Evaluation of Vegetation Configuration Models for Managing Particulate Matter along the Urban Street Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Vegetation Configuration
2.2. Computational Fluid Dynamics
2.2.1. Mathematical Formulations in a Numerical Model
2.2.2. Geometry and Boundary Conditions
2.2.3. Grid Model and Configuration
2.2.4. PM Model Configuration
3. Results
3.1. Particulate Matter Flow Analysis
3.1.1. Comparing Vegetation Configurations
3.1.2. Comparison by Tree-Shrub Configuration
3.2. Analysis of PM Concentrations
3.2.1. Vegetation Configuration and Planting Arrangement
3.2.2. Roadway Width and Vegetation Configuration
4. Discussion
4.1. Changes in Flow According to Vegetation Configuration
4.2. Relationship between Vegetation Configuration and PM Concentration at the Breathing Height
4.2.1. Changes in the Concentration of PM According to the Vegetation Configuration
4.2.2. Changes in the Concentration of PM According to the Road Width
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Abhijith, K.V.; Kumar, P.; Gallagher, J.; McNabola, A.; Baldauf, R.; Pilla, F.; Broderick, B.; Di Sabatino, S.; Pulvirenti, B. Air pollution abatement performances of green infrastructure in open road and built-up street canyon environments—A review. Atmos. Environ. 2017, 162, 71–86. [Google Scholar] [CrossRef]
- Kumar, P.; Rivas, I.; Singh, A.P.; Ganesh, V.J.; Ananya, M.; Frey, H.C. Dynamics of coarse and fine particle exposure in transport microenvironments. NPJ Clim. Atmos. Sci. 2018, 1, 11. [Google Scholar] [CrossRef]
- Li, X.B.; Lu, Q.; Lu, S.; He, H.; Peng, Z.; Gao, Y.; Wang, Z. The impacts of roadside vegetation barriers on the dispersion of gaseous traffic pollution in urban street canyons. Urban For. Urban Green. 2016, 17, 80–91. [Google Scholar] [CrossRef]
- Ortolani, C.; Vitale, M. The importance of local scale for assessing, monitoring and predicting of air quality in urban areas. Sustain. Cities Soc. 2016, 26, 150–160. [Google Scholar] [CrossRef]
- Xue, F.; Li, X. The impact of roadside trees on traffic released PM10 in urban street canyon: Aerodynamic and deposition effects. Sustain. Cities Soc. 2017, 30, 195–204. [Google Scholar] [CrossRef]
- McNabola, A.; O’Luanaigh, N.; Gallagher, J.; Gill, L. The development and assessment of an aspiration efficiency reducing system of air pollution control for particulate matter in building ventilation systems. Energy Build. 2013, 61, 177–184. [Google Scholar] [CrossRef]
- Hewitt, C.N.; Ashworth, K.; MacKenzie, A.R. Using green infrastructure to improve urban air quality (GI4AQ). Ambio 2020, 49, 62–73. [Google Scholar] [CrossRef] [Green Version]
- Kaur, S.; Nieuwenhuijsen, M.J.; Colvile, R.N. Pedestrian exposure to air pollution along a major road in Central London, UK. Atmos. Environ. 2005, 39, 7307–7320. [Google Scholar] [CrossRef]
- King, E.A.; Murphy, E.; McNabola, A. Reducing pedestrian exposure to environmental pollutants: A combined noise exposure and air quality analysis approach. Transp. Res. D Transp. Environ. 2009, 14, 309–316. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, X.; He, Q.; Wang, H.; Sheng, G.; Chan, L.Y.; Fu, J.; Blake, D.R. Exposure to hazardous volatile organic compounds, PM10 and CO while walking along streets in urban Guangzhou, China. Atmos. Environ. 2004, 38, 6177–6184. [Google Scholar] [CrossRef] [Green Version]
- Litschke, T.; Kuttler, W. On the reduction of urban particle concentration by vegetation–a review. Meteorol. Z. 2008, 17, 229–240. [Google Scholar] [CrossRef]
- Brantley, H.L.; Hagler, G.S.W.; Deshmukh, P.J.; Baldauf, R.W. Field assessment of the effects of roadside vegetation on near-road black carbon and particulate matter. Sci. Total Environ. 2014, 120–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tiwary, A.; Reff, A.; Colls, J.J. Collection of ambient particulate matter by porous vegetation barriers: Sampling and characterization methods. J. Aerosol. Sci. 2008, 39, 40–47. [Google Scholar] [CrossRef]
- Tong, Z.; Baldauf, R.W.; Isakov, V.; Deshmukh, P.; Max Zhang, K. Roadside vegetation barrier designs to mitigate near-road air pollution impacts. Sci. Total Environ. 2016, 541, 920–927. [Google Scholar] [CrossRef] [PubMed]
- Balczó, B.; Márton, G.; Christof, R. Numerical modeling of flow and pollutant dispersion in street canyons with tree planting. Meteorol. Z. 2009, 18, 197–206. [Google Scholar] [CrossRef]
- Buccolieri, R.; Gromke, C.; Di Sabatino, S.; Ruck, B. Aerodynamic effects of trees on pollutant concentration in street canyons. Sci. Total Environ. 2009, 407, 5247–5256. [Google Scholar] [CrossRef]
- Czáder, K.; Balczó, M.; Eichhorn, J. Modelling of flow and dispersion in a street canyon with vegetation by means of numerical simulation. In Proceedings of the XXIII MicroCAD International Scientific Conference, Miskolc, Hungary, 19–20 March 2009; pp. 19–20. [Google Scholar]
- Kikuchi, A.; Hataya, N.; Mochida, A.; Yoshino, H.; Tabata, Y.; Watanabe, H.; Jyunimura, Y. Field study of the influences of roadside trees and moving automobiles on turbulent diffusion of air pollutants and thermal environment in urban street canyons. In Proceedings of the 6th International Conference on Indoor Air Quality, Ventilation and Energy Conservation in Buildings (IAQVEC’07), Sendai, Japan, 28–31 October 2007; pp. 137–144. [Google Scholar]
- Mochida, A.; Tabata, Y.; Iwata, T.; Yoshino, H. Examining tree canopy models for CFD prediction of wind environment at pedestrian level. J. Wind Eng. Ind. Aerodyn. 2008, 96, 1667–1677. [Google Scholar] [CrossRef]
- Gromke, C.; Ruck, B. Influence of trees on the dispersion of pollutants in an urban street canyon—Experimental investigation of the flow and concentration field. Atmos. Environ. 2007, 41, 3287–3302. [Google Scholar] [CrossRef] [Green Version]
- Baldauf, R. Roadside vegetation design characteristics that can improve local, near-road air quality. Transp. Res. D Transp. Environ. 2017, 52, 54–361. [Google Scholar] [CrossRef]
- Al-Dabbous, A.N.; Kumar, P. The influence of roadside vegetation barriers on airborne nanoparticles and pedestrians exposure under varying wind conditions. Atmos. Environ. 2014, 90, 113–124. [Google Scholar] [CrossRef] [Green Version]
- Steffens, J.T.; Wang, Y.J.; Zhang, K.M. Exploration of effects of a vegetation barrier on particle size distributions in a near-road environment. Atmos. Environ. 2012, 50, 120–128. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, Z.; McNulty, S.; Wang, P. The mitigation strategy of automobile generated fine particle pollutants by applying vegetation configuration in a street-canyon. J. Clean Prod. 2020, 274, 122941. [Google Scholar] [CrossRef]
- Lovell, S.T.; Taylor, R. Supplying urban ecosystem services through multifunctional green infrastructure in the United States. Landsc. Ecol. 2013, 28, 1447–1463. [Google Scholar] [CrossRef]
- Armson, D.; Stringer, P.; Ennos, A.R. The effect of street trees and amenity grass on urban surface water runoff in Manchester, UK. Urban For. Urban Green. 2013, 12, 282–286. [Google Scholar] [CrossRef]
- Gallet, D. The value of green infrastructure: A guide to recognizing its economic, environmental and social benefits. Proc. Water Environ. Fed. 2011, 924–928. [Google Scholar] [CrossRef]
- Shashua-Bar, L.; Pearlmutter, D.; Erell, E. The cooling efficiency of urban landscape strategies in a hot dry climate. Landsc. Urban Plan. 2009, 92, 179–186. [Google Scholar] [CrossRef]
- Ikin, K.; Knight, E.; Lindenmayer, D.B.; Fischer, J.; Manning, A.D. The influence of native versus exotic streetscape vegetation on the spatial distribution of birds in suburbs and reserves. Divers. Distrib. 2013, 19, 294–306. [Google Scholar] [CrossRef] [Green Version]
- Rhodes, J.R.; Ng, C.F.; de Villiers, D.L.; Preece, H.J.; McAlpine, C.A.; Possingham, H.P. Using integrated population modelling to quantify the implications of multiple threatening processes for a rapidly declining population. Biol. Conserv. 2011, 144, 1081–1088. [Google Scholar] [CrossRef]
- Alvey, A.A. Promoting and preserving biodiversity in the urban forest. Urban For. Urban Green. 2006, 5, 195–201. [Google Scholar] [CrossRef]
- Wan, C.; Shen, G.Q.; Choi, S. Underlying relationships between public urban green spaces and social cohesion: A systematic literature review. City Cult. Soc. 2021, 24, 100383. [Google Scholar] [CrossRef]
- Van Dillen, S.M.E.; de Vries, S.; Groenewegen, P.P.; Spreeuwenberg, P. Greenspace in urban neighbourhoods and residents’ health: Adding quality to quantity. J. Epidemiol. Commun. Health 2012, 66, e8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Gu, Z.; Yu, C.W. Impact factors on airflow and pollutant dispersion in urban street canyons and comprehensive simulations: A review. Curr. Pollut. Rep. 2020, 6, 425–439. [Google Scholar] [CrossRef]
- Gromke, C.; Ruck, B. Pollutant concentrations in street canyons of different aspect ratio with avenues of trees for various wind directions. Boundary Layer Meteorol. 2012, 144, 41–64. [Google Scholar] [CrossRef] [Green Version]
- Hagler, G.S.W.; Lin, M.Y.; Khlystov, A.; Baldauf, R.W.; Isakov, V.; Faircloth, J.; Jackson, L.E. Field investigation of roadside vegetative and structural barrier impact on near-road ultrafine particle concentrations under a variety of wind conditions. Sci. Total Environ. 2012, 419, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Mao, Y.; Wilson, J.D.; Kort, J. Effects of a shelterbelt on road dust dispersion. Atmos. Environ. 2013, 79, 590–598. [Google Scholar] [CrossRef]
- Ng, W.Y.; Chau, C.K. Evaluating the role of vegetation on the ventilation performance in isolated deep street canyons. Int. J. Environ. Pollut. 2012, 50, 98–110. [Google Scholar] [CrossRef]
- Salmond, J.A.; Williams, D.E.; Laing, G.; Kingham, S.; Dirks, K.; Longley, I.; Henshaw, G.S. The influence of vegetation on the horizontal and vertical distribution of pollutants in a street canyon. Sci. Total Environ. 2013, 443, 287–298. [Google Scholar] [CrossRef]
- Abhijith, K.V.; Gokhale, S. Passive control potentials of trees and on-street parked cars in reduction of air pollution exposure in urban street canyons. Environ. Pollut. 2015, 204, 99–108. [Google Scholar] [CrossRef]
- Amorim, J.H.; Rodrigues, V.; Tavares, R.; Valente, J.; Borrego, C. CFD modelling of the aerodynamic effect of trees on urban air pollution dispersion. Sci. Total Environ. 2013, 541–551. [Google Scholar] [CrossRef] [PubMed]
- Amorim, J.H.; Valente, J.; Cascão, P.; Rodrigues, V.; Pimentel, C.; Miranda, A.I.; Borrego, C. Pedestrian exposure to air pollution in cities: Modeling the effect of roadside trees. Adv. Meteorol. 2013, 1–7. [Google Scholar] [CrossRef]
- Wania, A.; Bruse, M.; Blond, N.; Weber, C. Analysing the influence of different street vegetation on traffic-induced particle dispersion using microscale simulations. J. Environ. Manag. 2012, 94, 91–101. [Google Scholar] [CrossRef]
- Gromke, C.; Buccolieri, R.; Di Sabatino, S.; Ruck, B. Dispersion study in a street canyon with tree planting by means of wind tunnel and numerical investigations—Evaluation of CFD data with experimental data. Atmos. Environ. 2008, 42, 8640–8650. [Google Scholar] [CrossRef]
- Janhäll, S. Review on urban vegetation and particle air pollution—Deposition and dispersion. Atmos. Environ. 2015, 105, 130–137. [Google Scholar] [CrossRef]
- McNabola, A. New directions: Passive control of personal air pollution exposure from traffic emissions in urban street canyons. Atmos. Environ. 2010, 44, 2940–2941. [Google Scholar] [CrossRef]
- Schulte, N.; Snyder, M.; Isakov, V.; Heist, D.; Venkatram, A. Effects of solid barriers on dispersion of roadway emissions. Atmos. Environ. 2014, 97, 286–295. [Google Scholar] [CrossRef]
- Voordeckers, D.; Lauriks, T.; Denys, S.; Billen, P.; Tytgat, T.; Van Acker, M. Guidelines for passive control of traffic-related air pollution in street canyons: An overview for urban planning. Landsc. Urban Plan. 2021, 207, 103980. [Google Scholar] [CrossRef]
- Wang, L.; Pan, Q.; Zheng, X.; Yang, S. Effects of low boundary walls under dynamic inflow on flow field and pollutant dispersion in an idealized street canyon. Atmos. Pollut. Res. 2017, 8, 564–575. [Google Scholar] [CrossRef]
- Slinn, W.G.N. Predictions for particle deposition to vegetative canopies. Atmos. Environ. 1982, 16, 1785–1794. [Google Scholar] [CrossRef]
- Fowler, D.; Skiba, U.; Nemitz, E.; Choubedar, F.; Branford, D.; Donovan, R.; Rowland, P. Measuring aerosol and heavy metal deposition on urban woodland and grass using inventories of 210 Pb and metal concentrations in soil. In Biogeochemical Investigations of Terrestrial, Freshwater, and Wetland Ecosystems across the Globe; Springer: Dordrecht, The Netherlands, 2004; pp. 483–499. [Google Scholar] [CrossRef]
- Gallagher, M.; Fontan, J.; Wyers, P.; Ruijgrok, W.; Duyzer, J.; Hummelshøj, P.; Pilegaard, K.; Fowler, D. Atmospheric particles and their interactions with natural surfaces. In Biosphere-Atmosphere Exchange of Pollutants and Trace Substances: Experimental and Theoretical Studies of Biogenic Emissions and of Pollutant Deposition; Slanina, S., Ed.; Springer: Berlin, Germany, 1997; pp. 45–92. [Google Scholar]
- Freer-Smith, P.H.; Beckett, K.P.; Taylor, G. Deposition velocities to Sorbus aria, Acer campestre, Populus deltoides x trichocarpa ‘Beaupré’, Pinus nigra and X Cupressocyparis leylandii for coarse, fine and ultra-fine particles in the urban environment. Environ. Pollut. 2005, 133, 157–167. [Google Scholar] [CrossRef] [PubMed]
- Jeong, W.T. Dust collection optimization of tunnel cleaning vehicle with cyclone-based prefilter. J. Korea Acad. Ind. Coop. Soc. 2018, 19, 679–686. [Google Scholar]
- ANSYS. ANSYS Fluent Theory Guide; Release 15; ANSYS, Inc.: Canonsburg, PA, USA, 2013; p. 408. [Google Scholar]
- Bikmukhametov, T. CFD Simulations of Multiphase Flows with Particles. Master’s Thesis, Norwegian University of Science and Technology, Trondheim, Norway, 2016. [Google Scholar]
- Morsi, S.A.; Alexander, A.J. An investigation of particle trajectories in two-phase flow systems. J. Fluid Mech. 1972, 55, 193–208. [Google Scholar] [CrossRef]
- Hang, J.; Li, Y.; Sandberg, M.; Buccolieri, R.; Di Sabatino, S. The influence of building height variability on pollutant dispersion and pedestrian ventilation in idealized high-rise urban areas. Build. Environ. 2012, 56, 346–360. [Google Scholar] [CrossRef]
- Rapp, B.E. Microfluidics: Modelling, Mechanics and Mathematics; Elsevier: Amsterdam, The Netherlands, 2017; pp. 255–256. [Google Scholar] [CrossRef]
- Wilson, N.R.; Shaw, R.H. A higher order closure model for canopy flow. J. Appl. Meteor. 1977, 16, 1197–1205. [Google Scholar] [CrossRef] [Green Version]
- Nowak, D.J.; Hirabayashi, S.; Bodine, A.; Hoehn, R. Modeled PM2.5 removal by trees in ten U.S. cities and associated health effects. Environ. Pollut. 2013, 178, 395–402. [Google Scholar] [CrossRef]
- Abhijith, K.V.; Kumar, P. Field investigations for evaluating green infrastructure effects on air quality in open-road conditions. Atmos. Environ. 2019, 201, 132–147. [Google Scholar] [CrossRef]
- Huang, Y.D.; Li, M.Z.; Ren, S.Q.; Wang, M.J.; Cui, P.Y. Impacts of tree-planting pattern and trunk height on the airflow and pollutant dispersion inside a street canyon. Build. Environ. 2019, 165, 106385. [Google Scholar] [CrossRef]
- Salim, S.M.; Cheah, S.C.; Chan, A. Numerical simulation of dispersion in urban street canyons with avenue-like tree plantings: Comparison between RANS and LES. Build. Environ. 2011, 46, 1735–1746. [Google Scholar] [CrossRef]
- Yang, H.; Chen, T.; Lin, Y.; Buccolieri, R.; Mattsson, M.; Zhang, M.; Hang, J.; Wang, Q. Integrated impacts of tree planting and street aspect ratios on CO dispersion and personal exposure in full-scale street canyons. Build. Environ. 2020, 169, 106529. [Google Scholar] [CrossRef]
- ANSYS. Fluent User’s Guide; Release 15; ANSYS, Inc.: Canonsburg, PA, USA, 2013. [Google Scholar]
- Chan, T.S. Measurements of water density and drop size distributions of selected Esfr sprinklers. J. Fire Prot. Eng. 1994, 6, 79–87. [Google Scholar] [CrossRef]
- Kristóf, G.; Papp, B. Application of GPU-based large eddy simulation in urban dispersion studies. Atmosphere 2018, 9, 442. [Google Scholar] [CrossRef] [Green Version]
- Lin, X.; Chamecki, M.; Yu, X. Aerodynamic and deposition effects of street trees on PM2.5 concentration: From street to neighborhood scale. Build. Environ. 2020, 185, 107291. [Google Scholar] [CrossRef]
- Ji, W.; Zhao, B. Numerical study of the effects of trees on outdoor particle concentration distributions. Build. Simul. 2014, 7, 417–427. [Google Scholar] [CrossRef]
- Chen, L.; Liu, C.; Zou, R.; Yang, M.; Zhang, Z. Experimental examination of effectiveness of vegetation as bio-filter of particulate matters in the urban environment. Environ. Pollut. 2016, 208, 198–208. [Google Scholar] [CrossRef]
- Hofman, J.; Stokkaer, I.; Snauwaert, L.; Samson, R. Spatial distribution assessment of particulate matter in an urban street canyon using biomagnetic leaf monitoring of tree crown deposited particles. Environ. Pollut. 2013, 183, 123–132. [Google Scholar] [CrossRef]
- Gromke, C.; Jamarkattel, N.; Ruck, B. Influence of roadside hedgerows on air quality in urban street canyons. Atmos. Environ. 2016, 139, 75–86. [Google Scholar] [CrossRef]
- Gao, N.P.; Niu, J.L. Modeling particle dispersion and deposition in indoor environments. Atmos. Environ. 2007, 41, 3862–3876. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.G.; Yu, X.; Sun, F.; Lun, X.; Fu, Y.; Jia, G.; Zhang, Z.; Liu, X.; Mo, L.; Bi, H. The concentrations and reduction of airborne particulate matter (PM10, PM2.5, PM1) at shelterbelt site in Beijing. Atmosphere 2015, 6, 650–676. [Google Scholar] [CrossRef] [Green Version]
- Maher, B.A.; Moore, C.; Matzka, J. Spatial variation in vehicle-derived metal pollution identified by magnetic and elemental analysis of roadside tree leaves. Atmos. Environ. 2008, 42, 364–373. [Google Scholar] [CrossRef] [Green Version]
- Vos, P.E.J.; Maiheu, B.; Vankerkom, J.; Janssen, S. Improving local air quality in cities: To tree or not to tree? Environ. Pollut. 2013, 183, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Keuken, M.; van der Valk, K. The effects of trees and hedges on air quality in a street-canyon in Amsterdam. In Proceedings of the CLIMAQS Workshop on Local Air Quality and its Interactions with Vegetation, Antwerp, Belgium, 21–22 January 2010. [Google Scholar]
- Ottosen, T.B.; Kumar, P. The influence of the vegetation cycle on the mitigation of air pollution by a deciduous roadside hedge. Sustain. Cities Soc. 2020, 53, 101919. [Google Scholar] [CrossRef]
- Kumar, P.; Druckman, A.; Gallagher, J.; Gatersleben, B.; Allison, S.; Eisenman, T.S.; Hoang, U.; Hama, S.; Tiwari, A.; Sharma, A.; et al. The nexus between air pollution, green infrastructure and human health. Environ. Int. 2019, 133, 105181. [Google Scholar] [CrossRef]
- Lazzari, S.; Perini, K.; Schio, E.R.; Roccotiello, E. Simplified CFD modeling of air pollution reduction by means of greenery in urban canyons. In Proceedings of the 2016 COMSOL Conference, Munich, Germany, 12–14 October 2016; pp. 1–4. [Google Scholar]
- Li, X.; Liu, C.; Leung, D.; Lam, K.M. Recent progress in CFD modelling of wind field and pollutant transport in street canyons. Atmos. Environ. 2006, 40, 5640–5658. [Google Scholar] [CrossRef]
- Buccolieri, R.; Salim, S.M.; Leo, L.S.; Di Sabatino, S.; Chan, A.; Ielpo, P.; de Gennaro, G.; Gromke, C. Analysis of local scale tree-atmosphere interaction on pollutant concentration in idealized street canyons and application to a real urban junction. Atmos. Environ. 2011, 45, 1702–1713. [Google Scholar] [CrossRef]
- Hinds, W.C. Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles, 2nd ed; John Wiley & Sons: New York, NY, USA, 1999. [Google Scholar]
- Jeanjean, A.P.R.; Monks, P.S.; Leigh, R.J. Modelling the effectiveness of urban trees and grass on PM 2.5 reduction via dispersion and deposition at a city scale. Atmos. Environ. 2016, 147, 1–10. [Google Scholar] [CrossRef] [Green Version]
Model Name | Lane # | Tree | Shrub | Barrier | Cross-Section of Vegetation Configuration | ||
---|---|---|---|---|---|---|---|
Row # | Height (m) | Width (m) | Height (m) | Height (m) | |||
F1 | 4 | 1 | 7 | - | - | - | |
F2 | 1 | 7 | 0.5 | - | | ||
F3 | 1 | 7 | 1.0 | - | | ||
F4 | - | - | - | - | 3.0 | | |
E1 | 8 | 1 | 7 | - | - | | |
E2 | 1 | 7 | 1.0 | - | | ||
E3 | 2 | 7 | - | - | | ||
E4 | 2 | 7 | 1.0 | - | | ||
E5 | 1 | 7 | 1.0 | 0.5 | - | | |
0.5 | 1.0 | ||||||
E6 | - | - | - | - | 3.0 | |
Type | Name | Value | Units | |
---|---|---|---|---|
Road Structure | Road Width | 4 (14) 8 (28) | Lanes (m) | |
Meteorology | Wind | Velocity | 3 | m·s–1 |
Direction | Perpendicular | --- | ||
Vegetation | Tree | Height | 7 | m |
Diameter | 5 | m | ||
Shrub | Height | 0.5, 1 | m | |
Width | 1 | m | ||
Vegetation barrier (hedge) | Height | 3 | m | |
Width | 0.5 | m | ||
Pollutant | Particulate matter | Material | Carbon- Based | --- |
Density | 1650 | kg·m–3 | ||
Inlet | 300 | mg·m–2·day–1 | ||
Inlet velocity | 0.1 | m·s–1 | ||
Size | 1–100 | mm | ||
Mean ) size | 10 | mm | ||
Distribution coefficient | 3.5 | --- |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeong, N.-R.; Han, S.-W.; Kim, J.-H. Evaluation of Vegetation Configuration Models for Managing Particulate Matter along the Urban Street Environment. Forests 2022, 13, 46. https://doi.org/10.3390/f13010046
Jeong N-R, Han S-W, Kim J-H. Evaluation of Vegetation Configuration Models for Managing Particulate Matter along the Urban Street Environment. Forests. 2022; 13(1):46. https://doi.org/10.3390/f13010046
Chicago/Turabian StyleJeong, Na-Ra, Seung-Won Han, and Jeong-Hee Kim. 2022. "Evaluation of Vegetation Configuration Models for Managing Particulate Matter along the Urban Street Environment" Forests 13, no. 1: 46. https://doi.org/10.3390/f13010046
APA StyleJeong, N.-R., Han, S.-W., & Kim, J.-H. (2022). Evaluation of Vegetation Configuration Models for Managing Particulate Matter along the Urban Street Environment. Forests, 13(1), 46. https://doi.org/10.3390/f13010046