Effects of Strip Roads in a Pine Tree Stand (Pinus sylvestris L.) on the Diameter Growth and Pith Eccentricity of Trees Growing along Them
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design
- DWE, DNS—diameters in the WE and NS directions,
- RW, RN—distances between the pith-off-centre and the disc edge in the W and N directions (Figure 1).
- d—stem diameter at the eccentricity measurement (mm).
2.3. Statistical Analyses
3. Results
3.1. Growth in Diameter
3.2. Stem Pith Eccentricity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wiersum, K.F. 200 years of sustainability in forestry: Lessons from history. Environ. Manag. 1995, 19, 321–329. [Google Scholar] [CrossRef]
- Hahn, W.A.; Knoke, T. Sustainable development and sustainable forestry: Analogies, differences, and the role of flexibility. Eur. J. For. Res. 2010, 129, 787–801. [Google Scholar] [CrossRef]
- Sandström, C.; Lindkvist, A.; Öhman, K.; Nordström, E.-M. Governing competing demands for forest resources in Sweden. Forests 2011, 2, 218–242. [Google Scholar] [CrossRef]
- Bartczak, A.; Lindhjem, H.; Ståle, N.; Zandersen, M.; Zylicz, T. Valuing forest recreation on the national level in a transition economy: The case of Poland. For. Policy Econ. 2008, 10, 467–472. [Google Scholar] [CrossRef] [Green Version]
- Grilli, G.; Paletto, A.; De Meo, I. Economic valuation of forest recreation in an alpine valley. Balt. For. 2014, 20, 167–175. [Google Scholar]
- Elbakidze, M.; Andersson, K.; Angelstam, P.; Armstrong, G.W.; Axelsson, R.; Doyon, F.; Hermansson, M.; Jacobsson, J.; Pautov, Y. Sustained yield forestry in Sweden and Russia: How does it correspond to sustainable forest management policy? Ambio 2013, 42, 160–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paschalis, P. Użytkowanie lasu wielofunkcyjnego. Sylwan 1996, 140, 5–11. [Google Scholar]
- Bort, U.; Mahler, G.U.; Pfeil, C. Mechanisierte holzernte. Forsttech. Inf. 1993, 11, 121–124. [Google Scholar]
- Sauter, U.H.; Busmann, C. Bestandesschäden bei der durchforstung von fichtenbeständen mit kranvollerntern unter berücksichtigung unterschiedlicher rückegassenabstände. Forsttech. Inf. 1994, 12, 137–141. [Google Scholar]
- Han, H.-S.; Kellogg, L.D. Damage characteristics in young douglas-fir stands from commercial thinning with four timber harvesting systems. West. J. Appl. For. 2000, 15, 27–33. [Google Scholar] [CrossRef] [Green Version]
- Košir, B. Damage to young forest due to harvesting in shelterwood systems. Croat. J. For. Eng. 2008, 29, 141–153. [Google Scholar]
- von Wilpert, K.; Schäffer, J. Ecological effects of soil compaction and initial recovery dynamics: A preliminary study. Eur. J. For. Res. 2006, 125, 129–138. [Google Scholar] [CrossRef]
- Ampoorter, E.; Van Nevel, L.; De Vos, B.; Hermy, M.; Verheyen, K. Assessing the effects of initial soil characteristics, machine mass and traffic intensity on forest soil compaction. For. Ecol. Manag. 2010, 260, 1664–1676. [Google Scholar] [CrossRef] [Green Version]
- Solgi, A.; Naghdi, R.; Tsioras, P.A.; Nikooy, M. Soil compaction and porosity changes caused during the operation of timberjack 450C skidder in northern Iran. Croat. J. For. Eng. 2015, 36, 217–225. [Google Scholar]
- Matangaran, J.R.; Kobayashi, H. The effect of tractor logging on forest soil compaction and growth of Shorea selanica seedlings in Indonesia. J. For. Res. 1999, 4, 13–15. [Google Scholar] [CrossRef]
- Eliasson, L.; Wästerlund, I. Effects of slash reinforcement of strip roads on rutting and soil compaction on a moist fine-grained soil. For. Ecol. Manag. 2007, 252, 118–123. [Google Scholar] [CrossRef]
- Labelle, E.R.; Jaeger, D. Quantifying the use of brush mats in reducing forwarder peak loads and surface contact pressures. Croat. J. For. Eng. 2012, 33, 249–274. [Google Scholar]
- Siren, M.; Ala-Ilomäki, J.; Mäkinen, H.; Lamminen, S.; Mikkola, T. Harvesting damage caused by thinning of Norway spruce in unfrozen soil. Int. J. For. Eng. 2013, 24, 60–75. [Google Scholar] [CrossRef]
- Borchert, H.; Huber, C.; Göttlein, A.; Kremer, J. Nutrient concentration on skid trails under brush-mats—Is a redistribution of nutrients possible? Croat. J. For. Eng. 2015, 36, 243–252. [Google Scholar]
- Jiroušek, R.; Klvač, R.; Skoupỳ, A. Productivity and costs of the mechanized cut-to-length wood harvesting system in clear-felling operations. J. For. Sci. 2007, 53, 476–482. [Google Scholar] [CrossRef] [Green Version]
- Pulkki, R.E. Glossary of Forest Harvesting Terminology. 2004. Available online: http://flash.lakeheadu.ca/~repulkki/REP_terminology.pdf (accessed on 22 May 2017).
- Moskalik, T.; Borz, S.A.; Dvořák, J.; Ferencik, M.; Glushkov, S.; Muiste, P.; Lazdiņš, A.; Styranivsky, O. Timber harvesting methods in eastern european countries: A review. Croat. J. For. Eng. 2017, 38, 231–241. [Google Scholar]
- Bodył, M. Rozmiar pozyskania maszynowego w polsce. Drwal. Pismo Przedsiębiorców Leśnych 2019, 3, 5–9. [Google Scholar]
- Mederski, P.S.; Karaszewski, Z.; Rosińska, M.; Bembenek, M. Dynamics of harvester fleet change in poland and factors determining machine occurrence. Sylwan 2016, 160, 795–804. [Google Scholar]
- Giefing, D.F.; Karaszewski, Z.; Ziemski, Z. The effect of strip roads established during late cleanings on the selected parameters of trees. Sylwan 2003, 3, 11–18. [Google Scholar]
- Dušek, D.; Slodičák, M.; Novák, J.; Kacalek, D. Influence of skid rack width on spruce stand production. Zprávy Lesn. Výzkumu 2015, 60, 171–176. [Google Scholar]
- Niemistö, P. A simulation method for estimating growth losses caused by strip roads. Scand. J. For. Res. 1989, 4, 203–214. [Google Scholar] [CrossRef]
- Isomäki, A.; Niemistö, P. Effect of strip roads on the growth and yield of young spruce stands in southern finland. Folia For. 1990, 756, 36. [Google Scholar]
- Mäkinen, H.; Isomäki, A.; Hongisto, T. Effect of half-systematic and systematic thinning on the increment of Scots pine and Norway spruce in Finland. Forestry 2005, 79, 103–121. [Google Scholar] [CrossRef]
- Horak, J.; Novák, J. Effect of stand segmentation on growth and development of Norway spruce stands. J. For. Sci. 2009, 55, 323–329. [Google Scholar] [CrossRef] [Green Version]
- Kuliešis, A.; Aleinikovas, M.; Linkevičius, E.; Kuliešis, A.A.; Saladis, J.; Škėma, M.; Šilinskas, B.; Beniušienė, L. The impact of strip roads on the productivity of spruce plantations. Forests 2018, 9, 640. [Google Scholar] [CrossRef] [Green Version]
- Laurow, Z. Szlaki technologiczne w procesie pozyskiwania drewna. Część II. Szlak a środowisko. Przegląd Tech. Rol. Leś. 1996, 6, 23–25. [Google Scholar]
- Jansson, K.-J.; Wästerlund, I. Effect of traffic by lightweight forest machinery on the growth of young picea abies trees. Scand. J. For. Res. 1999, 14, 581–588. [Google Scholar] [CrossRef]
- Bembenek, M.; Giefing, D.F.; Karaszewski, Z.; Lacka, A.; Mederski, P.S. Strip road impact on selected wood defects of Norway spruce (Picea abies (L.) H. Karst). Drewno 2013, 190, 63–76. [Google Scholar]
- Wallentin, C.; Nilsson, U. Initial effect of thinning on stand gross stem-volume production in a 33-year-old Norway spruce (Picea abies (L.) Karst.) stand in Southern Sweden. Scand. J. For. Res. 2011, 26, 21–35. [Google Scholar] [CrossRef]
- Forman, R.T.T.; Sperling, D.; Bissonette, J.A.; Clevenger, A.P.; Cutshall, C.D.; Dale, V.H.; Fahrig, L.; France, R.; Goldman, C.R.; Heanue, K.; et al. Road Ecology: Science and Solutions; Island Press: Washington, DC, USA, 2002. [Google Scholar]
- Delgado J., D.; Arroyo N., L.; Arévalo, J.; Fernandez-Palacios J., M. Edge effects of roads on temperature, light, canopy cover, and canopy height in laurel and pine forests (Tenerife, Canary Islands). Landsc. Urban Plan. 2007, 81, 328–340. [Google Scholar] [CrossRef]
- Pohlman, C.L.; Turton, S.M.; Goosem, M. Temporal variation in microclimatic edge effects near powerlines, highways and streams in Australian tropical rainforest. Agric. Meteorol. 2009, 149, 84–95. [Google Scholar] [CrossRef]
- Eriksson, H. New results from plot no. 5 at sperlingsholm estate in southwestern Sweden in the European Stemnumber experiment in picea abies. Scand. J. For. Res. 1987, 2, 85–98. [Google Scholar] [CrossRef]
- Kremer, J.; Matthies, D. Auswirkungen der befahrung auf das wachstum der forstlichen vegetation. AFZ Der Wald 1997, 52, 474–477. [Google Scholar]
- Wästerlund, I. Strength components in the forest floor restricting maximum tolerable machine forces. J. Terramech. 1989, 26, 177–182. [Google Scholar] [CrossRef]
- Bredberg, C.-J.; Wästerlund, I. Wurzel-und bodenschäden durch fahrzeuge. Forstwiss. Cent. 1983, 102, 86–98. [Google Scholar] [CrossRef]
- Yilmaz, E.; Makineci, E.; Demir, M. Skid road effects on annual ring widths and diameter increment of fir (Abies bornmulleriana mattf.) trees. Transp. Res. Part D Transp. Environ. 2010, 15, 350–355. [Google Scholar] [CrossRef]
- Suwała, M. Effect of soil disturbances by wood harvesting in late thinnings of pine stands on trees increment. Leś. Prace Bad. 2007, 3, 99–116. [Google Scholar]
- Bejarano, M.D.; Villar, R.; Murillo, A.M.; Quero, J.L. Effects of soil compaction and light on growth of Quercus pyrenaica Willd. (Fagaceae) seedlings. Soil Tillage Res. 2010, 110, 108–114. [Google Scholar] [CrossRef]
- Ares, A.; Terry, T.A.; Miller, R.E.; Anderson, H.W.; Flaming, B.L. Ground-based forest harvesting effects on soil physical properties and douglas-fir growth. Soil Sci. Soc. Am. J. 2005, 69, 1822–1832. [Google Scholar] [CrossRef]
- Gebauer, R.; Martinkova, M. Effects of pressure on the root systems of Norway spruce plants (Picea abies [L.] Karst.). J. For. Sci. 2012, 51, 268–275. [Google Scholar] [CrossRef] [Green Version]
- Fleming, R.L.; Powers, R.F.; Foster, N.W.; Kranabetter, J.M.; Scott, D.A.; Ponder, F., Jr.; Berch, S.; Chapman, W.K.; Kabzems, R.D.; Ludovici, K.H. Effects of organic matter removal, soil compaction, and vegetation control on 5-year seedling performance: A regional comparison of long-term soil productivity sites. Can. J. For. Res. 2006, 36, 529–550. [Google Scholar] [CrossRef] [Green Version]
- Sanchez, F.G.; Scott, D.A.; Ludovici, K.H. Negligible effects of severe organic matter removal and soil compaction on loblolly pine growth over 10 years. For. Ecol. Manag. 2006, 227, 145–154. [Google Scholar] [CrossRef]
- Tan, X.; Curran, M.; Chang, S.; Maynard, D. Early growth responses of lodgepole pine and douglas-fir to soil compaction, organic matter removal, and rehabilitation treatments in southeastern British Columbia. For. Sci. 2009, 55, 210–220. [Google Scholar]
- Ampoorter, E.; De Frenne, P.; Hermy, M.; Verheyen, K. Effects of soil compaction on growth and survival of tree saplings: A meta-analysis. Basic Appl. Ecol. 2011, 12, 394–402. [Google Scholar] [CrossRef] [Green Version]
- Hattori, D.; Kenzo, T.; Irino, K.O.; Kendawang, J.J.; Ninomiya, I.; Sakurai, K. Effects of soil compaction on the growth and mortality of planted dipterocarp seedlings in a logged-over tropical rainforest in Sarawak, Malaysia. For. Ecol. Manag. 2013, 310, 770–776. [Google Scholar] [CrossRef]
- Naghdi, R.; Solgi, A.; Labelle, E.R.; Zenner, E.K. Influence of ground-based skidding on physical and chemical properties of forest soils and their effects on maple seedling growth. Eur. J. For. Res. 2016, 135, 949–962. [Google Scholar] [CrossRef]
- Matthies, D. Maschinelle holzernte und ihre auswirkungen auf unsere bestände. AFZ Der Wald 1997, 9, 471–473. [Google Scholar]
- Kojs, P.; Malik, I.; Wistuba, M.; Stopka, R.; Trabka, K. Mechanizmy wzrostu ekscentrycznego i formowania się drewna reakcyjnego w kontekście badań dendrogeomorfologicznych - wprowadzenie do nowej hipotezy. Stud. Mater. Cent. Edukac. Przyr.-Leś. 2012, 14, 147–156. [Google Scholar]
- Tomczak, A.; Jelonek, T.; Pazdrowski, W. Pine (Pinus Sylvestris L.) trunk irregularity due to exposure to wind. For. Lett. 2012, 103, 41–46. [Google Scholar]
- Tulik, M.; Jura-Morawiec, J. Reaction wood and tree crown architecture. Sylwan 2011, 155, 808–815. [Google Scholar]
- Wistuba, M.; Papciak, T.; Malik, I.; Barnas, A.; Polowy, M.; Pilorz, W. Wzrost dekoncentryczny świerka pospolitego jako efekt oddziaływania dominującego kierunku wiatru (przykład z Hrubeégo Jesenika, Sudety Wschodnie). Stud. Mater. Cent. Edukac. Przyr.-Leś. 2014, 16, 63–73. [Google Scholar]
- Warensjö, M.; Rune, G. Stem straightness and compression wood in a 22-year-old stand of container-grown scots pine trees. Silva Fenn. 2004, 38, 143–153. [Google Scholar] [CrossRef] [Green Version]
- Ren, H.; Wu, Y.; Zhu, X.-M. The quadratic B-spline curve fitting for the shape of log cross sections. J. For. Res. 2006, 17, 150–152. [Google Scholar] [CrossRef]
- Šilhán, K. How different are the results acquired from mathematical and subjective methods in dendrogeomorphology? Insights Landslide Movements. Geomorphology 2016, 253, 189–198. [Google Scholar]
- Ennos, A.R. Wind as an ecological factor. Trends Ecol. Evol. 1997, 12, 108–111. [Google Scholar] [CrossRef]
- Duncker, P.; Spiecker, H. Compression wood formation and pith eccentricity in Picea abies L. depending on selected site-related factors: Detection of compression wood by its spectral properties in reflected light. TRACE—Tree rings archaeol. Climatol. Ecol. 2005, 3, 150–158. [Google Scholar]
- Konôpka, B.; Zach, P.; Kulfan, J. Wind—An important ecological factor and destructive agent in forests. Lesn. Časopis-For. J. 2016, 62, 123–130. [Google Scholar] [CrossRef]
- Rola, P.; Staniszewski, P.; Tomusiak, R.; Sekrecki, P.; Wysocka, N. Strukturalne właściwości drewna sosny zwyczajnej (Pinus sylvestris L.) w zależności od strony świata—wstępne wyniki badań. Stud. Mater. Cent. Edukac. Przyr.-Leś. 2014, 16, 28–33. [Google Scholar]
- Mäkinen, H. Effect of thinning and natural variation in bole roundness in Scots pine (Pinus Sylvestris L.). For. Ecol. Manag. 1998, 107, 231–239. [Google Scholar] [CrossRef]
- Kang, W.; Lee, N.-H. Relationship between radial variations in shrinkage and drying defects of tree disks. J. Wood Sci. 2004, 50, 209–216. [Google Scholar] [CrossRef]
- Fallah, A.; Riahifar, N.; Barari, K.; Parsakhoo, A. Investigating the out-of-roundness and pith-off-centre in stems of three broadleaved species in Hyrcanian forests. J. For. Sci. 2012, 58, 513–518. [Google Scholar] [CrossRef] [Green Version]
- Liese, W.; Dadswell, H.E. Über den Einfluß der himmelsrichtung auf die länge von holzfasern und tracheiden. Holz Als Roh-Und Werkst. 1959, 17, 421–427. [Google Scholar] [CrossRef]
- Karaszewski, Z.; Giefing, D.F.; Lacka, A.; Noskowiak, A. Ovality on trees adjacent to skid road. Ann. Wars. Univ. Life Sci.-SGGW For. Wood Technol. 2014, 86, 153–158. [Google Scholar]
Five-Year Growth Period | Distance from Strip Road (m) | Height on Stem (m) | ||
---|---|---|---|---|
Lower Height | Middle Height | Top Height | ||
I | 0–1 | 17.7 ± 1.2 a | 18.9 ± 1.3 a | 27.6 ± 1.6 a |
2–4 | 14.4 ± 0.9 ab | 15.9 ± 1.0 ab | 26.7 ± 1.5 a | |
8–10 | 12.2 ± 1.0 b | 13.9 ± 1.0 b | 24.1 ± 1.2 a | |
II | 0–1 | 14.3 ± 1.2 a | 15.2 ± 1.0 a | 25.1 ± 1.7 a |
2–4 | 11.4 ± 0.9 a | 12.1 ± 0.7 b | 22.8 ± 1.4 a | |
8–10 | 11.5 ± 1.3 a | 12.2 ± 0.9 ab | 22.6 ± 1.1 a |
Five-Year Growth Period | Distance from Strip Road (m) | Height on Stem (m) | ||
---|---|---|---|---|
Lower Height | Middle Height | Top Height | ||
I | 0–1 | 13.8 ± 0.8 a | 16.9 ± 1.0 a | 27.5 ± 1.7 a |
2–4 | 11.5 ± 1.0 ab | 13.3 ± 1.1 bc | 22.2 ± 1.3 ab | |
8–10 | 10.9 ± 0.7 b | 12.8 ± 0.9 c | 22.0 ± 1.3 b | |
II | 0–1 | 11.3 ± 0.9 a | 13.5 ±0.9 a | 24.3 ± 1.5 a |
2–4 | 8.5 ± 0.8 a | 9.9 ± 0.7 a | 19.3 ± 1.1 b | |
8–10 | 9.0 ± 0.7 a | 10.4 ± 0.7 a | 19.8 ± 1.3 ab |
Five-Year Growth Period | Distance from Strip Road (m) | Variant | |
---|---|---|---|
3.5 m | 2.5 m | ||
I | 0–1 | 21.0 ± 0.9 a | 18.1 ± 0.9 a |
2–4 | 18.9 ± 0.9 ab | 15.3 ± 0.8 ab | |
8–10 | 16.1 ± 0.8 b | 14.8 ± 0.8 b | |
II | 0–1 | 17.3 ± 0.9 a | 14.8 ± 0.8 a |
2–4 | 14.8 ± 0.8 a | 11.6 ± 0.7 b | |
8–10 | 14.4 ± 0.8 a | 12.1 ± 0.7 b |
Variant | Distance from Strip Road (m) | Height on Stem (m) | ||
---|---|---|---|---|
Lower Height | Middle Height | Top Height | ||
3.5 m | 0–1 | 8.4 ± 0.7 a | 5.2 ± 0.5 a | 2.6 ± 0.3 a |
2–4 | 7.3 ± 0.6 a | 4.8 ± 0.4 a | 2.9 ± 0.3 a | |
8–10 | 8.5 ± 0.9 a | 4.7 ± 0.4 a | 2.1 ± 0.2 a | |
2.5 m | 0–1 | 8.7 ± 1.0 a | 5.5 ± 0.5 a | 2.4 ± 0.3 a |
2–4 | 7.0 ± 0.7 a | 4.7 ± 0.5 a | 1.7 ± 0.2 a | |
8–10 | 8.3 ± 1.2 a | 5.5 ± 0.6 a | 2.3 ± 0.2 a |
Direction | Distance from Strip Road (m) | Total | ||
---|---|---|---|---|
0–1 | 2–4 | 8–10 | ||
3.5 m variant (χ2 = 2.60, df = 2, p = 0.272) | ||||
S-W | 43 (51.19) | 42 (48.84) | 38 (55.07) | 123 (51.46) |
N-W | 41 (48.81) | 44 (51.16) | 31 (44.93) | 116 (48.54) |
Total | 84 (100) | 86 (100) | 69 (100) | 239 (100) |
2.5 m variant (χ2 = 1.15, df = 2, p = 0.5636) | ||||
S-W | 43 (55.84) | 38 (47.5) | 40 (50) | 121 (51.05) |
N-W | 34 (44.16) | 42 (52.5) | 40 (50) | 116 (48.95) |
Total | 77 (100) | 80 (100) | 80 (100) | 237 (100) |
Distance from Strip Road (m) | Variant | |||||
---|---|---|---|---|---|---|
3.5 m | 2.5 m | |||||
χ2 | df | p | χ2 | df | p | |
0–1 | 2.54 | 2 | 0.2815 | 0.29 | 2 | 0.8644 |
2–4 | 3.74 | 2 | 0.1540 | 6.38 | 2 | 0.0412 |
8–10 | 2.96 | 2 | 0.2272 | 0.67 | 2 | 0.7152 |
Direction | Height on Tree | ||
---|---|---|---|
Lower Height | Middle Height | Total | |
S-W | 16 (69.57) | 13 (62.86) | 29 (50) |
N-W | 7 (30.43) | 22 (37.14) | 29 (50) |
Total | 23 (100) | 35 (100) | 58 (100) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stempski, W.; Jabłoński, K.; Jakubowski, J. Effects of Strip Roads in a Pine Tree Stand (Pinus sylvestris L.) on the Diameter Growth and Pith Eccentricity of Trees Growing along Them. Forests 2021, 12, 1414. https://doi.org/10.3390/f12101414
Stempski W, Jabłoński K, Jakubowski J. Effects of Strip Roads in a Pine Tree Stand (Pinus sylvestris L.) on the Diameter Growth and Pith Eccentricity of Trees Growing along Them. Forests. 2021; 12(10):1414. https://doi.org/10.3390/f12101414
Chicago/Turabian StyleStempski, Włodzimierz, Krzysztof Jabłoński, and Jakub Jakubowski. 2021. "Effects of Strip Roads in a Pine Tree Stand (Pinus sylvestris L.) on the Diameter Growth and Pith Eccentricity of Trees Growing along Them" Forests 12, no. 10: 1414. https://doi.org/10.3390/f12101414
APA StyleStempski, W., Jabłoński, K., & Jakubowski, J. (2021). Effects of Strip Roads in a Pine Tree Stand (Pinus sylvestris L.) on the Diameter Growth and Pith Eccentricity of Trees Growing along Them. Forests, 12(10), 1414. https://doi.org/10.3390/f12101414