Populus euphratica Phenology and Its Response to Climate Change in the Upper Tarim River Basin, NW China
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data
3. Methods
3.1. Extract LAI Features
3.2. Filtering and Reconstruction of LAI Curves
3.3. Dynamic Threshold Method
3.4. Grey Relational Analysis (GRA)
3.5. Canonical Correlation Analysis (CCA)
4. Results
4.1. Monthly and Interannual Variations of Climate Variables
4.2. Interannual Variations of P. euphratica Phenology
4.3. Interannual Variations in P. euphratica Phenology
4.3.1. Effects of Key Climatic Periods and Factors
4.3.2. Exploration of the Relationships between SOS, EOS, and Interannual Climate
5. Discussion
5.1. Validation of P. euphratica Phenology
5.2. Relationships between Phenology of P. euphratica and Climatic Factors
5.3. Which has a Stronger Influence on Phenology, Runoff, or Precipitation?
5.4. Limitations
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, Q.; Kong, D.; Shi, P.; Singh, V.P.; Sun, P. Vegetation phenology on the Qinghai-Tibetan Plateau and its response to climate change (1982–2013). Agric. For. Meteorol. 2018, 248, 408–417. [Google Scholar] [CrossRef]
- Nilsson, A.L.K.; Slagsvold, T.; Rostad, O.W.; Knudsen, E.; Jerstad, K.; Cadahia, L.; Reitan, T.; Helberg, M.; Walseng, B.; Stenseth, N.C. Territory location and quality, together with climate, affect the timing of breeding in the white-throated dipper. Sci. Rep. 2019, 9, 7671. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Jin, N.; Yu, Q. Impacts of climate change and crop management practices on soybean phenology changes in China. Sci. Total Environ. 2020, 707, 135638. [Google Scholar] [CrossRef]
- Gonsamo, A.; Chen, J.M.; Price, D.T.; Kurz, W.A.; Liu, J.; Boisvenue, C.; Hember, R.A.; Wu, C.; Chang, K.-H. Improved assessment of gross and net primary productivity of Canada’s landmass. J. Geophys. Res. Biogeosci. 2013, 118, 1546–1560. [Google Scholar] [CrossRef]
- Meng, F.; Niu, H.; Suonan, J.; Zhang, Z.; Wang, Q.; Li, B.; Lv, W.; Wang, S.; Duan, J.; Liu, P. Divergent responses of community reproductive and vegetative phenology to warming and cooling: Asymmetry vs symmetry. Front. Plant Sci. 2019, 10, 1310. [Google Scholar] [CrossRef] [PubMed]
- Pabon-Moreno, D.E.; Musavi, T.; Migliavacca, M.; Reichstein, M.; Mahecha, M.D.J.B. Ecosystem physio-phenology revealed using circular statistics. Biogeoences 2020, 17, 3991–4006. [Google Scholar] [CrossRef]
- Schwieder, M.; Leitao, P.J.; Bustamante, M.M.D.; Ferreira, L.G.; Rabe, A.; Hostert, P. Mapping Brazilian savanna vegetation gradients with Landsat time series. Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 361–370. [Google Scholar] [CrossRef]
- Shen, M.; Jiang, N.; Peng, D.; Rao, Y.; Huang, Y.; Fu, Y.H.; Yang, W.; Zhu, X.; Cao, R.; Chen, X.; et al. Can changes in autumn phenology facilitate earlier green-up date of northern vegetation? Agric. For. Meteorol. 2020, 291, 108077. [Google Scholar] [CrossRef]
- Misra, G.; Asam, S.; Menzel, A. Ground and satellite phenology in alpine forests are becoming more heterogeneous across higher elevations with warming. Agric. For. Meteorol. 2021, 303, 108383. [Google Scholar] [CrossRef]
- Burgess, M.D.; Smith, K.W.; Evans, K.L.; Leech, D.; Pearce-Higgins, J.W.; Branston, C.J.; Briggs, K.; Clark, J.R.; Feu, C.R.d.; Lewthwaite, K.; et al. Tritrophic phenological match-mismatch in space and time. Nat. Ecol. Evol. 2018, 2, 945–970. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Tong, X.; Zhang, J.; Meng, P.; Li, J.; Liu, P. Dynamics of phenology and its response to climatic variables in a warm-temperate mixed plantation. For. Ecol. Manag. 2021, 483, 118785. [Google Scholar] [CrossRef]
- Araghi, A.; Martinez, C.J.; Adamowski, J.; Olesen, J.E. Associations between large-scale climate oscillations and land surface phenology in Iran. Agric. For. Meteorol. 2019, 278, 107682. [Google Scholar] [CrossRef]
- Bornez, K.; Descals, A.; Verger, A.; Penuelas, J. Land surface phenology from VEGETATION and PROBA-V data. Assessment over deciduous forests. Int. J. Appl. Earth Obs. Geoinf. 2020, 84, 11. [Google Scholar] [CrossRef]
- Geng, X.; Zhou, X.; Yin, G.; Hao, F.; Zhang, X.; Hao, Z.; Singh, V.P.; Fu, Y.H. Extended growing season reduced river runoff in Luanhe River basin. J. Hydrol. 2020, 582, 124538. [Google Scholar] [CrossRef]
- Norman, S.P.; Hargrove, W.W.; Christie, W.M. Spring and Autumn Phenological Variability across Environmental Gradients of Great Smoky Mountains National Park, USA. Remote Sens. 2017, 9, 407. [Google Scholar] [CrossRef] [Green Version]
- Tong, X.Y.; Tian, F.; Brandt, M.; Liu, Y.; Zhang, W.M.; Fensholt, R. Trends of land surface phenology derived from passive microwave and optical remote sensing systems and associated drivers across the dry tropics 1992–2012. Remote Sens. Environ. 2019, 232, 12. [Google Scholar] [CrossRef]
- Xu, X.J.; Zhou, G.M.; Du, H.Q.; Mao, F.J.; Xu, L.; Li, X.J.; Liu, L.J. Combined MODIS land surface temperature and greenness data for modeling vegetation phenology, physiology, and gross primary production in terrestrial ecosystems. Sci. Total Environ. 2020, 726, 11. [Google Scholar] [CrossRef]
- Delbart, N.; Beaubien, E.; Kergoat, L.; le Toan, T. Comparing land surface phenology with leafing and flowering observations from the PlantWatch citizen network. Remote Sens. Environ. 2015, 160, 273–280. [Google Scholar] [CrossRef]
- Lim, C.H.; Jung, S.H.; Kim, A.R.; Kim, N.S.; Lee, C.S. Monitoring for Changes in Spring Phenology at Both Temporal and Spatial Scales Based on MODIS LST Data in South Korea. Remote Sens. 2020, 12, 3282. [Google Scholar] [CrossRef]
- Suepa, T.; Qi, J.; Lawawirojwong, S.; Messina, J.P. Understanding spatio-temporal variation of vegetation phenology and rainfall seasonality in the monsoon Southeast Asia. Environ. Res. 2016, 147, 621–629. [Google Scholar] [CrossRef] [Green Version]
- Yuan, M.X.; Zhao, L.; Lin, A.W.; Wang, L.C.; Li, Q.J.; She, D.X.; Qu, S. Impacts of preseason drought on vegetation spring phenology across the Northeast China Transect. Sci. Total Environ. 2020, 738, 10. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Liu, Q.; Du, W.; Zhou, G.; Qin, L.; Sun, Z. Modelling leaf phenology of some trees with accumulated temperature in a temperate forest in northeast China. For. Ecol. Manag. 2021, 489, 119085. [Google Scholar] [CrossRef]
- Zou, F.; Li, H.; Hu, Q. Responses of vegetation greening and land surface temperature variations to global warming on the Qinghai-Tibetan Plateau, 2001–2016. Ecol. Indicators 2020, 119, 106867. [Google Scholar] [CrossRef]
- Ma, J.; Xiao, X.; Li, R.; Zhao, B.; Myint, S.W. Enhanced spring phenological temperature sensitivity explains the extension of carbon uptake period in temperate forest protected areas. For. Ecol. Manag. 2020, 455, 117679. [Google Scholar] [CrossRef]
- Meier, G.A.; Brown, J.F.; Evelsizer, R.J.; Vogelmann, J.E. Phenology and climate relationships in aspen (Populus tremuloides Michx.) forest and woodland communities of southwestern Colorado. Ecol. Indicators 2015, 48, 189–197. [Google Scholar] [CrossRef]
- Li, X.; Zhang, L.; Luo, T. Rainy season onset mainly drives the spatiotemporal variability of spring vegetation green-up across alpine dry ecosystems on the Tibetan Plateau. Sci. Rep. 2020, 10, 18797. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Zheng, X.; Ma, L.; Wang, H.; Huang, Q.; Leng, G.; Meng, E.; Guo, Y. Quantitative contribution of climate change and human activities to vegetation cover variations based on GA-SVM model. J. Hydrol. 2020, 584, 124687. [Google Scholar] [CrossRef]
- An, S.; Zhang, X.; Chen, X.; Yan, D.; Henebry, G. An Exploration of Terrain Effects on Land Surface Phenology across the Qinghai–Tibet Plateau Using Landsat ETM+ and OLI Data. Remote Sens. 2018, 10, 1069. [Google Scholar] [CrossRef] [Green Version]
- Jin, J.; Wang, Y.; Zhang, Z.; Magliulo, V.; Jiang, H.; Cheng, M. Phenology Plays an Important Role in the Regulation of Terrestrial Ecosystem Water-Use Efficiency in the Northern Hemisphere. Remote Sens. 2017, 9, 664. [Google Scholar] [CrossRef] [Green Version]
- Yuan, G.; Zhang, P.; Shao, M.-a.; Luo, Y.; Zhu, X. Energy and water exchanges over a riparian Tamarix spp. stand in the lower Tarim River basin under a hyper-arid climate. Agric. For. Meteorol. 2014, 194, 144–154. [Google Scholar] [CrossRef] [Green Version]
- Schimel, D.S. Drylands in the Earth System. Science 2010, 327, 418–419. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.; Feng, Q.; Si, J.; Xi, H.; Su, Y.; Mitchell, P.J.; Pinkard, E.A. Flooding constrains tree water use of a riparian forest in the lower Heihe River Basin, Northwest China. Sci. Total Environ. 2021, 760, 144069. [Google Scholar] [CrossRef] [PubMed]
- Noy-Meir, I. Desert ecosystems: Environment and producers. Annu. Rev. Ecol. Syst. 1973, 4, 25–51. [Google Scholar] [CrossRef]
- Zhou, H.H.; Chen, Y.N.; Zhu, C.G.; Li, Z.; Fang, G.H.; Li, Y.P.; Fu, A.H. Climate change may accelerate the decline of desert riparian forest in the lower Tarim River, Northwestern China: Evidence from tree-rings of Populus euphratica. Ecol. Indicators 2020, 111, 105997. [Google Scholar] [CrossRef]
- Li, H.; Bai, L.; Feng, J.; Gao, H.; Ran, Q.; Yu, T.; Gao, W. Analysis of spatio-temporal characteristics of Populus euphratica forests in the Yarkand River Basin, Xinjiang. Acta Ecol. Sin. 2019, 39, 5080–5094. (In Chinese) [Google Scholar] [CrossRef]
- Gou, S.; Miller, G. A groundwater-soil-plant-atmosphere continuum approach for modelling water stress, uptake, and hydraulic redistribution in phreatophytic vegetation. Ecohydrology 2014, 7, 1029–1041. [Google Scholar] [CrossRef]
- Chen, Y.; Li, Z.; Fan, Y.; Wang, H.; Deng, H. Progress and prospects of climate change impacts on hydrology in the arid region of northwest China. Environ. Res. 2015, 139, 11–19. [Google Scholar] [CrossRef]
- Wu, K.; Xu, W.; Yang, W. Effects of precipitation changes on soil bacterial community composition and diversity in the Junggar desert of Xinjiang, China. PeerJ 2020, 8, e8433. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Li, W.; Ji, M.; Lu, F.; Dong, S. A comprehensive approach to characterization of the nonlinearity of runoff in the headwaters of the Tarim River, western China. Hydrol. Process. 2010, 24, 136–146. [Google Scholar] [CrossRef]
- Keram, A.; Halik, Ü.; Keyimu, M.; Aishan, T.; Mamat, Z.; Rouzi, A. Gap dynamics of natural Populus euphratica floodplain forests affected by hydrological alteration along the Tarim River: Implications for restoration of the riparian forests. For. Ecol. Manag. 2019, 438, 103–113. [Google Scholar] [CrossRef]
- Lang, P.; Ahlborn, J.; Schäfer, P.; Wommelsdorf, T.; Jeschke, M.; Zhang, X.; Thomas, F.M. Growth and water use of Populus euphratica trees and stands with different water supply along the Tarim River, NW China. For. Ecol. Manag. 2016, 380, 139–148. [Google Scholar] [CrossRef]
- Eusemann, P.; Petzold, A.; Thevs, N.; Schnittler, M. Growth patterns and genetic structure of Populus euphratica Oliv. (Salicaceae) forests in NW China – Implications for conservation and management. For. Ecol. Manag. 2013, 297, 27–36. [Google Scholar] [CrossRef]
- Zhou, H.H.; Chen, Y.N.; Li, W.H.; Chen, Y.P. Photosynthesis of Populus euphratica in relation to groundwater depths and high temperature in arid environment, northwest China. Photosynthetica 2010, 48, 257–268. [Google Scholar] [CrossRef]
- Hu, Y.; Li, H.; Wu, D.; Chen, W.; Zhao, X.; Hou, M.; Li, A.; Zhu, Y. LAI-indicated vegetation dynamic in ecologically fragile region: A case study in the Three-North Shelter Forest program region of China. Ecol. Indicators 2021, 120, 106932. [Google Scholar] [CrossRef]
- Li, J.; Xiao, Z. Evaluation of the version 5.0 global land surface satellite (GLASS) leaf area index product derived from MODIS data. Int. J. Remote Sens. 2020, 41, 9140–9160. [Google Scholar] [CrossRef]
- Xiang, Y.; Xiao, Z.; Ling, S.; Wang, J.; Song, J. Validation of Global LAnd Surface Satellite (GLASS) leaf area index product. J. Remote Sens. 2014, 18, 573–584. [Google Scholar] [CrossRef]
- Zhao, Y.; Bai, L.; Feng, J.; Lin, X.; Wang, L.; Xu, L.; Ran, Q.; Wang, K. Spatial and Temporal Distribution of Multiple Cropping Indices in the North China Plain Using a Long Remote Sensing Data Time Series. Sensors 2016, 16, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.; Li, J.; Liu, Q.H.; Zhong, B.; Wu, S.L.; Xia, C.F. Analysis of Differences in Phenology Extracted from the Enhanced Vegetation Index and the Leaf Area Index. Sensors 2017, 17, 1982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, Z.; Jönsson, P.; Jin, H.; Eklundh, L. Performance of Smoothing Methods for Reconstructing NDVI Time-Series and Estimating Vegetation Phenology from MODIS Data. Remote Sens. 2017, 9, 1271. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Yang, X.; Niu, J.; Jin, Y.; Xu, B.; Shen, G.; Zhang, W.; Zhao, F.; Zhang, Y. Remote sensing monitoring of green-up dates in the Xilingol grasslands of northern China and their correlations with meteorological factors. Int. J. Remote Sens. 2019, 40, 2190–2211. [Google Scholar] [CrossRef]
- Hu, L.; Fan, W.; Ren, H.; Liu, S.; Cui, Y.; Zhao, P. Spatiotemporal Dynamics in Vegetation GPP over the Great Khingan Mountains Using GLASS Products from 1982 to 2015. Remote Sens. 2018, 10, 488. [Google Scholar] [CrossRef] [Green Version]
- Jönsson, P.; Eklundh, L. Seasonality extraction by function fitting to time-series of satellite sensor data. IEEE Trans. Geosci. Comput. Remote Sens. 2002, 40, 1824–1832. [Google Scholar] [CrossRef]
- Li, P.; He, Z.; He, D.; Xue, D.; Wang, Y.; Cao, S. Fractional vegetation coverage response to climatic factors based on grey relational analysis during the 2000–2017 growing season in Sichuan Province, China. Int. J. Remote Sens. 2019, 41, 1170–1190. [Google Scholar] [CrossRef]
- He, D.; Yi, G.; Zhang, T.; Miao, J.; Li, J.; Bie, X. Temporal and Spatial Characteristics of EVI and Its Response to Climatic Factors in Recent 16 years Based on Grey Relational Analysis in Inner Mongolia Autonomous Region, China. Remote Sens. 2018, 10, 961. [Google Scholar] [CrossRef] [Green Version]
- Gao, B.; Li, J.; Wang, X.S. Impact of frozen soil changes on vegetation phenology in the source region of the Yellow River from 2003 to 2015. Theor. Appl. Climatol. 2020, 141, 1219–1234. [Google Scholar] [CrossRef]
- Hotelling, H. Relations Between Two Sets of Variates. Biometrika 1935, 28, 321–377. [Google Scholar] [CrossRef]
- Ivanova, Y.; Kovalev, A.; Yakubailik, O.; Soukhovolsky, V. The Use of Satellite Information (MODIS/Aqua) for Phenological and Classification Analysis of Plant Communities. Forests 2019, 10, 561. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.; Hou, X.; Peng, D.; Gonsamo, A.; Xu, S. Land surface phenology of China’s temperate ecosystems over 1999–2013: Spatial-temporal patterns, interaction effects, covariation with climate and implications for productivity. Agric. For. Meteorol. 2016, 216, 177–187. [Google Scholar] [CrossRef]
- Peng, D.; Zhang, X.; Wu, C.; Huang, W.; Gonsamo, A.; Huete, A.R.; Didan, K.; Tan, B.; Liu, X.; Zhang, B. Intercomparison and evaluation of spring phenology products using National Phenology Network and AmeriFlux observations in the contiguous United States. Agric. For. Meteorol. 2017, 242, 33–46. [Google Scholar] [CrossRef] [Green Version]
- Abdurahman, M.; Kurban, A.; Ablat, A.; Adilla, R.; Duan, H.; Ablekim, A.; Halik, U. Study on Phenological Characters of Populus euphratica Oliv. in the Lower Reaches of the Tarim River. Arid Zone Res. 2008, 25, 525–530. (In Chinese) [Google Scholar] [CrossRef]
- Zhao, M.; Liu, P.; Zhu, X.; Zhang, K. Respond of Populus euphratica Oliv. Phenology to climate Warming in the Oasis Lower Reaches of Heihe Rvier from 1960 to 2010. Acta Bot. Boreali-Occident. Sin. 2012, 32, 2108–2115. (In Chinese) [Google Scholar]
- Zhang, W.; Liu, P.; Feng, Q.; Wang, T.; Wang, T. The spatiotemporal responses of Populus euphratica to global warming in Chinese oases between 1960 and 2015. J. Geogr. Sci. 2018, 28, 579–594. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Zhang, S.; Ji, Y. Response of Populus euphratica Oliv to Climate Change in Minqin Oasis from 1955 to 2009. Res. Soil Water Conserv. 2015, 22, 123–127. (In Chinese) [Google Scholar] [CrossRef]
- Liu, P.; Zhu, X.; Zhao, M.; Yao, Y.; Chen, L. Response of Annual Growing Season of Populus euphraticato Climate Change in the Jiuquan Oasis during the Period from 1955 to 2010. Arid Zone Res. 2013, 30, 101–108. (In Chinese) [Google Scholar] [CrossRef]
- Liu, P.; Yang, Q. Response of the Annual Growing Season of Populus Euphratica to Climate Change in Dunhuang Oasis from 1955 to 2010. Resour. Sci. 2012, 34, 566–571. (In Chinese) [Google Scholar]
- Zhao, M.; Liu, P.; Zhu, X.; Zhang, K.; Hou, C. Response of Populus Euphratica’s Annual Growth Period to Climate Change in Ejina Banner’s Oasis over the Last 51 Years. Bull. Soil Water Conserv. 2012, 32, 205–209. (In Chinese) [Google Scholar] [CrossRef]
- Wang, Y.; Luo, Y.; Shafeeque, M. Interpretation of vegetation phenology changes using daytime and night-time temperatures across the Yellow River Basin, China. Sci. Total Environ. 2019, 25, 693. [Google Scholar] [CrossRef]
- Liang, S.; Shi, P.; Li, H. Urban spring phenology in the middle temperate zone of China: Dynamics and influence factors. Int. J. Biometeorol. 2016, 60, 531–544. [Google Scholar] [CrossRef]
- Karami, M.; Hansen, B.U.; Westergaard-Nielsen, A.; Abermann, J.; Lund, M.; Schmidt, N.M.; Elberling, B. Vegetation phenology gradients along the west and east coasts of Greenland from 2001 to 2015. Ambio 2017, 46, S94–S105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, C.; Tang, X.; Gu, Q.; Wang, T.; Wei, J.; Song, L.; Ma, M. Climatic anomaly and its impact on vegetation phenology, carbon sequestration and water-use efficiency at a humid temperate forest. J. Hydrol. 2018, 565, 150–159. [Google Scholar] [CrossRef]
- Wu, X.C.; Liu, H.Y. Consistent shifts in spring vegetation green-up date across temperate biomes in China, 1982–2006. Glob. Chang. Biol. 2013, 19, 870–880. [Google Scholar] [CrossRef]
- Li, P.; Peng, C.; Wang, M.; Luo, Y.; Li, M.; Zhang, K.; Zhang, D.; Zhu, Q. Dynamics of vegetation autumn phenology and its response to multiple environmental factors from 1982 to 2012 on Qinghai-Tibetan Plateau in China. Sci. Total Environ. 2018, 637–638, 855. [Google Scholar] [CrossRef]
- Che, M.; Chen, B.; Innes, J.L.; Wang, G.; Dou, X.; Zhou, T.; Zhang, H.; Yan, J.; Xu, G.; Zhao, H. Spatial and temporal variations in the end date of the vegetation growing season throughout the Qinghai–Tibetan Plateau from 1982 to 2011. Agric. For. Meteorol. 2014, 189–190, 81–90. [Google Scholar] [CrossRef]
- Chen, L.; Huang, J.-G.; Ma, Q.; Hanninen, H.; Tremblay, F.; Bergeron, Y. Long-term changes in the impacts of global warming on leaf phenology of four temperate tree species. Glob. Chang. Biol. 2019, 25, 997–1004. [Google Scholar] [CrossRef] [PubMed]
- Asse, D.; Chuine, I.; Vitasse, Y.; Yoccoz, N.G.; Delpierre, N.; Badeau, V.; Delestrade, A.; Randin, C.F. Warmer winters reduce the advance of tree spring phenology induced by warmer springs in the Alps. Agric. For. Meteorol. 2018, 252, 220–230. [Google Scholar] [CrossRef]
- Dreesen, F.E.; Boeck, H.D.; Janssens, I.A.; Nijs, I. Do successive climate extremes weaken the resistance of plant communities? An experimental study using plant assemblages. Biogeosciences 2014, 10, 9149–9177. [Google Scholar] [CrossRef] [Green Version]
- Anderegg, W.R.L.; Plavcova, L.; Anderegg, L.D.L.; Hacke, U.G.; Berry, J.A.; Field, C.B. Drought’s legacy: Multiyear hydraulic deterioration underlies widespread aspen forest die-off and portends increased future risk. Glob. Chang. Biol. 2013, 19, 1188–1196. [Google Scholar] [CrossRef] [PubMed]
- Tao, Z.X.; Wang, H.J.; Liu, Y.C.; Xu, Y.J.; Dai, J.H. Phenological response of different vegetation types to temperature and precipitation variations in northern China during 1982–2012. Int. J. Remote Sens. 2017, 38, 3236–3252. [Google Scholar] [CrossRef]
- Gao, X.; Wang, A.; Zhao, Y.; Zhao, X.; Sun, M.; Du, J.; Gang, C. Study on Water Suitability of Apple Plantations in the Loess Plateau under Climate Change. Int. J. Environ. Res. Public Health 2018, 15, 2504. [Google Scholar] [CrossRef] [Green Version]
- Ying, W.; Chunxia, W.; Jukui, Z.; Chunqing, W. The reproductive strategy in a Chloris virgata population in response to precipitation regimes. R. Soc. Open Sci. 2018, 5, 180607. [Google Scholar] [CrossRef]
- Song, X.L.; Wang, Y.H.; Lv, X.M. Responses of plant biomass, photosynthesis and lipid peroxidation to warming and precipitation change in two dominant species (Stipa grandis and Leymus chinensis) from North China Grasslands. Ecol. Evol. 2016, 6, 1871–1882. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.Y.; Zuo, X.A.; Li, Y.L.; Zhang, T.H.; Zhang, R.; Chen, J.L.; Lv, P.; Zhao, X.Y. Community carbon and water exchange responses to warming and precipitation enhancement in sandy grassland along a restoration gradient. Ecol. Evol. 2019, 9, 10938–10949. [Google Scholar] [CrossRef] [Green Version]
- Xu, G.-Q.; Li, Y.; Xu, H. Seasonal variation in plant hydraulic traits of two co-occurring desert shrubs, Tamarix ramosissima and Haloxylon ammodendron, with different rooting patterns. Ecol. Res. 2011, 26, 1071–1080. [Google Scholar] [CrossRef]
- Xu, H.; Li, Y. Water-use strategy of three central Asian desert shrubs and their responses to rain pulse events. Plant Soil. 2006, 285, 5–17. [Google Scholar] [CrossRef]
- Liao, S.M.; Xue, L.Q.; Dong, Z.C.; Zhu, B.L.; Zhang, K.; Wei, Q.; Fu, F.B.; Wei, G.H. Cumulative ecohydrological response to hydrological processes in arid basins. Ecol. Indicators 2020, 111, 106005. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, Y.; Zhang, Z.; Zhang, H.; Guo, X.; Yu, S.; Du, W.; Huang, F. The Variations of Land Surface Phenology in Northeast China and Its Responses to Climate Change from 1982 to 2013. Remote Sens. 2016, 8, 400. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Wang, D.; Chen, J.; Wang, C.; Shen, M. The mixed pixel effect in land surface phenology: A simulation study. Remote Sens. Environ. 2018, 211, 338–344. [Google Scholar] [CrossRef]
- Yang, Y.T.; Guan, H.D.; Shen, M.G.; Liang, W.; Jiang, L. Changes in autumn vegetation dormancy onset date and the climate controls across temperate ecosystems in China from 1982 to 2010. Glob. Chang. Biol. 2015, 21, 652–665. [Google Scholar] [CrossRef]
- Fu, Y.Y.; He, H.S.; Zhao, J.J.; Larsen, D.R.; Zhang, H.Y.; Sunde, M.G.; Duan, S.W. Climate and Spring Phenology Effects on Autumn Phenology in the Greater Khingan Mountains, Northeastern China. Remote Sens. 2018, 10, 499. [Google Scholar] [CrossRef] [Green Version]
- Ren, P.X.; Liu, Z.L.; Zhou, X.L.; Peng, C.H.; Xiao, J.F.; Wang, S.H.; Li, X.; Li, P. Strong controls of daily minimum temperature on the autumn photosynthetic phenology of subtropical vegetation in China. For. Ecosyst. 2021, 8, 1–21. [Google Scholar] [CrossRef]
- Yuan, M.X.; Wang, L.C.; Lin, A.W.; Liu, Z.J.; Li, Q.J.; Qu, S. Vegetation green up under the influence of daily minimum temperature and urbanization in the Yellow River Basin, China. Ecol. Indicators 2020, 108, 105760. [Google Scholar] [CrossRef]
- Jeong, S.; Ho, C.; Gim, H.; Brown, M.E. Phenology shifts at start vs. end of growing season in temperate vegetation over the Northern Hemisphere for the period 1982–2008. Glob. Chang. Biol. 2011, 17, 2385–2399. [Google Scholar] [CrossRef]
- Du, J.; He, Z.; Piatek, K.B.; Chen, L.; Lin, P.; Zhu, X. Interacting effects of temperature and precipitation on climatic sensitivity of spring vegetation green-up in arid mountains of China. Agric. For. Meteorol. 2019, 269, 71–77. [Google Scholar] [CrossRef]
A1/A2 | SOS | EOS | A1/A2 | SOS | EOS |
---|---|---|---|---|---|
0.10 | 102.20 | 328.65 | 0.26 | 122.45 | 302.46 |
0.12 | 105.40 | 323.77 | 0.28 | 124.92 | 300.67 |
0.14 | 107.62 | 320.65 | 0.30 | 127.21 | 297.57 |
0.16 | 110.10 | 317.28 | 0.32 | 129.38 | 295.99 |
0.18 | 112.89 | 314.21 | 0.34 | 131.51 | 293.70 |
0.20 | 114.78 | 311.23 | 0.36 | 133.67 | 291.51 |
0.22 | 118.16 | 307.79 | 0.38 | 135.70 | 289.43 |
0.24 | 119.10 | 304.98 | 0.40 | 137.83 | 287.31 |
Observation data | 114.98 | 298.14 | ------ | ------ | ------ |
X1 | X2 | Y1 | Y2 | |
---|---|---|---|---|
U1 (%) | 53.14 | 46.86 | 8.97 | 3.94 |
V1 (%) | 21.20 | 8.60 | 22.51 | 21.46 |
Study Area | SOS (Mean) | EOS (Mean) | Method | Data |
---|---|---|---|---|
Lower Tarim River | late April | mid-October | “phenological observation methods” | ground observation data |
Lower Heihe River | late March | late October | accumulated temperature | daily mean temperature data from 1960–2010 |
Ejina Banner Oasis | late March | late October | accumulated temperature | daily mean temperature data from 1960–2010 |
Dunhuang Oasis | late March | late October | accumulated temperature | daily mean temperature data from 1955–2010 |
Jiuquan Oasis | late March | late October | accumulated temperature | daily mean temperature data from 1955–2010 |
Minqin Oasis | late March | late October | accumulated temperature | daily mean temperature data from 1955–2010 |
China’s Oasis | late March | late October | accumulated temperature | daily mean temperature data from 1960–2015 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Feng, J.; Bai, L.; Zhang, J. Populus euphratica Phenology and Its Response to Climate Change in the Upper Tarim River Basin, NW China. Forests 2021, 12, 1315. https://doi.org/10.3390/f12101315
Li H, Feng J, Bai L, Zhang J. Populus euphratica Phenology and Its Response to Climate Change in the Upper Tarim River Basin, NW China. Forests. 2021; 12(10):1315. https://doi.org/10.3390/f12101315
Chicago/Turabian StyleLi, Hualin, Jianzhong Feng, Linyan Bai, and Jianjun Zhang. 2021. "Populus euphratica Phenology and Its Response to Climate Change in the Upper Tarim River Basin, NW China" Forests 12, no. 10: 1315. https://doi.org/10.3390/f12101315
APA StyleLi, H., Feng, J., Bai, L., & Zhang, J. (2021). Populus euphratica Phenology and Its Response to Climate Change in the Upper Tarim River Basin, NW China. Forests, 12(10), 1315. https://doi.org/10.3390/f12101315