachysae Chao Stress" Forests 13, no. 11: 1752. https://doi.org/10.3390/f13111752