Characterizing Global Patterns of Mangrove Canopy Height and Aboveground Biomass Derived from SRTM Data
Abstract
1. Introduction
2. Materials and Methods
2.1. Field Data and SRTM Height
2.2. Empirical Models
3. Results
3.1. Mangrove Heights and Vertical Accuracy
3.2. Mangrove Biomass
3.3. Mangrove-Rich Countries
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Guannel, G.; Arkema, K.; Ruggiero, P.; Verutes, G. The Power of Three: Coral Reefs, Seagrasses and Mangroves Protect Coastal Regions and Increase Their Resilience. PLoS ONE 2016, 11, e0158094. [Google Scholar] [CrossRef] [PubMed]
- Hutchison, J.; Spalding, M.; zu Ermgassen, P. The role of mangroves in fisheries enhancement. Nature Conserv. Wetl. Int. 2014, 54, 434. [Google Scholar]
- Donato, D.C.; Kauffman, J.B.; Murdiyarso, D.; Kurnianto, S.; Stidham, M.; Kanninen, M. Mangroves among the Most Carbon-Rich Forests in the Tropics. Nat. Geosci. 2011, 4, 293–297. [Google Scholar] [CrossRef]
- Pendleton, L.; Donato, D.C.; Murray, B.C.; Crooks, S.; Jenkins, W.A.; Sifleet, S.; Craft, C.; Fourqurean, J.W.; Kauffman, J.B.; Marbà, N.; et al. Estimating Global “Blue Carbon” Emissions from Conversion and Degradation of Vegetated Coastal Ecosystems. PLoS ONE 2012, 7, e43542. [Google Scholar] [CrossRef] [PubMed]
- Siikamäki, J.; Sanchirico, J.N.; Jardine, S.L. Global Economic Potential for Reducing Carbon Dioxide Emissions from Mangrove Loss. Proc. Natl. Acad. Sci. USA 2012, 109, 14369–14374. [Google Scholar] [CrossRef] [PubMed]
- Polidoro, B.A.; Carpenter, K.E.; Collins, L.; Duke, N.C.; Ellison, A.M.; Ellison, J.C.; Farnsworth, E.J.; Fernando, E.S.; Kathiresan, K.; Koedam, N.E.; et al. The Loss of Species: Mangrove Extinction Risk and Geographic Areas of Global Concern. PLoS ONE 2010, 5, e10095. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, S.E.; Casey, D. Creation of a High Spatio-Temporal Resolution Global Database of Continuous Mangrove Forest Cover for the 21st Century (CGMFC-21). Glob. Ecol. Biogeogr. 2016, 25, 729–738. [Google Scholar] [CrossRef]
- Osborne, D.J.; Spalding, M.D.; Blasco, F.; Field, C.D. (Eds.) World Mangrove Atlas. International Society for Mangrove Ecosystems, Okinawa 903-01, Japan. 178 pp. ISBN 4-906584-03-9. Price US$ 60.00 (Hardback). J. Trop. Ecol. 1998, 14, 723–724. [Google Scholar] [CrossRef]
- Giri, C.; Ochieng, E.; Tieszen, L.L.; Zhu, Z.; Singh, A.; Loveland, T.; Masek, J.; Duke, N. Status and Distribution of Mangrove Forests of the World Using Earth Observation Satellite Data. Glob. Ecol. Biogeogr. 2011, 20, 154–159. [Google Scholar] [CrossRef]
- Lagomasino, D.; Fatoyinbo, T.; Lee, S.K.; Feliciano, E.; Trettin, C.; Simard, M. A Comparison of Mangrove Canopy Height Using Multiple Independent Measurements from Land, Air, and Space. Remote Sens. 2016, 8, 327. [Google Scholar] [CrossRef]
- Persson, H.; Wallerman, J.; Olsson, H.; Fransson, J.E.S. Estimating Forest Biomass and Height Using Optical Stereo Satellite Data and a DTM from Laser Scanning Data. Can. J. Remote Sens. 2014, 39, 251–262. [Google Scholar] [CrossRef]
- Aljahdali, M.O.; Munawar, S.; Khan, W.R. Monitoring Mangrove Forest Degradation and Regeneration: Landsat Time Series Analysis of Moisture and Vegetation Indices at Rabigh Lagoon, Red Sea. Forests 2021, 12, 52. [Google Scholar] [CrossRef]
- Ellison, J.C. Factors Influencing Mangrove Ecosystems. In Mangroves: Ecology, Biodiversity and Management; Springer: Singapore, 2021; pp. 97–115. [Google Scholar] [CrossRef]
- Lugo, A.E.; Snedaker, S.C. The Ecology of Mangroves. Annu. Rev. Ecol. Syst. 2003, 5, 39–64. [Google Scholar] [CrossRef]
- Tomlinson, P.B. The Botany of Mangroves; Cambridge University Press: Cambridge, UK, 2016. [Google Scholar] [CrossRef]
- Alongi, D.M. Present State and Future of the World’s Mangrove Forests. Environ. Conserv. 2002, 29, 331–349. [Google Scholar] [CrossRef]
- Blasco, F.; Saenger, P.; Janodet, E. Mangroves as Indicators of Coastal Change. CATENA 1996, 27, 167–178. [Google Scholar] [CrossRef]
- Twilley, R.R.; Chen, R.H.; Hargis, T. Carbon Sinks in Mangroves and Their Implications to Carbon Budget of Tropical Coastal Ecosystems. Water Air Soil Pollut. 1992, 64, 265–288. [Google Scholar] [CrossRef]
- Duke, N.C.; Schmitt, K. Mangroves: Unusual Forests at the Seas Edge. In Tropical Forestry Handbook; Springer: Berlin/Heidelberg, Germany, 2015; pp. 1–24. [Google Scholar] [CrossRef]
- Simard, M.; Fatoyinbo, L.; Smetanka, C.; Rivera-Monroy, V.H.; Castañeda-Moya, E.; Thomas, N.; Van der Stocken, T. Mangrove Canopy Height Globally Related to Precipitation, Temperature and Cyclone Frequency. Nat. Geosci. 2019, 12, 40–45. [Google Scholar] [CrossRef]
- Komiyama, A.; Ong, J.E.; Poungparn, S. Allometry, Biomass, and Productivity of Mangrove Forests: A Review. Aquat. Bot. 2008, 89, 128–137. [Google Scholar] [CrossRef]
- Aslan, A.; Rahman, A.F.; Warren, M.W.; Robeson, S.M. Mapping Spatial Distribution and Biomass of Coastal Wetland Vegetation in Indonesian Papua by Combining Active and Passive Remotely Sensed Data. Remote Sens. Environ. 2016, 183, 65–81. [Google Scholar] [CrossRef]
- Simard, M.; Pinto, N.; Fisher, J.B.; Baccini, A. Mapping Forest Canopy Height Globally with Spaceborne Lidar. J. Geophys. Res. Biogeosci. 2011, 116, 4021. [Google Scholar] [CrossRef]
- Fatoyinbo, T.E.; Simard, M. Height and Biomass of Mangroves in Africa from ICESat/GLAS and SRTM. Int. J. Remote Sens. 2012, 34, 668–681. [Google Scholar] [CrossRef]
- Fatoyinbo, T.E.; Simard, M.; Washington-Allen, R.A.; Shugart, H.H. Landscape-Scale Extent, Height, Biomass, and Carbon Estimation of Mozambique’s Mangrove Forests with Landsat ETM+ and Shuttle Radar Topography Mission Elevation Data. J. Geophys. Res. Biogeosci. 2008, 113, G2. [Google Scholar] [CrossRef]
- Simard, M.; Rivera-Monroy, V.H.; Mancera-Pineda, J.E.; Castañeda-Moya, E.; Twilley, R.R. A Systematic Method for 3D Mapping of Mangrove Forests Based on Shuttle Radar Topography Mission Elevation Data, ICEsat/GLAS Waveforms and Field Data: Application to Ciénaga Grande de Santa Marta, Colombia. Remote Sens. Environ. 2008, 112, 2131–2144. [Google Scholar] [CrossRef]
- Lee, S.K.; Fatoyinbo, T.; Lagomasino, D.; Osmanoglu, B.; Simard, M.; Trettin, C.; Rahman, M.; Ahmed, I. Large-Scale Mangrove Canopy Height Map Generation from TanDEM-X Data by Means of Pol-InSAR Techniques. Int. Geosci. Remote Sens. Symp. 2015, 2015, 2895–2898. [Google Scholar] [CrossRef]
- Aslan, A.; Rahman, A.F.; Robeson, S.M. Investigating the Use of Alos Prism Data in Detecting Mangrove Succession through Canopy Height Estimation. Ecol. Indic. 2017, 87, 136–143. [Google Scholar] [CrossRef]
- Ximenes, A.C.; Ponsoni, L.; Lira, C.F.; Koedam, N.; Dahdouh-Guebas, F. Does Sea Surface Temperature Contribute to Determining Range Limits and Expansion of Mangroves in Eastern South America (Brazil)? Remote Sens. 2018, 10, 1787. [Google Scholar] [CrossRef]
- Woodroffe, C.D.; Grindrod, J. Mangrove Biogeography: The Role of Quaternary Environmental and Sea-Level Change. J. Biogeogr. 1991, 18, 479. [Google Scholar] [CrossRef]
- Kauffman, J.B.; Donato, D.C. Protocols for the Measurement, Monitoring and Reporting of Structure, Biomass and Carbon Stocks in Mangrove Forests; CIFOR: Bogor, Indonesia, 2012. [Google Scholar]
- Mizanur Rahman, M.; Nabiul Islam Khan, M.; Fazlul Hoque, A.K.; Ahmed, I. Carbon Stock in the Sundarbans Mangrove Forest: Spatial Variations in Vegetation Types and Salinity Zones. Wetl. Ecol. Manag. 2015, 23, 269–283. [Google Scholar] [CrossRef]
- Kangkuso, A.; Jamili, J.; Septiana, A.; Raya, R.; Sahidin, I.; Rianse, U.; Rahim, S.; Alfirman, A.; Sharma, S.; Nadaoka, K. Allometric models and aboveground biomass of Lumnitzera racemosa Willd. Forest in Rawa Aopa Watumohai National Park, Southeast Sulawesi, Indonesia. For. Sci. Technol. 2016, 12, 43–50. [Google Scholar]
- Bismark, M.; Subiandono, E.; Heriyanto, N.M. Keragaman dan potensi jenis serta kandungan karbon hutan mangrove di Sungai Subelen Siberut, Sumatera Barat. J. Penelit. Hutan Konserv. Alam 2008, 5, 297–306. [Google Scholar] [CrossRef][Green Version]
- Wannasiri, W.; Nagai, M.; Honda, K.; Santitamnont, P.; Miphokasap, P. Extraction of mangrove biophysical parameters using airborne LiDAR. Remote Sens. 2013, 5, 1787–1808. [Google Scholar] [CrossRef]
- Wang, G.; Guan, D.M.; Peart, R.; Chen, Y.; Peng, Y. Ecosystem carbon stocks of mangrove forest in Yingluo Bay, Guangdong Province of South China. For. Ecol. Manag. 2013, 310, 539–546. [Google Scholar] [CrossRef]
- Goessens, A.; Satyanarayana, B.; van der Stocken, T.; Zuniga, M.Q.; Mohd-Lokman, H.; Sulong, I.; Dahdouh-Guebas, F. Is Matang Mangrove Forest in Malaysia sustainably rejuvenating after more than a century of conservation and harvesting management? PLoS ONE 2014, 9, e105069. [Google Scholar] [CrossRef] [PubMed]
- Shah, K.; Kamal, A.H.M.; Rosli, Z.; Hakeem, K.R.; Hoque, M.M. Composition and diversity of plants in Sibuti mangrove forest, Sarawak, Malaysia. For. Sci. Technol. 2016, 12, 70–76. [Google Scholar] [CrossRef]
- Rajkumar, S.Y.; Ketan, M.; Salvi, H.; Kamboj, R.D. Age and Growth relation of mangrove Avicennia marina (Forssk.) Vierh. In Gulf of Kachchh (GoK), India. Gulf of Kachchh (Gok), India (22 June 2018). Appl. Sci. Rep. 2017, 17. [Google Scholar] [CrossRef]
- Krauss, K.W.; Thomas, W.D.; Twilley, R.R.; Smith, T.J., III; Whelan, K.R.T.; Sullivan, K.J. Woody Debris in the Mangrove Forests of South Florida 1. Biotrop. J. Biol. Conserv. 2005, 37, 9–15. [Google Scholar]
- Lovelock, C.E.; Marilyn, C.B.; Martin, K.C.; Feller, I.C. Nutrient enrichment increases mortality of mangroves. PLoS ONE 2009, 4, e5600. [Google Scholar] [CrossRef]
- Loría-Naranjo, M.; Samper-Villarreal, J.; Cortés, J. Structural complexity and species composition of Potrero Grande and Santa Elena mangrove forests in Santa Rosa National Park, North Pacific of Costa Rica. Rev. Biol. Trop. 2014, 62, 33–41. [Google Scholar] [CrossRef]
- Blanco, J.F.; Bejarano, A.C.; Lasso, J.; Cantera, J.R. A new look at computation of the complexity index in mangroves: Do disturbed forests have clues to analyze canopy height patchiness? Wetl. Ecol. Manag. 2011, 9, 91–101. [Google Scholar] [CrossRef]
- Zamprogno, G.C.; Tognella, M.M.P.; Quaresma, V.D.S.; da Costa, M.B.; Pascoalini, S.S.; Couto, G.F.D. The structural heterogeneity of an urbanised mangrove forest area in southeastern Brazil: Influence of environmental factors and anthropogenic stressors. Braz. J. Oceanogr. 2016, 64, 157–172. [Google Scholar] [CrossRef]
- Bandeira, S.O.; Macamo, C.C.F.; Kairo, J.G.; Amade, F.; Jiddawi, N.; Paula, J. Evaluation of mangrove structure and condition in two trans-boundary areas in the Western Indian Ocean. Aquatic Conserv. Mar. Freshwater Ecosyst. 2009, 19, S46–S55. [Google Scholar] [CrossRef]
- Simard, M.; Zhang, K.; Rivera-Monroy, V.; Ross, M.; Ruiz, P.; Castañeda-Moya, E.; Twilley, R.; Rodriguez, E. Mapping Height and Biomass of Mangrove Forests in Everglades National Park with SRTM Elevation Data. Photogramm. Eng. Remote Sens. 2006, 72, 299–311. [Google Scholar] [CrossRef]
- Ramsey, E.; Lu, Z.; Rangoonwala, A.; Rykhus, R. Multiple Baseline Radar Interferometry Applied to Coastal Land Cover Classification and Change Analyses. GISci. Remote Sens. 2006, 43, 283–309. [Google Scholar] [CrossRef]
- Pohjankukka, J.; Pahikkala, T.; Nevalainen, P.; Heikkonen, J. Estimating the Prediction Performance of Spatial Models via Spatial K-Fold Cross Validation. Int. J. Geogr. Inf. Sci. 2017, 31, 2001–2019. [Google Scholar] [CrossRef]
- Steyerberg, E.W.; Vickers, A.J.; Cook, N.R.; Gerds, T.; Gonen, M.; Obuchowski, N.; Pencina, M.J.; Kattan, M.W. Assessing the Performance of Prediction Models: A Framework for Some Traditional and Novel Measures. Epidemiology 2010, 21, 128. [Google Scholar] [CrossRef]
- Saenger, P.; Snedaker, S.C. Pantropical Trends in Mangrove Above-Ground Biomass and Annual Litterfall. Oecologia 1993, 96, 293–299. [Google Scholar] [CrossRef]
- Cintrón, G.; Schaeffer-Novelli, Y. Características y desarrollo estructural de los manglares de Norte y Sur América. Ciencia Interamericana 1985, 25, 4–15. [Google Scholar]
- Luther, D.A.; Greenberg, R. Mangroves: A Global Perspective on the Evolution and Conservation of Their Terrestrial Vertebrates. Bioscience 2009, 59, 602–612. [Google Scholar] [CrossRef]
- Rovai, A.S.; Twilley, R.R.; Castañeda-Moya, E.; Midway, S.R.; Friess, D.A.; Trettin, C.C.; Bukoski, J.J.; Stovall, A.E.L.; Pagliosa, P.R.; Fonseca, A.L.; et al. Macroecological Patterns of Forest Structure and Allometric Scaling in Mangrove Forests. Glob. Ecol. Biogeogr. 2021, 30, 1000–1013. [Google Scholar] [CrossRef]
- Boone Kauffman, J.; Arifanti, V.B.; Hernández Trejo, H.; del Carmen Jesús García, M.; Norfolk, J.; Cifuentes, M.; Hadriyanto, D.; Murdiyarso, D. The Jumbo Carbon Footprint of a Shrimp: Carbon Losses from Mangrove Deforestation. Front. Ecol. Environ. 2017, 15, 183–188. [Google Scholar] [CrossRef]
- Barbier, E.B. Progress and Challenges in Valuing Coastal and Marine Ecosystem Services. Rev. Environ. Econ. Policy 2020, 6, 1–19. [Google Scholar] [CrossRef]
- Rossi, C.; Gernhardt, S. Urban DEM Generation, Analysis and Enhancements Using TanDEM-X. ISPRS J. Photogramm. Remote Sens. 2013, 85, 120–131. [Google Scholar] [CrossRef]
- Jardine, S.L.; Siikamäki, J.V. A Global Predictive Model of Carbon in Mangrove Soils. Environ. Res. Lett. 2014, 9, 104013. [Google Scholar] [CrossRef]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef]
No | Location | SRTM Elevation | Field Mangrove Height | Longitude | Latitude | Mangrove Species | References |
---|---|---|---|---|---|---|---|
1 | Mahakam Delta, Indonesia | 5.0 | 10.0 | 117.5296327 | −0.614998372 | R. mucronata, A. germinans, Nypa fruticans, S. alba, R. apiculata, Bruguiera sp. | Unpublished field data |
2 | Mimika Papua, Indonesia | 7.0 | 8.0 | 136.7123396 | −4.797423469 | R. mucronata, R. apiculata, R. stylosa, Avicennia sp., Sonneratia sp., Nypa fruticans, S. alba, R. apiculata, B. exaristat, B. gymnorrhiza, B. hainesii, B. parviflora, B. sexangula, B. cylindrica, Ceriops, Camptostemon, Lumnitzera | Unpublished field data |
3 | Sundarbans, Bangladesh | 10.0 | 9.2 | 89.49642047 | 22.07774034 | Heritiera fomes, Nypa fruticans, Bruguiera gymnorrhiza, R. apiculata, R. mucronata, Xylocarpus granatum, X. mekongensis | Unpublished field data |
4 | Asmat Papua, Indonesia | 21.6 | 25.0 | 138.0509175 | −5.47876875 | R. mucronata, R. apiculata, R. stylosa, Avicennia sp., Sonneratia sp., Nypa fruticans, S. alba, R. apiculata, B. exaristat, B. gymnorrhiza, B. hainesii, B. parviflora, B. sexangula, B. cylindrica, Ceriops, Camptostemon | Unpublished field data |
5 | Arguni Bay Papua, Indonesia | 18.7 | 19.4 | 133.7809701 | −3.07832475 | R. mucronata, R. apiculata, R. stylosa, Avicennia sp., Sonneratia sp., Nypa fruticans, S. alba, R. apiculata, Bruguiera sp. | Unpublished field data |
6 | Southeast Sulawesi-Indonesia | 9.0 | 8.2 | 122.056104 | −4.553076 | L. racemosa | Kangkuso et al. [33] |
7 | Siberut, Indonesia | 20.0 | 20.5 | 99.0538105 | −1.3072485 | R. apiculata, R. mucronata, B. cylindrica, B. gymnorrhiza, Xylocarpus granatum, Barringtonia racemosa, Ceriops tagal, Aegyceras corniculatum, Lumnitzera littorea, Avicennia alba | Bismark et al. [34] |
8 | Thailand | 3.0 | 2.8 | 102.1529199 | 12.52941738 | Avicennia alba, Avicennia officinalis | Wannasiri et al. [35] |
9 | Yingluo Bay, China | 2.0 | 2.4 | 109.759312 | 21.56500025 | Avicennia marina, Sonneratia apetala, A. corniculatum, K. obavata, B. gymnorrhiza, R. stylosa | Wang et al. [36] |
10 | Matang, Malaysia | 17.5 | 14.8 | 100.6003847 | 4.853099667 | R. apiculata, B. parvilora, B. sexangula, R. mucronata, Avicennia alba | Goessens et al. [37] |
11 | Sibuti Serawak, Malaysia | 21.0 | 19.6 | 113.736945 | 3.987122667 | R. apiculata, X. granatum, X. mekongensis, Nypa fruticans, Intsia bijuga, Thespesia populnea, Excoecaria agallocha, Acrostichum speciosum, Phoenix paludosa | Shah et al. [38] |
12 | Gulf of Kutch, India | 4.0 | 4.0 | 69.87755175 | 22.48217463 | A. marina | Rajkumar et al. [39] |
13 | Everglades Florida, United States | 5.3 | 9.9 | −81.06102613 | 25.4852244 | R. mangle, A. germinans, L. racemosa | Krauss et al. [40] |
14 | Brisbane, Australia | 8.7 | 8.5 | 153.033468 | −27.282594 | A. marina | Lovelock et al. [41] |
15 | Exmouth, Australia | 4.0 | 1.5 | 113.94707 | −21.961995 | A. marina | Lovelock et al. [41] |
16 | Hinchinbrook, Australia | 6.0 | 6.0 | 146.166667 | −18.333333 | R. mangle, A. germinans, R. lamarckii | Lovelock et al. [41] |
17 | Port Douglas, Australia | 5.0 | 2.0 | 145.44973 | −16.499527 | R. mangle, A. marina | Lovelock et al. [41] |
18 | Twin Cay, Belize | 4.0 | 7.0 | −88.100419 | 16.832535 | R. mangle | Lovelock et al. [41] |
19 | Potrero Grande, Costa Rica | 14.0 | 8.8 | −85.786436 | 10.851285 | A. germinans, L. racemosa, R. mangle, R. racemosa, P. rhizophorae | Loría-Naranjo et al. [42] |
20 | Santa Elena, Costa Rica | 10.1 | 7.0 | −85.78448 | 10.91266 | A. germinans, A. bicolor, L. racemosa, R. mangle, R. racemosa, P. rhizophorae | Loría-Naranjo et al. [42] |
21 | Buenaventura Bay, Colombia | 23.0 | 24.2 | −77.091394 | 3.830060111 | R. mangle, R. racemosa, A. germinans, L. racemosa, Pelliciera rhizophorae | Blanco et al. [43] |
22 | Vitoria Bay, Brazil | 4.6 | 7.9 | −40.33386427 | −20.27102091 | Avicennia schaueriana, L. racemosa, R. mangle | Zamprogno et al. [44] |
23 | Mngoji2, Mozambique | 7.8 | 3.8 | 40.36687 | −10.361206 | A. marina, C. tagal, R. mucronata, S. alba | Bandeira et al. [45] |
24 | Mngoji1, Mozambique | 7.5 | 5.2 | 40.414096 | −10.346828 | A. marina, R. mucronata, S. alba | Bandeira et al. [45] |
25 | Ulo, Mozambique | 7.3 | 2.7 | 40.447664 | −11.415561 | A. marina, C. tagal, R. mucronata, S. alba | Bandeira et al. [45] |
26 | Luchete, Mozambique | 8.4 | 2.2 | 40.425148 | −11.585771 | A. marina, C. tagal, R. mucronata, S. alba | Bandeira et al. [45] |
27 | Ibo, Mozambique | 6.8 | 3.0 | 40.57073 | −12.384053 | A. marina, C. tagal, R. mucronata, S. alba | Bandeira et al. [45] |
28 | Pemba, Mozambique | 7.3 | 3.4 | 40.485629 | −13.050629 | A. marina, B. gymnorhiza, C. tagal, R. mucronata, S. alba | Bandeira et al. [45] |
29 | Mecufi, Mozambique | 7.0 | 3.2 | 40.54862 | −13.296666 | A. marina, B. gymnorhiza, C. tagal, R. mucronata, S. alba | Bandeira et al. [45] |
30 | Saco, Mozambique | 5.0 | 3.9 | 32.914154 | −26.035665 | A. marina, B. gymnorhiza, C. tagal, R. mucronata | Bandeira et al. [45] |
31 | Sangala, Mozambique | 5.8 | 2.5 | 32.944879 | −25.991996 | A. marina, B. gymnorhiza, C. tagal, R. mucronata | Bandeira et al. [45] |
No | Country | MFW (ha) | CGMFC-21 (ha) | This Study (ha) | Tall ≥20 m (ha) | Short to Medium <20 m (ha) | Aboveground Biomass (tons) |
---|---|---|---|---|---|---|---|
1 | Indonesia | 3,112,989 | 2,407,313 | 2,393,244 | 562,596 | 1,830,648 | 472,150,415 |
2 | Brazil | 962,683 | 772,131 | 853,902 | 112,345 | 741,556 | 150,725,476 |
3 | Australia | 977,975 | 332,651 | 770,167 | 7806 | 762,361 | 98,882,395 |
4 | Nigeria | 653,669 | 265,704 | 568,235 | 25,147 | 543,088 | 74,975,813 |
5 | Malaysia | 505,386 | 496,868 | 497,116 | 20,937 | 476,178 | 83,931,536 |
6 | Papua New Guinea | 480,121 | 418,992 | 426,987 | 122,093 | 304,894 | 93,626,647 |
7 | Mexico | 741,917 | 302,103 | 390,922 | 9803 | 381,120 | 54,288,866 |
8 | Bangladesh | 436,570 | 177,390 | 366,710 | 853 | 365,856 | 52,675,523 |
9 | Myanmar | 494,584 | 279,260 | 323,398 | 12,893 | 310,505 | 47,050,344 |
10 | Mozambique | 318,851 | 122,620 | 276,396 | 556 | 275,840 | 32,788,751 |
11 | Guinea Bissau | 338,652 | 74,518 | 238,901 | 891 | 238,010 | 29,593,836 |
12 | Cuba | 421,538 | 166,036 | 227,513 | 240 | 227,273 | 28,682,781 |
13 | Philippines | 263,137 | 209,105 | 218,883 | 2029 | 216,854 | 25,492,129 |
14 | Madagascar | 278,078 | 85,222 | 214,914 | 1057 | 213,857 | 30,091,223 |
15 | India | 368,276 | 82,506 | 159,770 | 2940 | 156,830 | 20,015,239 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aslan, A.; Aljahdali, M.O. Characterizing Global Patterns of Mangrove Canopy Height and Aboveground Biomass Derived from SRTM Data. Forests 2022, 13, 1545. https://doi.org/10.3390/f13101545
Aslan A, Aljahdali MO. Characterizing Global Patterns of Mangrove Canopy Height and Aboveground Biomass Derived from SRTM Data. Forests. 2022; 13(10):1545. https://doi.org/10.3390/f13101545
Chicago/Turabian StyleAslan, Aslan, and Mohammed Othman Aljahdali. 2022. "Characterizing Global Patterns of Mangrove Canopy Height and Aboveground Biomass Derived from SRTM Data" Forests 13, no. 10: 1545. https://doi.org/10.3390/f13101545
APA StyleAslan, A., & Aljahdali, M. O. (2022). Characterizing Global Patterns of Mangrove Canopy Height and Aboveground Biomass Derived from SRTM Data. Forests, 13(10), 1545. https://doi.org/10.3390/f13101545