Effect of Charcoal on the Properties, Enzyme Activities and Microbial Diversity of Temperate Pine Forest Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites and Soil Sampling
2.2. Laboratory-Based Analysis of Soils
2.3. Isolation and Identification of Culturable Fungi from RCH Soils Using the Soil Dilution Method
2.4. DNA Extraction and the Metabarcoding of Fungal ITS and Bacterial 16S Amplicons
2.5. Statistical Analysis
3. Results
3.1. Physico-Chemical Properties of RCH Soils
3.2. Enzymes Activities of RCH Soils
3.3. Diversity Analyses of Culturable Fungi from RCH Soils Using the Soil Dilution Method
3.4. Identification of Fungal and Bacterial Communities Using ITS and 16S rDNA Next-Generation Sequencing
4. Discussion
4.1. Influence of Charcoal Enrichment on the Physical Properties of Soils
4.2. Influence of Charcoal Enrichment on Soil Chemical Properties
4.3. Influence of Charcoal Enrichment on Enzymatic Activity, Composition and Diversity of Soil Microorganisms
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hardy, B.; Dufey, J.E. The resistance of centennial soil charcoal to the “Walkley-Black” oxidation. Geoderma 2017, 303, 37–43. [Google Scholar] [CrossRef]
- Krebs, P.; Pezzatti, G.B.; Stocker, M.; Bürgi, M.; Conedera, M. The selection of suitable sites for traditional charcoal production: Ideas and practice in southern Switzerland. J. Hist. Geogr. 2017, 57, 1–16. [Google Scholar] [CrossRef]
- Mastrolonardo, G.; Francioso, O.; Certini, G. Relic charcoal hearth soils: A neglected carbon reservoir. Case study at Marsiliana forest, Central Italy. Geoderma 2018, 315, 88–95. [Google Scholar] [CrossRef]
- Rutkiewicz, P.; Malik, I.; Wistuba, M.; Osika, A. High concentration of charcoal hearth remains as legacy of historical ferrous metallurgy in southern Poland. Quat. Int. 2019, 512, 133–143. [Google Scholar] [CrossRef]
- Donovan, S.; Ignatiadis, M.; Ouimet, W.; Dethier, D.; Hren, M. Gradients of geochemical change in relic charcoal hearth soils, Northwestern Connecticut, USA. Catena 2021, 197, 104991. [Google Scholar] [CrossRef]
- Criscuoli, I.; Baronti, S.; Alberti, G.; Rumpel, C.; Giordan, M.; Camin, F.; Ziller, L.; Martinez, C.; Pusceddu, E.; Miglietta, F. Anthropogenic charcoal-rich soils of the XIX century reveal that biochar leads to enhanced fertility and fodder quality of alpine grasslands. Plant Soil 2017, 411, 499–516. [Google Scholar] [CrossRef] [Green Version]
- Cheng, C.H.; Lin, T.P.; Lehmann, J.; Fang, L.J.; Yang, Y.W.; Menyailo, O.V.; Chang, K.-H.; Lai, J.S. Sorption properties for black carbon (wood char) after long term exposure in soils. Org. Geochem. 2014, 70, 53–61. [Google Scholar] [CrossRef]
- Bonhage, A.; Hirsch, F.; Schneider, A.; Raab, A.; Raab, T.; Donovan, S. Long term anthropogenic enrichment of soil organic matter stocks in forest soils–detecting a legacy of historical charcoal production. For. Ecol. Manag. 2020, 459, 117814. [Google Scholar] [CrossRef]
- de Lafontaine, G.; Asselin, H. Soil charcoal stability over the Holocene across boreal northeastern North America. Quat. Res. 2011, 76, 196–200. [Google Scholar] [CrossRef]
- Kolb, S.E.; Fermanich, K.J.; Dornbush, M.E. Effect of charcoal quantity on microbial biomass and activity in temperate soils. Soil Sci. Soc. Am. J. 2009, 73, 1173–1181. [Google Scholar] [CrossRef] [Green Version]
- Glaser, B.; Lehmann, J.; Zech, W. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal—A review. Biol. Fertil. Soils 2002, 35, 219–230. [Google Scholar] [CrossRef]
- Pietikäinen, J.; Kiikkilä, O.; Fritze, H. Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus. Oikos 2000, 89, 231–242. [Google Scholar] [CrossRef]
- Frąc, M.; Hannula, S.E.; Bełka, M.; Jędryczka, M. Fungal biodiversity and their role in soil health. Front. Microbiol. 2018, 9, 707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baldrian, P. Forest microbiome: Diversity, complexity and dynamics. FEMS Microbiol. Rev. 2017, 41, 109–130. [Google Scholar] [CrossRef] [Green Version]
- Baldrian, P.; Kolařík, M.; Štursová, M.; Kopecký, J.; Valášková, V.; Větrovský, T.; Žifčáková, L.; Šnajdr, J.; Rídl, J.; Vlček, Č.; et al. Active and total microbial communities in forest soil are largely different and highly stratified during decomposition. ISME J. 2012, 6, 248–258. [Google Scholar] [CrossRef] [Green Version]
- Goldmann, K.; Schöning, I.; Buscot, F.; Wubet, T. Forest management type influences diversity and community composition of soil fungi across temperate forest ecosystems. Front. Microbiol. 2015, 6, 1300. [Google Scholar] [CrossRef] [Green Version]
- Urbanová, M.; Šnajdr, J.; Baldrian, P. Composition of fungal and bacterial communities in forest litter and soil is largely determined by dominant trees. Soil Biol. Biochem. 2015, 84, 53–64. [Google Scholar] [CrossRef]
- Egidi, E.; Delgado-Baquerizo, M.; Plett, J.M.; Wang, J.; Eldridge, D.J.; Bardgett, R.D.; Maestre, F.T.; Singh, B.K. A few Ascomycota taxa dominate soil fungal communities worldwide. Nat. Commun. 2019, 10, 2369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, D.; Zhang, M.; Peng, M.; Sui, X.; Li, W.; Sun, G. Variations in soil functional fungal community structure associated with pure and mixed plantations in typical temperate forests of China. Front. Microbiol. 2019, 10, 1636. [Google Scholar] [CrossRef] [Green Version]
- Kwaśna, H.; Behnke-Borowczyk, J.; Gornowicz, R.; Łakomy, P. Effects of preparation of clear-cut forest sites on the soil mycobiota with consequences for Scots pine growth and health. For. Pathol. 2019, 49, e12494. [Google Scholar] [CrossRef]
- Lladó, S.; López-Mondéjar, R.; Baldrian, P. Forest soil bacteria: Diversity, involvement in ecosystem processes, and response to global change. Microbiol. Mol. Biol. Rev. 2017, 81, e00063-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wardle, D.A.; Bardgett, R.D.; Klironomos, J.N.; Setälä, H.; Van Der Putten, W.H.; Wall, D.H. Ecological linkages between aboveground and belowground biota. Science 2004, 304, 1629–1633. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.K.; Dawson, L.A.; Macdonald, C.A.; Buckland, S.M. Impact of biotic and abiotic interaction on soil microbial communities and functions: A field study. Appl. Appl. Appl. Soil Ecol. 2009, 41, 239–248. [Google Scholar] [CrossRef]
- Andrew, D.R.; Fitak, R.R.; Munguia-Vega, A.; Racolta, A.; Martinson, V.G.; Dontsova, K. Abiotic factors shape microbial diversity in Sonoran Desert soils. Appl. Environ. Microbiol. 2012, 78, 7527–7537. [Google Scholar] [CrossRef] [Green Version]
- De Vries, F.T.; Manning, P.; Tallowin, J.R.; Mortimer, S.R.; Pilgrim, E.S.; Harrison, K.A.; Hobbs, P.J.; Quirk, H.; Shipley, B.; Cornelissen, J.H.C.; et al. Abiotic drivers and plant traits explain landscape-scale patterns in soil microbial communities. Ecol. Lett. 2012, 15, 1230–1239. [Google Scholar] [CrossRef]
- Wang, C.; Michalet, R.; Liu, Z.; Jiang, X.; Wang, X.; Zhang, G.; An, L.; Chen, S.; Xiao, S. Disentangling large-and small-scale abiotic and biotic factors shaping soil microbial communities in an alpine cushion plant system. Front. Microbiol. 2020, 11, 925. [Google Scholar] [CrossRef] [PubMed]
- Rousk, J.; Bååth, E.; Brookes, P.C.; Lauber, C.L.; Lozupone, C.; Caporaso, J.G.; Knight, R.; Fierer, N. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J. 2010, 4, 1340–1351. [Google Scholar] [CrossRef]
- Bainard, L.D.; Hamel, C.; Gan, Y. Edaphic properties override the influence of crops on the composition of the soil bacterial community in a semiarid agroecosystem. Appl. Soil Ecol. 2016, 105, 160–168. [Google Scholar] [CrossRef]
- Lauber, C.L.; Hamady, M.; Knight, R.; Fierer, N. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microbiol. 2009, 75, 5111–5120. [Google Scholar] [CrossRef] [Green Version]
- Prescott, C.E.; Grayston, S.J. Tree species influence on microbial communities in litter and soil: Current knowledge and research needs. For. Ecol. Manag. 2013, 309, 19–27. [Google Scholar] [CrossRef]
- Dastogeer, K.M.; Tumpa, F.H.; Sultana, A.; Akter, M.A.; Chakraborty, A. Plant microbiome—An account of the factors that shape community composition and diversity. Curr. Plant Biol. 2020, 23, 100161. [Google Scholar] [CrossRef]
- Allison, S.D.; Gartner, T.B.; Holland, K.; Weintraub, M.; Sinsabaugh, R.L. Soil enzymes: Linking proteomics and ecological processes. In Manual of Environmental Microbiology, 3rd ed.; American Society of Microbiology: Washington, DC, USA, 2007; pp. 704–711. [Google Scholar]
- Błońska, E.; Bednarz, B.; Kacprzyk, M.; Piaszczyk, W.; Lasota, J. Effect of scots pine forest management on soil properties and carabid beetle occurrence under post-fire environmental conditions—A case study from Central Europe. For. Ecosyst. 2020, 7, 28. [Google Scholar] [CrossRef]
- Błońska, E.; Piaszczyk, W.; Staszel, K.; Lasota, J. Enzymatic activity of soils and soil organic matter stabilization as an effect of components released from the decomposition of litter. Appl. Soil Ecol. 2021, 157, 103723. [Google Scholar] [CrossRef]
- Nannipieri, P.; Trasar-Cepeda, C.; Dick, R.P. Soil enzyme activity: A brief history and biochemistry as a basis for appropriate interpretations and meta-analysis. Biol. Fertil. Soils 2018, 54, 11–19. [Google Scholar] [CrossRef]
- Nannipieri, P.; Kandeler, E.; Ruggiero, P. Enzyme activities and microbiological and biochemical processes in soil. In Enzymes in the Environonment; Marcel Dekker, Inc.: New York, NY, USA, 2002; pp. 1–33. [Google Scholar]
- Gul, S.; Whalen, J.K.; Thomas, B.W.; Sachdeva, V.; Deng, H. Physico-chemical properties and microbial responses in biochar-amended soils: Mechanisms and future directions. Agric. Ecosyst. Environ. 2015, 206, 46–59. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014: International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; Update 2015; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015; 192p. [Google Scholar]
- Ostrowska, A.; Gawliński, S.; Szczubiałka, Z. Methods of Analysis and Assessment of Soil and Plant Properties: A Catalgoue; Institute of Environmental Protection–National Research Institute: Warsaw, Poland, 1991; 334p. [Google Scholar]
- Pritsch, K.; Raidl, S.; Marksteiner, E.; Blaschke, H.; Agerer, R.; Schloter, M.; Hartmann, A. A rapid and highly sensitive method for measuring enzyme activities in single mycorrhizal tips using 4-methylumbelliferone-labelled fluorogenic substrates in a microplate system. J. Microbiol. Methods 2004, 58, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Turner, B.L. Variation in pH optima of hydrolytic enzyme activities in tropical rain forest soils. Appl. Environ. Microbiol. 2010, 76, 6485–6493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanaullah, M.; Razavi, B.S.; Blagodatskaya, E.; Kuzyakov, Y. Spatial distribution and catalytic mechanisms of β-glucosidase activity at the root-soil interface. Biol. Fertil. Soils 2016, 52, 505–514. [Google Scholar] [CrossRef]
- Martin, J.P. Use of acid, rose bengal, and streptomycin in the plate method for estimating soil fungi. Soil Sci. 1950, 69, 215–232. [Google Scholar] [CrossRef]
- Gardes, M.; Bruns, T.D. ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Mol. Ecol. 1993, 2, 113–118. [Google Scholar] [CrossRef] [PubMed]
- White, T.J.; Bruns, T.; Lee, S.J.W.T.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protoc. Guide Methods Appl. 1990, 18, 315–322. [Google Scholar]
- Glass, N.L.; Donaldson, G.C. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl. Environ. Microbiol. 1995, 61, 1323–1330. [Google Scholar] [CrossRef] [Green Version]
- Carbone, I.; Kohn, L.M. A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 1999, 91, 553–556. [Google Scholar] [CrossRef]
- Kullnig-Gradinger, C.M.; Szakacs, G.; Kubicek, C.P. Phylogeny and evolution of the genus Trichoderma: A multigene approach. Mycol. Res. 2002, 106, 757–767. [Google Scholar] [CrossRef]
- Vu, D.; Groenewald, M.; De Vries, M.; Gehrmann, T.; Stielow, B.; Eberhardt, U.; Al-Hatmi, A.; Groenewald, J.; Cardinali, G.; Houbraken, J.; et al. Large-scale generation and analysis of filamentous fungal DNA barcodes boosts coverage for kingdom fungi and reveals thresholds for fungal species and higher taxon delimitation. Stud. Mycol. 2019, 92, 135–154. [Google Scholar] [CrossRef]
- Du, W.; Yao, Z.; Li, J.; Sun, C.; Xia, J.; Wang, B.; Shi, D.; Ren, L. Diversity and antimicrobial activity of endophytic fungi isolated from Securinega suffruticosa in the Yellow River Delta. PLoS ONE 2020, 15, e0229589. [Google Scholar] [CrossRef] [PubMed]
- Magurran, A.E. Biological Diversity and Woodland Management: An Investigation with Special Reference to Banagher, Co. Derry, N. Ireland. Doctoral Dissertation, New University of Ulster, Ulster, Ireland, 1981. [Google Scholar]
- Klindworth, A.; Pruesse, E.; Schweer, T.; Peplies, J.; Quast, C.; Horn, M.; Glöckner, F.O. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013, 41, e1. [Google Scholar] [CrossRef]
- Liu, C.; Cui, Y.; Li, X.; Yao, M. microeco: An R package for data mining in microbial community ecology. FEMS Microbiol. Ecol. 2021, 97, fiaa255. [Google Scholar] [CrossRef]
- Kolde, R. Pheatmap: Pretty Heatmaps. R Package Version 1.0.10. 2018. Available online: https://CRAN.R-project.org/package=pheatmap (accessed on 7 September 2021).
- Nguyen, N.H.; Song, Z.; Bates, S.T.; Branco, S.; Tedersoo, L.; Menke, J.; Schilling, J.S.; Kennedy, P.G. FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 2016, 20, 241–248. [Google Scholar] [CrossRef]
- Everrit, B. Cluster Analysis; Halstead Press: New York, NY, USA, 1980; p. 11. [Google Scholar]
- Juriga, M.; Šimanský, V. Effect of biochar on soil structure—Review. Acta Fytotech. Zootech. 2018, 21, 11–19. [Google Scholar] [CrossRef]
- Oguntunde, P.G.; Abiodun, B.J.; Ajayi, A.E.; van de Giesen, N. Effects of charcoal production on soil physical properties in Ghana. J. Plant Nutr. Soil Sci. 2008, 171, 591–596. [Google Scholar] [CrossRef]
- Ding, Y.; Liu, Y.; Liu, S.; Li, Z.; Tan, X.; Huang, X.; Zeng, G.; Zhou, L.; Zheng, B. Biochar to improve soil fertility: A review. Agron. Sustain. Dev. 2016, 36, 36. [Google Scholar] [CrossRef] [Green Version]
- Adekiya, A.O.; Agbede, T.M.; Olayanju, A.; Ejue, W.S.; Adekanye, T.A.; Adenusi, T.T.; Ayeni, J.F. Effect of biochar on soil properties, soil loss, and cocoyam yield on a tropical sandy loam Alfisol. Sci. World J. 2020, 2020, 9391630. [Google Scholar] [CrossRef]
- Rajkovich, S.; Enders, A.; Hanley, K.; Hyland, C.; Zimmerman, A.R.; Lehmann, J. Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biol. Fertil. Soils 2012, 48, 271–284. [Google Scholar] [CrossRef]
- Mastrolonardo, G.; Calderaro, C.; Cocozza, C.; Hardy, B.; Dufey, J.; Cornelis, J.T. Long-term effect of charcoal accumulation in hearth soils on tree growth and nutrient cycling. Front. Environ. Sci. 2019, 7, 51. [Google Scholar] [CrossRef]
- Lustosa Carvalho, M.; Tuzzin de Moraes, M.; Cerri, C.E.P.; Cherubin, M.R. Biochar amendment enhances water retention in a tropical sandy soil. Agriculture 2020, 10, 62. [Google Scholar] [CrossRef] [Green Version]
- Krąpiec, M. The Results of the Dendrological Analysis of the Charred Wood Sample—Expertise; Office of Forest Management and Geodesy, Department in Szczecinek: Szczecinek, Poland, 2016. [Google Scholar]
- Angst, T.E.; Sohi, S.P. Establishing release dynamics for plant nutrients from biochar. Gcb Bioenergy 2013, 5, 221–226. [Google Scholar] [CrossRef]
- Hardy, B.; Sleutel, S.; Dufey, J.E.; Cornelis, J.T. The long-term effect of biochar on soil microbial abundance, activity and community structure is overwritten by land management. Front. Environ. Sci. 2019, 7, 110. [Google Scholar] [CrossRef] [Green Version]
- Wardle, D.A.; Nilsson, M.C.; Zackrisson, O. Fire-derived charcoal causes loss of forest humus. Science 2008, 320, 629. [Google Scholar] [CrossRef] [PubMed]
- Domene, X.; Mattana, S.; Hanley, K.; Enders, A.; Lehmann, J. Medium-term effects of corn biochar addition on soil biota activities and functions in a temperate soil cropped to corn. Soil Biol. Biochem. 2014, 72, 152–162. [Google Scholar] [CrossRef] [Green Version]
- Kwaśna, H.; Łakomy, P.; Gornowicz, R.; Borowczyk-Behnke, J.; Kuźmiński, R. Wpływ sposobu przygotowania gleby na aktywność biologiczną gleby względem patogenów korzeni w 40− letnim drzewostanie sosnowym. Sylwan 2015, 159, 117–125. [Google Scholar]
- Kwasna, H.; Lakomy, P.; Gornowicz, R.; Mikicinski, A.; Borowczyk-Behnke, J.; Galazka, S. Struktura zbiorowisk grzybów i bakterii w glebie 1-rocznej uprawy i 10-letniego młodnika w zależności od sposobu przygotowania gleby. Sylwan 2015, 159, 71–81. [Google Scholar]
- Kwaśna, H.; Walkowiak, L.; Łakomy, P.; Behnke-Borowczyk, J.; Gornowicz, R.; Mikiciński, A.; Gałązka, S.; Szewczyk, W. Effects of silvicultural techniques on the diversity of microorganisms in forest soil and their possible participation in biological control of Armillaria and Heterobasidion. J. Plant Prot. Res. 2015, 55, 241–253. [Google Scholar] [CrossRef]
- Malecka, M.; Kwasna, H.; Szewczyk, W. Fungal communities in barren forest soil after amendment with different wood substrates and their possible effects on trees’, pathogens, insects and nematodes. J. Plant Prot. Res. 2015, 55, 301–311. [Google Scholar] [CrossRef]
- Behnke-Borowczyk, J.; Kwasna, H. Wpływ metodyki badań na ocenę struktury zbiorowisk mikroorganizmów w glebie leśnej. Sylwan 2016, 160, 492–503. [Google Scholar]
- Santalahti, M.; Sun, H.; Jumpponen, A.; Pennanen, T.; Heinonsalo, J. Vertical and seasonal dynamics of fungal communities in boreal Scots pine forest soil. FEMS Microbiol. Ecol. 2016, 92, fiw170. [Google Scholar] [CrossRef] [Green Version]
- Castaño, C.; Lindahl, B.D.; Alday, J.G.; Hagenbo, A.; Martínez de Aragón, J.; Parladé, J.; Pera, J.; Bonet, J.A. Soil microclimate changes affect soil fungal communities in a Mediterranean pine forest. New Phytol. 2018, 220, 1211–1221. [Google Scholar] [CrossRef] [Green Version]
- Buee, M.; Reich, M.; Murat, C.; Morin, E.; Nilsson, R.H.; Uroz, S.; Martin, F. 454 Pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity. New Phytol. 2009, 184, 449–456. [Google Scholar] [CrossRef]
- Yurkov, A.M.; Kemler, M.; Begerow, D. Assessment of yeast diversity in soils under different management regimes. Fungal Ecol. 2012, 5, 24–35. [Google Scholar] [CrossRef]
- Mašínová, T.; Bahnmann, B.D.; Větrovský, T.; Tomšovský, M.; Merunková, K.; Baldrian, P. Drivers of yeast community composition in the litter and soil of a temperate forest. FEMS Microbiol. Ecol. 2017, 93, fiw223. [Google Scholar] [CrossRef]
- López-Mondéjar, R.; Voříšková, J.; Větrovský, T.; Baldrian, P. The bacterial community inhabiting temperate deciduous forests is vertically stratified and undergoes seasonal dynamics. Soil Biol. Biochem. 2015, 87, 43–50. [Google Scholar] [CrossRef]
- Uroz, S.; Ioannidis, P.; Lengelle, J.; Cébron, A.; Morin, E.; Buee, M.; Martin, F. Functional assays and metagenomic analyses reveals differences between the microbial communities inhabiting the soil horizons of a Norway spruce plantation. PLoS ONE 2013, 8, e55929. [Google Scholar] [CrossRef]
- Eilers, K.G.; Lauber, C.L.; Knight, R.; Fierer, N. Shifts in bacterial community structure associated with inputs of low molecular weight carbon compounds to soil. Soil Biol. Biochem. 2010, 42, 896–903. [Google Scholar] [CrossRef]
- Bolhuis, H.; Cretoiu, M.S.; Stal, L.J. Molecular ecology of microbial mats. FEMS Microbiol. Ecol. 2014, 90, 335–350. [Google Scholar]
- Wei, H.; Peng, C.; Yang, B.; Song, H.; Li, Q.; Jiang, L.; Wei, G.; Wang, K.; Wang, H.; Liu, S.; et al. Contrasting soil bacterial community, diversity, and function in two forests in China. Front. Microbiol. 2018, 9, 1693. [Google Scholar] [CrossRef] [PubMed]
- Prayogo, C.; Jones, J.E.; Baeyens, J.; Bending, G.D. Impact of biochar on mineralisation of C and N from soil and willow litter and its relationship with microbial community biomass and structure. Biol. Fertil. Soils 2014, 50, 695–702. [Google Scholar] [CrossRef]
- Jin, H. Characterization of Microbial Life Colonizing Biochar and Biocharamended Soils. Ph.D. Thesis, Cornell University, Ithaca, NY, USA, 2010. [Google Scholar]
- Taketani, R.G.; Tsai, S.M. The influence of different land uses on the structure of archaeal communities in Amazonian anthrosols based on 16S rRNA and amoA genes. Microb. Ecol. 2010, 59, 734–743. [Google Scholar] [CrossRef]
Profile | Horizon | Color (Moist) | Description of Horizons | N | C | C/N | pH H2O | pH KCl | Hw |
---|---|---|---|---|---|---|---|---|---|
RCH 1 | 0–10 | 2.5YR/2.5/2 | F, ++ | 0.98 | 35.31 | 36 | 3.59 | 2.65 | 20.86 |
10–35 | 5YR/2.5/1 | SB, +++ | 0.09 | 6.94 | 75.9 | 4.23 | 3.66 | 4.42 | |
35–45 | 5YR/5/1 | SB, + | 0.02 | 0.88 | 36.3 | 4.6 | 4.37 | 1.92 | |
45–60 | 5YR/5/8 | SG | 0.03 | 0.58 | 20.8 | 4.71 | 4.65 | 1.57 | |
>60 | 5YR/7/2 | SG | 0.01 | 0.11 | 10.8 | 4.8 | 4.72 | 0.84 | |
RCH 2 | 0–10 | 2.5YR/2.5/2 | F, ++ | 0.98 | 33.95 | 34.7 | 3.48 | 2.59 | 14.32 |
10–32 | 10YR/2/1 | SB, +++ | 0.06 | 3.61 | 56.1 | 4.38 | 3.81 | 3.07 | |
32–47 | 10YR/6/1 | SB, + | 0.02 | 0.66 | 32.8 | 4.54 | 4.34 | 1.8 | |
47–90 | 7.5YR/5/6 | SG | 0.01 | 0.17 | 14.3 | 4.55 | 4.61 | 1.19 | |
RCH 3 | 0–12 | 2.5YR/2.5/2 | F, ++ | 0.66 | 18.66 | 28.3 | 3.54 | 2.66 | 11.4 |
12–30 | 7.5YR/3/1 | SB, +++ | 0.07 | 3.5 | 53.8 | 4.3 | 3.74 | 3.28 | |
30–38 | 7.5YR/5/2 | SB, + | 0.02 | 0.46 | 27.8 | 4.71 | 4.19 | 1.91 | |
38–80 | 7.5YR/6/6 | SG | 0.01 | 0.13 | 13.9 | 4.53 | 4.51 | 1.19 | |
RCH 4 | 0–4 | 2.5YR/2.5/2 | F, ++ | 1.44 | 37.84 | 26.4 | 4.02 | 3.11 | 8.34 |
4–27 | 7.5YR/2.5/1 | SB, +++ | 0.09 | 3.45 | 38.2 | 4.47 | 3.82 | 4.49 | |
27–40 | 7.5YR/4/2 | SB, + | 0.04 | 0.91 | 24.2 | 4.82 | 4.26 | 2.27 | |
40–80 | 5YR/5/6 | SG | 0.02 | 0.74 | 29.8 | 5.47 | 4.4 | 1.49 | |
RCH 5 | 0–12 | 2.5YR/2.5/2 | F, ++ | 0.6 | 20.77 | 34.7 | 3.51 | 2.67 | 11.58 |
12–35 | 7.5YR/2.5/1 | SB, +++ | 0.09 | 9.21 | 105.7 | 4.26 | 3.59 | 5.69 | |
35–45 | 7.5YR/6/2 | SB, + | 0.03 | 0.73 | 27.4 | 4.61 | 4.21 | 2.29 | |
45–80 | 7.5YR/5/6 | SG | 0.01 | 0.13 | 10.7 | 4.63 | 4.59 | 1.4 | |
Control | 0–10 | 2.5YR/2.5/2 | F, ++ | 1.21 | 41.13 | 34.1 | 3.57 | 2.65 | 21.62 |
10–25 | 5YR/7/1 | SG, + | 0.07 | 1.76 | 23.6 | 3.73 | 3.19 | 4.45 | |
25–50 | 5YR/5/8 | SB, + | 0.05 | 0.96 | 20.7 | 4.71 | 4.61 | 1.97 | |
>50 | 5YR/7/2 | SG | 0.01 | 0.08 | 9.8 | 5 | 4.8 | 0.67 |
Profile | Horizon | Ca | K | Mg | Na | P | Cd | Co | Cr | Cu | Fe | Mn | Ni | Pb | Zn |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RCH 1 | 0–10 | 3.258 | 0.794 | 0.856 | 0.248 | 81.76 | 0.41 | 0.77 | 21.75 | 10.34 | 3538 | 39.5 | 16.1 | 35.72 | 25.27 |
10–35 | 0.061 | 0.026 | 0.024 | 0.019 | 126.98 | 0.11 | 0.73 | 15.71 | 3.23 | 6043.5 | 54.06 | 7.98 | 16.98 | 21.06 | |
35–45 | 0.009 | 0.010 | 0.005 | 0.003 | 82.18 | 0.02 | 0.32 | 4.50 | 1.61 | 5822.5 | 38.88 | 0.6 | 18.57 | 7.44 | |
45–60 | 0.007 | 0.009 | 0.004 | 0.002 | 70.56 | 0.01 | 1.1 | 6.28 | 2.08 | 10,052.5 | 45.4 | 2.81 | 24.83 | 14.79 | |
>60 | 0.008 | 0.002 | 0.002 | 0.000 | 96.32 | 0.01 | 0.86 | 3.13 | 1.73 | 5645 | 38.95 | 1.46 | 11.22 | 8.08 | |
RCH 2 | 0–10 | 1.245 | 0.591 | 0.642 | 0.241 | 61.74 | 0.38 | 1.17 | 28.53 | 9.47 | 4978 | 74.23 | 20.38 | 46.78 | 22.21 |
10–32 | 0.065 | 0.013 | 0.014 | 0.017 | 99.96 | 0.15 | 1.22 | 14.22 | 3.53 | 8684 | 72.24 | 8.98 | 16.4 | 19.66 | |
32–47 | 0.008 | 0.004 | 0.003 | 0.002 | 59.92 | 0.03 | 0.55 | 3.74 | 1.94 | 7072.5 | 67.35 | 1.28 | 18.65 | 8.62 | |
47–90 | 0.005 | 0.000 | 0.002 | 0.001 | 115.92 | 0.02 | 1.41 | 4.13 | 2.06 | 8960 | 57.83 | 2.77 | 14.53 | 10.68 | |
RCH 3 | 0–12 | 0.559 | 0.439 | 0.632 | 0.133 | 62.65 | 0.15 | 1.18 | 34.56 | 9.09 | 5173 | 34.71 | 24.45 | 41.31 | 24.44 |
12–30 | 0.038 | 0.019 | 0.018 | 0.013 | 109.76 | 0.1 | 0.83 | 13.06 | 3.4 | 7081 | 37.65 | 8.61 | 13.14 | 13.81 | |
30–38 | 0.007 | 0.000 | 0.005 | 0.002 | 75.32 | 0.06 | 0.27 | 1.72 | 1.59 | 5247.5 | 25.38 | 0.79 | 13.24 | 4.63 | |
38–80 | 0.006 | 0.005 | 0.003 | 0.001 | 66.22 | 0.05 | 1.23 | 4.15 | 2.14 | 8555 | 46.92 | 2.6 | 14.29 | 10.48 | |
RCH 4 | 0–4 | 7.181 | 1.118 | 2.149 | 0.174 | 170.52 | 0.31 | 1.15 | 24.81 | 8.95 | 5087 | 504.7 | 18.5 | 40.59 | 26.02 |
4–27 | 0.096 | 0.037 | 0.036 | 0.017 | 49.56 | 0.11 | 1.49 | 17.70 | 3.83 | 11,005 | 325 | 9.35 | 22.47 | 22.17 | |
27–40 | 0.055 | 0.01 | 0.014 | 0.009 | 70.98 | 0.02 | 1.55 | 5.86 | 2.46 | 13,155 | 456.28 | 2.76 | 29.34 | 20.26 | |
40–80 | 0.298 | 0.012 | 0.097 | 0.012 | 51.52 | 0.01 | 0.65 | 5.14 | 1.97 | 7957.5 | 83.63 | 1.85 | 19.67 | 9.1 | |
RCH 5 | 0–12 | 1.830 | 0.390 | 0.776 | 0.121 | 55.93 | 0.33 | 0.97 | 25.06 | 8.54 | 5169 | 63.03 | 17.38 | 35.7 | 21.73 |
12–35 | 0.189 | 0.042 | 0.041 | 0.034 | 112.14 | 0.15 | 0.94 | 13.32 | 4.40 | 7158.5 | 156.4 | 8.48 | 16.08 | 23.26 | |
35–45 | 0.012 | 0.007 | 0.005 | 0.003 | 69.3 | 0.01 | 0.65 | 4.42 | 1.71 | 8252.5 | 82.88 | 1.41 | 19.92 | 9.07 | |
45–80 | 0.020 | 0.010 | 0.01 | 0.010 | 123.48 | 0.01 | 1.94 | 7.37 | 2.83 | 11,785 | 77.55 | 4.78 | 21.48 | 11.87 | |
Control | 0–10 | 1.181 | 1.008 | 1.17 | 0.373 | 110.04 | 0.74 | 0.81 | 23.47 | 9.95 | 2476 | 52.69 | 17.89 | 36.13 | 47.75 |
10–25 | 0.004 | 0.014 | 0.029 | 0.008 | 20.23 | 0.07 | 0.25 | 6.15 | 3.23 | 3816 | 37.76 | 2.89 | 17.32 | 5.18 | |
25–50 | 0.005 | 0.005 | 0.005 | 0.003 | 53.34 | 0.02 | 0.89 | 24.24 | 2.18 | 9840 | 40.77 | 2.35 | 25.39 | 16.53 | |
>50 | 0.006 | 0.000 | 0.001 | 0.000 | 71.4 | 0.01 | 1.03 | 14.07 | 1.90 | 5112.5 | 39.48 | 2.04 | 10.15 | 8.65 |
C | N | C/N | pH H2O | pH KCl | Hw | P | |
---|---|---|---|---|---|---|---|
RCH | 4.66 ± 1.50 a | 0.14 ± 0.03 a | 33.06 ± 7.81 a | 3.85 ± 0.19 a | 3.50 ± 0.28 a | 3.87 ± 0.97 a | 64.07 ± 14.33 a |
Control | 2.19 ± 0.97 b | 0.13 ± 0.02 a | 16.33 ± 4.94 b | 3.64 ± 0.13 b | 3.32 ± 0.22 b | 4.00 ± 0.59 a | 36.21 ± 17.39 b |
Ca | Mg | K | Na | Cd | Co | Cr | Cu | Fe | Mn | Ni | Pb | Zn | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RCH | 0.07 ± 0.03 a | 0.03 ± 0.01 a | 0.04 ± 0.02 a | 0.03 ± 0.01 a | 0.14 ± 0.03 a | 0.68 ± 0.22 a | 5.84 ± 1.74 a | 1.57 ± 0.61 a | 3513.4 ± 420.0 b | 65.41 ± 22.33 a | 2.48 ± 0.73 a | 13.05 ± 3.72 b | 13.25 ± 3.16 a |
Control | 0.03 ± 0.03 b | 0.04 ± 0.01 a | 0.03 ± 0.01 a | 0.02 ± 0.01 b | 0.07 ± 0.03 b | 0.61 ± 0.55 b | 6.23 ± 3.08 a | 1.44 ± 0.71 a | 3994.7 ± 868.6 a | 52.47 ± 13.17 b | 2.16 ± 1.21 b | 18.90 ± 4.40 a | 7.68 ± 2.24 b |
R2 | Equation Parameter | β | p | |
---|---|---|---|---|
CB | 0.83 | C | 2.687 | 0.0000 |
N | −41.084 | 0.0000 | ||
BG | 0.84 | C | 1.656 | 0.0000 |
N | −31.128 | 0.0052 | ||
BC | 30.000 | 0.0053 | ||
NAG | 0.79 | C | 1.466 | 0.0003 |
P | 0.065 | 0.0195 | ||
XYL | 0.57 | BC | 11.806 | 0.0000 |
SP | 0.46 | C | 0.339 | 0.0000 |
PH | 0.88 | C | 9.568 | 0.0000 |
pH | −1.988 | 0.0374 |
DOC | IC | TN | NH4+ | NO2− | NO3− | Ca2+ | Mg2+ | K+ | Na+ | SO4− | PO4− | Cl− | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
mg·L−1 | |||||||||||||
RCH | 4.80 ± 1.28 b | 0.73 ± 0.13 a | 1.72 ± 0.27 a | 0.89 ± 0.14 a | 1.08 ± 0.81 a | 2.33 ± 3.07 a | 1.75 ± 0.75 a | 0.20 ± 0.13 a | 0.54 ± 0.66 a | 0.85 ± 0.99 a | 3.64 ± 1.52 a | 0.83 ± 0.96 a | 2.50 ± 0.64 a |
Control | 5.91 ± 1.29 a | 0.70 ± 0.09 a | 1.78 ± 0.22 a | 0.94 ± 0.27 a | 1.47 ± 1.16 a | 1.69 ± 1.96 a | 2.23 ± 1.55 a | 0.20 ± 0.15 a | 0.72 ± 0.89 a | 1.07 ± 1,07 a | 4.20 ± 2.08 a | 1.53 ± 3.35 a | 2.46 ± 0.73 a |
Genus * | Relict Charcoal Hearths Soil | Control Soil | Total | ||||||
---|---|---|---|---|---|---|---|---|---|
RCH1 | RCH2 | RCH3 | RCH4 | RCH5 | C1 | C2 | C3 | ||
Absidia | / | / | / | 0.0264 | / | 0.0865 | 0.0008 | / | 0.0044 |
Aspergillus | 0.0149 | / | 0.0264 | 0.1652 | 1.1687 | / | / | / | 0.0304 |
Geomyces | / | / | 0.0066 | / | 0.0263 | / | / | / | 0.0006 |
Humicolopsis | 0.0149 | 0.0128 | 0.0066 | / | / | 0.0054 | 0.0008 | / | 0.0023 |
Infundichalara | 0.0037 | 0.2043 | / | 0.0264 | 0.0263 | / | / | / | 0.0071 |
Leptobacillium | / | / | / | / | 0.0263 | / | / | / | 0.0003 |
Metapochonia | / | 0.0128 | / | / | 0.0029 | / | / | / | 0.0003 |
Mortierella | 0.3718 | 0.0798 | 2.9149 | 2.9149 | 2.9920 | 5.1957 | 2.6983 | 9.4044 | 3.2504 |
Mucor | / | 0.0032 | / | / | / | 0.0014 | 0.0008 | 0.0278 | 0.0023 |
Oberwinklerozyma | / | / | / | / | / | 0.0122 | / | / | 0.0003 |
Oidiodendron | 0.3718 | 0.6256 | 6.3520 | 2.1416 | 0.0029 | 0.0662 | / | / | 0.2370 |
Penicillium | 38.6823 | 23.6075 | 11.1111 | 1.9102 | 23.1439 | 18.1877 | 30.9354 | 14.1878 | 20.6959 |
Pseudogymnoascus | / | / | / | 0.0264 | / | / | 0.0008 | / | 0.0003 |
Sagenomella | 0.3718 | 0.2043 | 0.4230 | 0.1058 | 0.0117 | / | 0.0008 | / | 0.0393 |
Saitozyma | / | / | 0.1058 | / | 0.0029 | / | / | / | 0.0009 |
Tolypocladium | 0.1338 | 0.2043 | 0.0595 | 0.0066 | 0.7480 | 0.7150 | 1.1992 | 1.6044 | 0.6388 |
Trichoderma | 1.3422 | 0.8171 | 0.4230 | 1.6921 | 0.3535 | 2.2721 | 0.9044 | 1.2844 | 1.1443 |
Umbelopsis | / | 1.4076 | / | 4.8186 | / | 0.0338 | 0.3663 | 0.3211 | 0.2991 |
Sample No. | Shannon–Wiener Index (H′) | Simpson Diversity Index (Ds) | Dominant Index (λ) | PIE Index (PIE) | Pielou Index (J) | Margalef Index (D′) | Species Richness (S) |
---|---|---|---|---|---|---|---|
RCH1: | |||||||
CFU | 0.7197 | 0.6505 | 0.3495 | 0.6300 | 0.5628 | 8.1270 | 19 |
ITS | 1.1520 | 0.7965 | 0.2035 | 0.7965 | 0.4922 | 44.0313 | 218 |
16S | 1.4850 | 0.9449 | 0.0551 | 0.9449 | 0.6861 | 32.4700 | 146 |
RCH2 | 1.2138 | 0.9025 | 0.0975 | 0.9076 | 0.7993 | 14.2350 | 33 |
RCH3 | 1.2187 | 0.9045 | 0.0955 | 0.9447 | 0.8718 | 11.4838 | 25 |
RCH4 | 1.1884 | 0.8985 | 0.1015 | 0.9059 | 0.8045 | 13.8762 | 30 |
RCH5 | |||||||
CFU | 1.0415 | 0.8446 | 0.1554 | 0.8492 | 0.7361 | 11.0270 | 26 |
ITS | 1.2180 | 0.8680 | 0.1320 | 0.8680 | 0.5125 | 47.4820 | 238 |
16S | 1.3520 | 0.9036 | 0.0964 | 0.9037 | 0.6213 | 34.7010 | 150 |
C1 | |||||||
CFU | 0.9810 | 0.8533 | 0.1467 | 0.8565 | 0.7348 | 8.6258 | 22 |
ITS | 0.8359 | 0.7004 | 0.2996 | 0.7004 | 0.3841 | 29.9770 | 150 |
16S | 1.4370 | 0.9424 | 0.0576 | 0.9425 | 0.7026 | 26.0320 | 111 |
C2 | 0.9864 | 0.8693 | 0.1307 | 0.8718 | 0.7714 | 7.0857 | 19 |
C3 | 0.9573 | 0.8522 | 0.1477 | 0.8383 | 0.7486 | 7.2665 | 19 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lasota, J.; Błońska, E.; Babiak, T.; Piaszczyk, W.; Stępniewska, H.; Jankowiak, R.; Boroń, P.; Lenart-Boroń, A. Effect of Charcoal on the Properties, Enzyme Activities and Microbial Diversity of Temperate Pine Forest Soils. Forests 2021, 12, 1488. https://doi.org/10.3390/f12111488
Lasota J, Błońska E, Babiak T, Piaszczyk W, Stępniewska H, Jankowiak R, Boroń P, Lenart-Boroń A. Effect of Charcoal on the Properties, Enzyme Activities and Microbial Diversity of Temperate Pine Forest Soils. Forests. 2021; 12(11):1488. https://doi.org/10.3390/f12111488
Chicago/Turabian StyleLasota, Jarosław, Ewa Błońska, Tomasz Babiak, Wojciech Piaszczyk, Hanna Stępniewska, Robert Jankowiak, Piotr Boroń, and Anna Lenart-Boroń. 2021. "Effect of Charcoal on the Properties, Enzyme Activities and Microbial Diversity of Temperate Pine Forest Soils" Forests 12, no. 11: 1488. https://doi.org/10.3390/f12111488