Economic Analysis of Cedar Plantation Management and Mega-Solar Replacement
Abstract
:1. Introduction
2. Materials and Methods
2.1. Searching for Optimal Forest Resource Management
- Stand age (years): 0.
- Plantation density (trees/ha): 1000–10,000.
- Discount rate (%): 1%.
- Felling costs (clear cutting): 8000 JPY (Japanese Yen)/.
- Thinning costs: 11,000 JPY/.
- Log yield rate (%): 65% (saw log production), 100% (wood chip production).
- Minimum thinning age (year): 10.
- Algorithm: MSPATH algorithm.
- Thinning interval (trees): 5.
- Stage interval (years): 5.
- Planning period (years): 100.
2.2. Mega-Solar Power Plant
3. Results
4. Discussion
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PV | Photovoltaic |
FIT | feed-in tariffs |
NPV | net present value |
SEV | soil expectation value |
IRR | internal rate of return |
MSPATH | multi-stage projection alternative technique |
DBH | diameter at breast height |
References
- The Website for Publishing Information on the Feed-In Tariff System 2020. Available online: https://www.fit-portal.go.jp/PublicInfoSummary (accessed on 18 June 2020).
- Summary of the Cabinet Order for Partial Amendment of the Order for Enforcement of the Environmental Impact Assessment Act 2019. Available online: http://www.env.go.jp/press/files/jp/112004.pdf (accessed on 18 June 2020).
- Collection of Examples of Initiatives by Local Governments for Environmental Conservation Measures in Solar Power Generation Projects 2016. Available online: http://www.env.go.jp/press/files/jp/103162.pdf (accessed on 24 August 2020).
- Views on the Pricing of REDD+ and Other Forest-Based Credits. Available online: https://www.kkc.co.jp/service/env_energy/pdf/research_vol_01.pdf (accessed on 26 January 2021). (In Japanese).
- Howard, J.L. An estimation of opportunity cost for sustainable ecosystems. In Proceedings of the XI World Forestry Congress, Antalya, Turkey, 13–22 October 1997; Volume 2, pp. 41–47. [Google Scholar]
- Søvde, N.E.; Sætersdal, M.; Løkketangen, A. A scenario-based method for assessing the impact of suggested woodland key habitats on forest harvesting costs. Forests 2014, 5, 2327–2344. [Google Scholar] [CrossRef] [Green Version]
- Straka, T.J.; Bullard, S.H. The land expectation value calculated in timberland valuation. Apprais. J. 1996, 64, 399–405. [Google Scholar]
- Liski, J.; Pussinen, A.; Pingoud, K.; Mäkipää, R.; Karjalainen, T. Which rotation length is favourable to carbon sequestration? Can. J. For. Res. 2004, 31, 2004–2013. [Google Scholar] [CrossRef]
- Henninger, C.R.; MacLean, D.A.; Amos-Binks, L.J. A novel approach to optimize management strategies for carbon stored in both forests and wood products. For. Ecol. Manag. 2008, 256, 786–797. [Google Scholar] [CrossRef]
- Nghiem, N. Optimal rotation age for carbon sequestration and biodiversity conservation in Vietnam. For. Policy Econ. 2014, 38, 56–64. [Google Scholar] [CrossRef]
- Triviño, M.; Pohjanmies, T.; Mazziotta, A.; Juutinen, A.; Podkopaev, D.; Tortorec, E.L.; Mönkkönen, M. Optimizing management to enhance multifunctionality in a boreal forestlandscape. J. Appl. Ecol. 2017, 54, 61–70. [Google Scholar] [CrossRef]
- Brodie, J.D.; Kao, C. Optimizing thinning in Douglas fir with three descriptor dynamic programming to account for accelerated diameter growth. For. Sci. 1979, 25, 665–672. [Google Scholar]
- Brodie, J.D.; Haight, R.G. Optimization of silvicultural investment for several types of stand projection systems. Can. J. For. Res. 1985, 15, 188–191. [Google Scholar] [CrossRef]
- Haight, R.G.; Brodie, J.D.; Dahms, W.G. A dynamic programming algorithm for optimization of lodgepole pine management. For. Sci. 1985, 31, 321–330. [Google Scholar]
- Kao, C.; Brodie, J.D. Determination of optimal thinning entry interval using dynamic programming. For. Sci. 1979, 25, 672–674. [Google Scholar]
- Asante, P.; Armstrong, G.W.; Adamowicz, W.L. Carbon sequestration and the optimal forest harvest decision: A dynamic programming approach considering biomass and dead organic matter. J. For. Econ. 2011, 17, 3–17. [Google Scholar] [CrossRef]
- Yoshimoto, A.; Yanagihara, H.; Nomoto, M. Carbon sequestration and optimal thinning regimes from forest stand optimization modeling. FORMATH 2005, 4, 71–92. [Google Scholar] [CrossRef]
- Sedjo, R.; Tian, X. An Investigation of the carbon neutrality of wood bioenergy. J. Environ. Prot. Ecol. 2012, 3, 989–1000. [Google Scholar] [CrossRef] [Green Version]
- Vass, M.; Elofsson, K. Is forest carbon sequestration at the expense of bioenergy and forest products cost-efficient in EU climate policy to 2050? J. For. Econ. 2016, 24, 82–105. [Google Scholar] [CrossRef] [Green Version]
- McCarthy, M.A.; Possingham, H.P.; Gill, A.M. Using stochastic dynamic programming to determine optimal fire management for Banksia ornate. J. Appl. Ecol. 2001, 38, 585–592. [Google Scholar] [CrossRef] [Green Version]
- Stirn, L.Z. Integrating the fuzzy analytic hierarchy process with dynamic programming approach for determining the optimal forest management decisions. Ecol. Model. 2006, 194, 296–305. [Google Scholar] [CrossRef]
- Yoshimoto, A.; Paredes, V.G.L.; Brodie, J.D. Efficient optimization of an individual tree growth model. USDA For. Serv. Gen. Tech. Rep. 1998, 16, 154–162. [Google Scholar]
- Nakama, K.; Ota, T.; Mizoue, N.; Yoshida, S. Effects of Recovering Logging Residues on Strategy and Benefits of Forest Stand Management. J. Jpn. For. Soc. 2011, 93, 226–234. [Google Scholar] [CrossRef]
- Ota, T.; Takahira, S.; Nakama, K.; Yoshida, S.; Mizoue, N. Effectiveness of Low-density Planting in Terms of Planting Cost Reduction and Felling Income Reduction. J. Jpn. For. Soc. 2013, 95, 126–133. [Google Scholar] [CrossRef] [Green Version]
- Yoshimoto, A.; Marušák, R. Evaluation of carbon sequestration and thinning regimes within the optimization framework for forest stand management. Eur. J. For. Res. 2007, 126, 315–329. [Google Scholar] [CrossRef]
- Konoshima, M.; Yoshimoto, A. Evaluating the Effect of Bio-Energy Use on Optimal Thinning Regimes through a Dynamic Programming Model. FORMATH 2010, 9, 9–101. [Google Scholar] [CrossRef]
- Yoshimoto, A. A Dynamic Programming Model for Forest Stand Management Using MSPATH Algorithm. Proc. Inst. Stat. Math. 2003, 51, 73–94. [Google Scholar]
- Faustman, M. Berechnung des Wertes, welchen Waldboden, sowie noch nicht haubare Holzbestände für die Waldwirtschaft besitzen. Allgemeine Forst-und Jagd-Zeitung 1849, 15, 441–455. [Google Scholar]
- Japanese Forestry Agency. A User Guide for Stand Density Management Diagram for Planted Sugi (Cryptomeria japonica) Forest Stands; Forestry Agency: Tokyo, Japan, 1980; p. 84. [Google Scholar]
- Richards, F.J. A Flexible growth function for empirical use. J. Exp. Bot. 1959, 10, 290–300. [Google Scholar] [CrossRef]
- Narasaki, K.; Maeda, H.; Sasaki, S. Preparation of a stand density control diagram and a site index curve for Sugi (Cryptomeria japonica) plantations to construct a system yield table in Fukuoka Prefecture. Bull. Fukuoka Agric. For. Res. Cent. 2015, 1, 38–43. [Google Scholar]
- Annual Report on Forest and Forestry in Japan 2011. Available online: https://www.rinya.maff.go.jp/j/kikaku/hakusyo/23hakusyo/190411_5.html (accessed on 26 January 2021).
- Agricultural, Forestry and Fisheries Statistics 2018. Available online: http://www.maff.go.jp/j/tokei/kouhyou/mokuryu/kakaku/attach/pdf/index-29.pdf (accessed on 18 June 2020).
- Inoue, A.; Kurokawa, Y. New Method for Estimating Relative Stem Profile Equations: Application to System Yield Tables. J. Jpn. For. Soc. 2001, 83, 1–4. [Google Scholar]
- Standard Unit Price for Fiscal Year of 2018. Available online: https://www.pref.oita.jp/uploaded/attachment/2029309.pdf (accessed on 18 June 2020).
- Annual Report on Forest and Forestry in Japan 2017. Available online: https://www.rinya.maff.go.jp/j/kikaku/hakusyo/29hakusyo/index.html (accessed on 26 January 2021).
- Noda, H.; Takahashi, R.; Takahata, K. The Estimated Impact of a Woody Biomass Power Generation System on the Management of Japanese Red Pine Forest. J. Life Cycle Assess. Jpn. 2015, 11, 154–171. [Google Scholar] [CrossRef] [Green Version]
- Report on Survey and Analysis of Wood Chip Conversion Project. Available online: http://zmchip.com (accessed on 18 June 2020).
- Database on Solar Radiation. Available online: http://www.nedo.go.jp/library/nissharyou.html (accessed on 18 June 2020).
- New Energy and Industrial Technology Development Organization. Solar Power Generation Deployment Guidebook; New Energy and Industrial Technology Development Organization: Tokyo, Japan, 2000; p. 180. [Google Scholar]
- Report on the Study on the Feasibility of Spreading Renewable and Other Distributed Energy in 2050. Available online: https://www.env.go.jp/earth/report/h26-01/index.html (accessed on 18 June 2020).
- Comments on the Procurement Price and Other Issues in Fiscal Year 2020. Available online: https://www.meti.go.jp/shingikai/santeii/pdf/20200204001_1.pdf (accessed on 24 August 2020).
- Report of the Cost Estimation Committee 2011. Available online: https://www.env.go.jp/council/06earth/y060-100/mat02_3.pdf (accessed on 18 June 2020). (In Japanese)
- Renewable Energy Purchase Price and Unit Price for Renewable Energy in Fiscal Year 2018. Available online: http://www.meti.go.jp/press/2017/03/20180323006/20180323006.html (accessed on 18 June 2020).
- Cost of Solar Power Generation in Japan. Available online: https://www.renewable-ei.org/pdfdownload/activities/Report_SolarCost_201907.pdf (accessed on 24 August 2020).
- Bidding System under the FIT 2020. Available online: https://nyusatsu.teitanso.or.jp (accessed on 3 August 2020). (In Japanese).
- Comments on the Procurement Prices and Other Issues in and after Fiscal Year 2019. Available online: https://www.meti.go.jp/shingikai/santeii/pdf/20190109001_01.pdf (accessed on 24 August 2020).
- Kiyono, Y. Dynamics and control of understories in Chamaecyparis obtuse Plantations. Bull. For. For. Prod. Res. Inst. 1990, 359, 1–122. [Google Scholar]
- Fujimori, T. Consider the issue of thinning. Why is thinning necessary? Jpn. For. Soc. 2005, 44, 4–8. [Google Scholar]
- Result of Opinion Survey on Forest Management 2009. Available online: https://www.maff.go.jp/j/finding/mind/attach/pdf/index-37.pdf (accessed on 18 February 2021).
- Survey on Awareness and Intention for Circular Use Forest Resources. Available online: https://www.maff.go.jp/j/finding/mind/pdf/sinrin_27.pdf (accessed on 18 February 2021).
- Oohara, H. The necessity for the research on the relationship between transition of forest floor vegetation accompanying thinning and function of soil and water conservation in artificial sugi (Cryptomeria japonica) forest. Bull. FFPRI 2007, 6, 127–134. [Google Scholar]
- Kume, T.; Higashi, N.; Wakiyama, Y.; Kanamaru, Y.; Ide, J.; Otsuki, K. Soil properties and moisture retention capacity in the Ochozu Experimental Watershed covered by an unmanaged man-made forest, Kyushu, Japan. Bull. Kyusyu Univ. For. 2008, 89, 13–27. [Google Scholar]
- Sakai, M. Forest owner’s mind for forest management and reorganization of forest policy (I): Negligence of forest operation on planted forest. Kyushu Univ. Inst. Repos. 1997, 76, 25–38. [Google Scholar]
- Angelstam, P.; Naumov, V.; Elbakidze, M.; Manton, M.; Priednieks, J.; Rendenieks, Z. Wood production and biodiversity conservation are rival forestry objectives in Europe’s Baltic Sea Region. Ecosphere 2018, 9, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Report of the Study Group on the Basic Concept of Environmental Impact Assessment for Solar Power Generation Facilities. Available online: https://www.env.go.jp/press/files/jp/110948.pdf (accessed on 18 February 2021).
- Report of the Study Group on the Forestland Development Permit Standards for Solar Power Generation. Available online: https://www.rinya.maff.go.jp/j/tisan/tisan/attach/pdf/con_4-10.pdf (accessed on 18 February 2021).
DBH (cm) ( ≤ DBH ≤ ) | Price (JPY/) | |
---|---|---|
9.0 | 14.9 | 7000 |
15.0 | 19.9 | 11,000 |
20.0 | 29.9 | 13,000 |
30.0 | 39.9 | 15,000 |
2018 | 2019 | |
---|---|---|
System costs | 271.0 | 222.0 |
Land development costs | 17.8 | 9.8 |
Continuing costs | 7.3 | 5.2 |
Operation maintenance costs | 5.5 | 5.7 |
Disposal fee | 10.0 | 10.0 |
Total | 311.6 | 252.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Itaka, S. Economic Analysis of Cedar Plantation Management and Mega-Solar Replacement. Forests 2021, 12, 361. https://doi.org/10.3390/f12030361
Itaka S. Economic Analysis of Cedar Plantation Management and Mega-Solar Replacement. Forests. 2021; 12(3):361. https://doi.org/10.3390/f12030361
Chicago/Turabian StyleItaka, Shizu. 2021. "Economic Analysis of Cedar Plantation Management and Mega-Solar Replacement" Forests 12, no. 3: 361. https://doi.org/10.3390/f12030361
APA StyleItaka, S. (2021). Economic Analysis of Cedar Plantation Management and Mega-Solar Replacement. Forests, 12(3), 361. https://doi.org/10.3390/f12030361