Soil Bacterial Community Composition in Cryptomeria japonica Plantation at Different Times after Clear-Cutting
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Soil Sampling
2.3. DNA Extraction and Sequencing
2.4. Data Analysis
3. Results
3.1. Soil Bacterial Community Composition
3.2. Comparison of Bacterial Composition at Different Times after Clear-Cutting
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Plot | Elevation | Area | Tree Age | Stem Density | Mean DBH | Measurement (*1) | Clear-Cutting (*2) | Ao Layer (*3) |
---|---|---|---|---|---|---|---|---|
(m) | (ha) | (y) | (tree ha−1) | (cm) | ||||
CC1 | 680 | 0.23 | 35 | 1040 | 25.0 | March 2013 | March 2013 | Almost disappeared |
CC2 | 780 | 0.18 | 39 | 806 | 29.0 | May 2017 | May 2017 | Almost disappeared |
CC3 | 710 | 0.04 | 38 | 1800 | 23.0 | September 2016 | December 2017 | Remaining |
Control | 725 | 0.24 | 35 | 1156 | 25.6 | March 2013 | - | Remaining |
References
- IPCC. Climate Change 2013. The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- IPCC. Climate Change 2001. The Scientific Basis; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Karhu, K.; Auffret, M.D.; Dungait, J.A.J.; Hopkins, D.W.; Prosser, J.I.; Singh, B.K.; Subke, J.A.; Wookey, P.A.; Agren, G.I.; Sebastià, M.T.; et al. Temperature sensitivity of soil respiration rates enhanced by microbial community response. Nature 2014, 513, 81–84. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, J.; Taylor, J.A. On the temperature dependence of soil respiration. Funct. Ecol. 1994, 8, 315–323. [Google Scholar] [CrossRef]
- Fang, C.; Moncrieff, J.B. The dependence of soil CO2 efflux on temperature. Soil Biol. Biochem. 2001, 33, 155–165. [Google Scholar] [CrossRef]
- Davidson, E.A.; Janssens, I.A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 2006, 440, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Cox, P.M.; Betts, R.A.; Jones, C.D.; Spall, S.A.; Totterdell, I.J. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 2000, 408, 184–187. [Google Scholar] [CrossRef] [PubMed]
- Koarashi, J.; Atarashi-Andoh, M.; Ishizuka, S.; Miura, S.; Saito, T.; Hirai, K. Quantitative aspects of heterogeneity in soil organic matter dynamics in a cool-temperate Japanese beech forest: A radiocarbon-based approach. Glob. Chang. Biol. 2009, 15, 631–642. [Google Scholar] [CrossRef]
- Abe, Y.; Hashimoto, S.; Kurokochi, H.; Teramoto, M.; Sugawara, I.; Liang, N.; Tange, T. Six-year change of heterotrophic respiration rate in a clear-cutting site of Cryptomeria japonica plantation. Jpn. J. For. Environ. 2020, 62, 29–37, (In Japanese with English Summary). [Google Scholar]
- Jones, M.D.; Durall, D.M.; Cairney, J.W.G. Ectomycorrhizal fungal communities in young forest stands regenerating after clearcut logging. New Phytol. 2003, 157, 399–422. [Google Scholar] [CrossRef] [Green Version]
- Hartmann, M.; Howes, C.G.; Vaninsberghe, D.; Yu, H.; Bachar, D.; Christen, R.; Henrik Nilsson, R.; Hallam, S.J.; Mohn, W.W. Significant and persistent impact of timber harvesting on soil microbial communities in Northern coniferous forests. ISME J. 2012, 6, 2199–2218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Liu, S.; Li, X.; Wang, J.; Ding, Q.; Wang, H.; Tian, C.; Yao, M.; An, J.; Huang, Y. Changes of soil prokaryotic communities after clear-cutting in a karst forest: Evidences for cutting-based disturbance promoting deterministic processes. FEMS Microbiol. Ecol. 2016, 92, fiw026. [Google Scholar] [CrossRef] [PubMed]
- Holden, S.R.; Treseder, K.K. A meta-analysis of soil microbial biomass responses to forest disturbances. Front. Microbiol. 2013, 4, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, B.J.; Eo, S.H. Comparison of soil bacterial diversity and community composition between clear-cut logging and control sites in a temperate deciduous broad-leaved forest in Mt. Sambong, South Korea. J. For. Res. 2020, 31, 2367–2375. [Google Scholar] [CrossRef]
- Geospatial Information Authority of Japan. Digital Topographic Map. 2021. Available online: https://maps.gsi.go.jp/ (accessed on 20 May 2021).
- Lane, D.J. 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics; Stackebrandt, E., Goodfellow, M., Eds.; John Wiley & Sons: New York, NY, USA, 1991; pp. 125–175. [Google Scholar]
- Turner, S.; Pryer, K.M.; Miao, V.P.; Palmer, J.D. Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. J. Eukuryot. Mtrrohiol. 1999, 46, 327–338. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://www.R-project.org/ (accessed on 8 April 2021).
- Barns, S.M.; Takala, S.L.; Kuske, C.R. Wide Distribution and Diversity of Members of the Bacterial Kingdom Acidobacterium in the Environment. Appl. Environ. Microbiol. 1999, 65, 1731–1737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janssen, P.H. Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl. Environ. Microbiol. 2006, 72, 1719–1728. [Google Scholar] [CrossRef] [Green Version]
- Iizuka, T.; Tokura, M.; Jojima, Y.; Hiraishi, A.; Yamanaka, S.; Fudou, R. Enrichment and Phylogenetic Analysis of Moderately Thermophilic Myxobacteria from Hot Springs in Japan. Microbes Environ. 2006, 21, 189–199. [Google Scholar] [CrossRef] [Green Version]
- Zogg, G.P.; Zak, D.R.; Ringelberg, D.B.; White, D.C.; MacDonald, N.W.; Pregitzer, K.S. Compositional and Functional Shifts in Microbial Communities Due to Soil Warming. Soil Sci. Soc. Am. J. 1997, 61, 475. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Yu, X.; Wang, H.; Ding, N.; Xu, J. Does history matter? temperature effects on soil microbial biomass and community structure based on the phospholipids fatty acid (PLFA) analysis. J. Soils Sediments 2010, 10, 223–230. [Google Scholar] [CrossRef]
- Štursová, M.; Žifčáková, L.; Leigh, M.B.; Burgess, R.; Baldrian, P. Cellulose utilization in forest litter and soil: Identification of bacterial and fungal decomposers. FEMS Microbiol. Ecol. 2012, 80, 735–746. [Google Scholar] [CrossRef]
- Ward, N.L.; Challacombe, J.F.; Janssen, P.H.; Henrissat, B.; Coutinho, P.M.; Wu, M.; Xie, G.; Haft, D.H.; Sait, M.; Badger, J.; et al. Three genomes from the phylum Acidobacteria provide insight into the lifestyles of these microorganisms in soils. Appl. Environ. Microbiol. 2009, 75, 2046–2056. [Google Scholar] [CrossRef] [Green Version]
- Wilhelm, R.C.; Cardenas, E.; Maas, K.R.; Leung, H.; McNeil, L.; Berch, S.; Chapman, W.; Hope, G.; Kranabetter, J.M.; Dubé, S.; et al. Biogeography and organic matter removal shape long-term effects of timber harvesting on forest soil microbial communities. ISME J. 2017, 11, 2552–2568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Navarrete, A.A.; Tsai, S.M.; Mendes, L.W.; Faust, K.; De Hollander, M.; Cassman, N.A.; Raes, J.; Van Veen, J.A.; Kuramae, E.E. Soil microbiome responses to the short-term effects of Amazonian deforestation. Mol. Ecol. 2015, 24, 2433–2448. [Google Scholar] [CrossRef] [PubMed]
- Carini, P.; Marsden, P.; Leff, J.; Morgan, E.; Strickland, M.; Fierer, N. Relic DNA is abundant in soil and obscures estimates of soil microbial diversity. Nat. Microbiol. 2017, 16242, 043372. [Google Scholar] [CrossRef] [PubMed]
CC1 | CC2 | CC3 | Control | |
---|---|---|---|---|
Read | 86,647 | 60,754 | 72,460 | 36,000 |
OTU | 1686 | 1511 | 1593 | 1136 |
Phylum | 37 | 37 | 35 | 36 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abe, Y.; Kurokochi, H.; Yoshitake, K.; Yonezawa, R.; Asakawa, S.; Tange, T. Soil Bacterial Community Composition in Cryptomeria japonica Plantation at Different Times after Clear-Cutting. Forests 2021, 12, 754. https://doi.org/10.3390/f12060754
Abe Y, Kurokochi H, Yoshitake K, Yonezawa R, Asakawa S, Tange T. Soil Bacterial Community Composition in Cryptomeria japonica Plantation at Different Times after Clear-Cutting. Forests. 2021; 12(6):754. https://doi.org/10.3390/f12060754
Chicago/Turabian StyleAbe, Yukiko, Hiroyuki Kurokochi, Kazutoshi Yoshitake, Ryo Yonezawa, Shuichi Asakawa, and Takeshi Tange. 2021. "Soil Bacterial Community Composition in Cryptomeria japonica Plantation at Different Times after Clear-Cutting" Forests 12, no. 6: 754. https://doi.org/10.3390/f12060754
APA StyleAbe, Y., Kurokochi, H., Yoshitake, K., Yonezawa, R., Asakawa, S., & Tange, T. (2021). Soil Bacterial Community Composition in Cryptomeria japonica Plantation at Different Times after Clear-Cutting. Forests, 12(6), 754. https://doi.org/10.3390/f12060754