The Dynamics of Mycobiota Development in Various Types of Wood Dust Depending on the Dust Storage Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Dust
2.2. Preparation of the Inoculum of Microscopic Fungi
2.3. Dust Storage Conditions
2.4. Ergosterol Analysis
2.5. ABTS •+ Method
3. Results and Discussion
- The conditions in which the wood dust was produced;
- Dust decomposition degree resulting from processing parameters;
- Antioxidant activity of the wood from which the dust was formed.
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ogórek, R.; Pląskowska, E.; Kalinowska, K. Characteristics and taxonomy of fungi of the genus Alternaria. Mikologia Lekarska 2011, 18, 150–155. [Google Scholar]
- Lipiec, A.; Rapiejko, P. Alternaria alternata—Aerobiology. Characteristics of allergens and biological aspect. Alergia 2005, 2, 39–42. [Google Scholar]
- Brown, W.D. Mould allergy affecting the ears, nose and throat. Otolaryng. Clin. N. Amer. 1971, 4, 3. [Google Scholar]
- Lacey, J. Fungi and Actinomycetes as allergen. In Allergy and Allergic Diseases; Kay, A.B., Ed.; Blackwell Science: London, UK, 1997. [Google Scholar]
- Zgorzelska-Kowalik, J.; Wiszniewska, M.; Kowalik, D. Cross-reacting carbohydrate determinants in the diagnosis of occupational allergy. Med. Prakt 2010, 61, 79–89. [Google Scholar]
- Batard, T.; Baron-Bodo, V.; Martelet, A.; Le Mignon, M.; Lemoine, P. Patterns of IgE sensitization in house dust mite-allergic patients: Implications for allergen immunotherapy. Allergy Wiley 2015, 71, 220–229. [Google Scholar] [CrossRef] [PubMed]
- Buczyłko, K.; Majsiak, E. Selected cross-reactions in allergies of the upper respiratory and alimentary tract. Alergologia Polska 2017, 4, 139–145. [Google Scholar]
- Lipiec, A. Mould hypersensitivity in patients suffering from allergic rhinitis. Otolaryngol. Pol. 2000, 54, 89–90. [Google Scholar]
- Semik-Orzech, A.; Barczyk, A.; Pierzchała, W. The influence of sensitivity to fungal allergens on the development and course of allergic diseases of the respiratory tract. Pneumonol. Alergol. Pol. 2008, 761, 29–36. [Google Scholar]
- Grinn-Gofroń, A. Types of Aspergillus and Penicillium as a source of potential mushroom allergens. Alergoprofil 2010, 6, 2–5. [Google Scholar]
- Knutsen, A.P.; Bush, R.K.; Demain, J.G.; Denning, D.W.; Dixit, A.; Fairs, A.; Greenberger, P.A.; Kariuki, B.; Kita, H.; Kurup, V.P.; et al. Fungi and allergic lower respiratory tract diseases. J. Allergy Clin. Immunol. 2012, 129, 280–291. [Google Scholar] [CrossRef]
- Pakulska, D.; Soćko, R.; Szymczak, W. Wood dust—Inhalable fraction. Documentation of proposed occupational exposure limit values. Podstawy i Metody Oceny Środowiska Pracy 2017, 3, 17–93. [Google Scholar] [CrossRef]
- Wiszniewska, M.; Walusiak, J.; Gutarowska, B.; Żakowska, Z.; Pałczyński, C. Mold fungi in the communal environment and in the workplace—A significant health hazard. Medycyna Pracy 2004, 55, 257–266. [Google Scholar]
- Skowroń, J. Priority: Safe working conditions. Medycyna Pracy 2019, 70, 497–509. [Google Scholar] [CrossRef]
- Dz, U. Dz, U. 2011 nr 33, poz. 166. Regulation of the Minister of Health of February 2, 2011 on tests and measurements of factors harmful to health in the work environment. Journal of Laws 2011 No. 2011 No.33, item. 166. Available online: http://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20110330166 (accessed on 10 December 2021).
- Dz, U. 2016, poz. 1117. Announcement of the Minister of Health of 11 July 2016 on the publication of the uniform text of the Regulation of the Minister of Health on chemical substances, mixtures, agents or technological processes with carcinogenic or mutagenic effects in the work environment, Journal of Laws No. 2016 item 1117. Available online: http://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20160001117 (accessed on 10 December 2021).
- Dutkiewicz, J.; Prażmo, Z. Biological factors of occupational hazards in the wood industry. Zdr. Publ. 2008, 118, 138–144. [Google Scholar]
- Mackiewicz, B. Organic dust in the work environment and its impact on the human body, biological factors—Work safety. BP 2014, 4, 24–32. [Google Scholar]
- Koradecka, D.; Skowroń, J. The activities of the Interministerial Commission for the Maximum Allowable Concentrations and Intensities of Factors Harmful to Health in the Work Environment in 2014–2016. Podstawy i Metod. Oceny Sr. Pr. 2016, 4, 5–39. [Google Scholar]
- Mračková, E.; Krišťák, Ľ.; Kučerka, M.; Gaff, M.; Gajtanska, M. Creation of Wood Dust during Wood Processing: Size Analysis, Dust Separation, and Occupational Health. BioResources 2015, 11, 209–222. [Google Scholar] [CrossRef]
- Očkajová, A.; Kučerka, M.; Krišťák, L.; Ružiak, I.; Gaff, M. Efficiency of Sanding Belts for Beech and Oak Sanding. BioResources 2016, 11, 5242–5254. [Google Scholar] [CrossRef] [Green Version]
- Hrčka, R.; Babiak, M. Some non-traditional factors influencing thermal properties of wood. Wood Res. 2012, 57, 367–374. [Google Scholar]
- Troppová, E.; Tippner, J.; Hrčka, R.; Halachan, P. Qasi-stationary measurements of lignamon thermal properties. Bioresources 2013, 8, 6288–6296. [Google Scholar] [CrossRef] [Green Version]
- Igaz, R.; Kminiak, R.; Krišťák, Ľ.; Němec, M.; Gerge’, T. Methodology of Temperature Monitoring in the Process of CNC Machining of Solid Wood. Sustainability 2019, 11, 95. [Google Scholar] [CrossRef] [Green Version]
- Hlásková, L.; Prochazka, J.; Novák, V.; Cermak, P.; Kopecký, Z. Interaction between Thermal Modification Temperature of Spruce Wood and the Cutting and Fracture Parameters. Materials 2021, 14, 6218. [Google Scholar] [CrossRef] [PubMed]
- Sandak, J.; Goli, G.; Cetera, P.; Sandak, A.; Cavalli, A.; Todaro, L. Machinability of Minor Wooden Species before and after Modification with Thermo-Vacuum Technology. Materials 2017, 10, 121. [Google Scholar] [CrossRef] [Green Version]
- Pałczyński, C.; Wiszniewska, M.; Szulc, B.; Walusiak, J. Occupational exposure to mold fungi—Case reports. Alergia 2008, 1, 28–31. [Google Scholar]
- Soćko, R.; Pakulska, D.; Szymczak, W. Wood dust—Inhalable fraction Documentation of proposed values of occupational exposure limits (OELs). Podstawy i Metod. Oceny Sr. Pr. 2021, 2, 27–138. [Google Scholar]
- Kubovský, I.; Oberhofnerová, E.; Kačík, F.; Pánek, M. Surface changes of selected hardwoods due to weather conditions. Forests 2018, 9, 557. [Google Scholar] [CrossRef] [Green Version]
- Pędzik, M.; Rogoziński, T.; Majka, J.; Stuper-Szablewska, K.; Antov, P.; Kristak, L.; Kminiak, R.; Kučerka, M. Fine Dust Creation during Hardwood Machine Sanding. Appl. Sci. 2021, 11, 6602. [Google Scholar] [CrossRef]
- Sadowska, J.; Dudzińska, W.; Skotnicka, E.; Sielatycka, K.; Daniel, I. The Impact of a Diet Containing Sucrose and Systematically Repeated Starvation on the Oxidative Status of the Uterus and Ovary of Rats. Nutrients 2019, 11, 1544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stuper-Szablewska, K.; Rogoziński, T.; Perkowski, J. Contamination of pine and birch wood dust with microscopic fungi and determination of its sterol contents. Arch. Ind. Hyg. Toxicol. Rep. 2017, 68, 127–134. [Google Scholar] [CrossRef] [Green Version]
- Szwajkowska−Michałek, L.; Rogoziński, T.; Stuper−Szablewska, K. Sterol content in bark after high-temperature drying of wood in convection driers. Sylwan 2019, 163, 610–616. [Google Scholar]
- Chang, Y.L.; Wang, J.H. A Study of the Optimal Condition for the Growth of Aspergillus niger (BCRC 31494, ATCC 10864). In Proceedings of the 2018 BEST Conference & International Symposium on Biotechnology and Bioengineering (BEST 2018), Taipei, Taiwan, 28–30 June 2018. [Google Scholar]
- Leppänen, H.K.; Nevalainen, A.; Vepsäläinen, A.; Roponen, M.; Täubel, M.; Laine, O.; Rantakokko, P.; Mutius, E.; Pekkanen, J.; Hyvärinen, A. Determinants, reproducibility, and seasonal variation of ergosterol levels in house dust. Indoor Air 2014, 24, 248–259. [Google Scholar] [CrossRef]
- Gessner, M.O. Ergosterol as a Measure of Fungal Biomass. In Methods to Study Litter Decomposition; Bärlocher, F., Gessner, M., Graça, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2020; pp. 247–255. [Google Scholar]
- Zhang, H.; Wolf-Hall, C.; Hall, C. Modified microwave-assisted extraction of ergosterol for measuring fungal biomass in grain cultures. J. Agric. Food Chem. 2008, 56, 11077–11080. [Google Scholar] [CrossRef]
- Barreira, J.C.M.; Oliveira, M.B.P.P.; Ferreira, I.C.F.R. Development of a Novel Methodology for the Analysis of Ergosterol in Mushrooms. Food Anal. Methods 2014, 7, 217–223. [Google Scholar] [CrossRef]
- Kulik, T.; Stuper-Szablewska, K.; Bilska, K.; Buśko, M.; Ostrowska-Kołodziejczak, A.; Załuski, D.; Perkowski, J. trans-Cinnamic and Chlorogenic Acids Affect the Secondary Metabolic Profiles and Ergosterol Biosynthesis by Fusarium culmorum and F. graminearum Sensu Stricto. Toxins 2017, 9, 198. [Google Scholar] [CrossRef]
- Perkowski, J.; Buśko, M.; Stuper, K.; Kostecki, M.; Matysiak, A.; Szwajkowska-Michałek, L. Concentration of ergosterol in small-grained naturally contaminated and inoculated cereals. Biologia 2008, 63, 542–547. [Google Scholar] [CrossRef]
- Szablewski, T.; Szwajkowska-Michałek, L.; Pędzik, M.; Rogoziński, T.; Stuper-Szablewska, K. Contamination with microscopic fungi measured by the concentration of ergosterol in dusts of various types of wood with different granulation. Annals of WULS -SGGW. For. Wood Technol. 2021, 113, 98–103. [Google Scholar] [CrossRef]
- Mishra, G.; Panda, B.K.; Ramirez, W.A.; Jung, H.; Singh, C.B.; Lee, S.H.; Lee, I. Research advancements in optical imaging andspectroscopic techniques for nondestructivedetection of mold infection and mycotoxins incereal grains and nuts. Compr. Rev. Food Sci. Food Saf. 2021, 20, 4612–4651. [Google Scholar] [CrossRef]
- Stratil, P.; Klejdus, B.; Kubáň, V. Determination of phenolic compounds and their antioxidant activity in fruits and cereals. Talanta 2007, 71, 1741–1751. [Google Scholar] [CrossRef]
- Pourreza, N. Phenolic compounds as potential antioxidant. Jundishapur J. Nat. Pharm. Prod. 2013, 8, 149. [Google Scholar] [CrossRef] [Green Version]
- Szwajkowska-Michałek, L.; Przybylska-Balcerek, A.; Rogoziński, T.; Stuper-Szablewska, K. Phenolic Compounds in Trees and Shrubs of Central Europe. Appl. Sci. 2020, 10, 6907. [Google Scholar] [CrossRef]
- Wood, R. (Ed.) Active defense mechanisms in plants. In Springer Science & Business Media; Published in cooperation with NATO Scientific Affairs Division, Plenum Press: New York, NY, USA; London, UK, 2012; Volume 37. [Google Scholar]
- Rogoziński, T.; Szwajkowska-Michałek, L.; Dolny, S.; Andrzejak, R.; Perkowski, J. Assessment of microfungal contamination of dust generated during wood processing in furniture factories. Med. Pr. 2014, 65, 705–713. [Google Scholar]
- Očkajová, A.; Stebila, J.; Rybakowski, M.; Rogozinski, T.; Krišták, L.; L’uptáková, J. The Granularity of Dust Particles when Sanding Wood and Wood-Based Materials. AMR 2014, 1001, 432–437. [Google Scholar] [CrossRef]
Variant No. | Temperature (°C) | Air Relative Humidity (%) |
---|---|---|
1 | 20 | 40 |
2 | 20 | 90 |
3 | 6 | 40 |
4 | 6 | 90 |
Storage Conditions | Variant | 0 | 3 Months | 6 Months | 9 Months | 12 Months | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
P60 | P180 | P60 | P180 | P60 | P180 | P60 | P180 | P60 | P180 | ||
40% humidity and 20 °C | Control | −0.70156 | −0.74993 | −0.56722 | –0.71651 | –0.61991 | –0.78133 | –0.74582 | –0.74499 | –0.64323 | –0.81287 |
Inoculated | –0.70156 | –0.74993 | –0.60822 | –0.58257 | –0.52366 | –0.80532 | –0.67543 | –0.79601 | –0.81623 | –0.95139 | |
90% humidity and 20 °C | Control | –0.70156 | –0.74993 | –0.6493 | –0.58471 | –0.55785 | –0.67855 | –0.85123 | –0.64394 | –0.69996 | –0.95733 |
Inoculated | –0.70156 | –0.74993 | –0.87075 | –0.91542 | –0.5267 | –0.76719 | –0.81554 | –0.92154 | –0.9718 | –0.94241 | |
40% humidity and 6 °C | Control | –0.70156 | –0.74993 | –0.96615 | –0.43851 | –0.90089 | –0.75545 | –0.82404 | –0.77952 | –0.48221 | –0.93489 |
Inoculated | –0.70156 | –0.74993 | –0.57086 | –0.8677 | –0.75455 | –0.8497 | –0.86293 | –0.94174 | –0.89748 | –0.84046 | |
90% humidity and 6 °C | Control | –0.70156 | –0.74993 | –0.87968 | –0.71258 | –0.66778 | –0.54233 | –0.79776 | –0.77902 | –0.65298 | –0.8679 |
Inoculated | –0.70156 | –0.74993 | –0.72947 | –0.73028 | –0.445 | –0.90683 | –0.42131 | –0.78662 | –0.36581 | –0.73487 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pędzik, M.; Przybylska-Balcerek, A.; Szwajkowska-Michałek, L.; Szablewski, T.; Rogoziński, T.; Buśko, M.; Stuper-Szablewska, K. The Dynamics of Mycobiota Development in Various Types of Wood Dust Depending on the Dust Storage Conditions. Forests 2021, 12, 1786. https://doi.org/10.3390/f12121786
Pędzik M, Przybylska-Balcerek A, Szwajkowska-Michałek L, Szablewski T, Rogoziński T, Buśko M, Stuper-Szablewska K. The Dynamics of Mycobiota Development in Various Types of Wood Dust Depending on the Dust Storage Conditions. Forests. 2021; 12(12):1786. https://doi.org/10.3390/f12121786
Chicago/Turabian StylePędzik, Marta, Anna Przybylska-Balcerek, Lidia Szwajkowska-Michałek, Tomasz Szablewski, Tomasz Rogoziński, Maciej Buśko, and Kinga Stuper-Szablewska. 2021. "The Dynamics of Mycobiota Development in Various Types of Wood Dust Depending on the Dust Storage Conditions" Forests 12, no. 12: 1786. https://doi.org/10.3390/f12121786
APA StylePędzik, M., Przybylska-Balcerek, A., Szwajkowska-Michałek, L., Szablewski, T., Rogoziński, T., Buśko, M., & Stuper-Szablewska, K. (2021). The Dynamics of Mycobiota Development in Various Types of Wood Dust Depending on the Dust Storage Conditions. Forests, 12(12), 1786. https://doi.org/10.3390/f12121786