Quantifying Land Cover Changes in a Mediterranean Environment Using Landsat TM and Support Vector Machines
Abstract
:1. Introduction
2. Experimental Set-Up
2.1. Study Area
2.2. Datasets
2.3. Satellite Imagery
3. Support Vector Machines (SVMs)
4. Methodology
4.1. Landsat TM Pre-Processing
4.2. Classification
4.3. In Situ Research and Classification
4.4. SVMs Implementation
4.5. Accuracy Assessment
5. Results
5.1. Analysis of Band Ratio and Classification
5.2. Estimation of Classification Accuracy
5.3. Change Detection and Confusion Matrix Analysis
6. Discussion
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Elatawneh, A.; Kalaitzidis, C.; Petropoulos, G.P.; Schneider, T. Evaluation of Diverse Classification Approaches for Land Use/Cover Mapping in a Mediterranean Region Utilizing Hyperion Data. Int. J. Digit. Earth 2012, 7, 1–23. [Google Scholar] [CrossRef]
- Pandey, P.C.; Koutsias, N.; Petropoulos, G.P.; Srivastava, P.K.; Dor, E.B. Land Use/Land Cover in view of Earth Observation: Data Sources, Input Dimensions and Classifiers—A Review of the State of the Art. Geocarto Int. 2019, 1–32. [Google Scholar] [CrossRef]
- Petropoulos, G.P.; Partsinevelos, P.; Mitraka, Z. Change Detection of Surface Mining Activity and Reclamation Based on a Machine Learning Approach of Multi-temporal Landsat TM Imagery. Geocarto Int. 2013, 28, 323–342. [Google Scholar] [CrossRef]
- Chatziantoniou, A.; Petropoulos, G.P.; Psomiadis, E. Co-Orbital Sentinel 1 and 2 for LULC Mapping with Emphasis on Wetlands in a Mediterranean Setting Based on Machine Learning. Remote Sens. 2017, 9, 1259. [Google Scholar] [CrossRef] [Green Version]
- Dawson, R.; Petropoulos, G.P.; Toulios, L.; Srivastava, P.K. Mapping and Monitoring of the Land Use/Cover Changes in the Wider Area of ltanos, Crete, Using Very High Resolution EO Imagery with Specific Interest in Archaeological Sites. Environ. Dev. Sustain. 2019. [Google Scholar] [CrossRef]
- Mas, J.F. Monitoring land-cover changes: A comparison of change detection techniques. Int. J. Remote Sens. 1999, 20, 139–152. [Google Scholar] [CrossRef]
- Triantakonstantis, D.P.; Kollias, V.J.; Kalivas, D.P. Forest Re-growth since 1945 in the Dadia Forest Nature Reserve in Northern Greece. New For. 2006, 32, 51–69. [Google Scholar] [CrossRef]
- Coppin, P.; Jonckheere, I.; Nackaerts, K.; Muys, B.; Lambin, E. Digital change detection methods in ecosystem monitoring: A review. Int. J. Remote Sens. 2004, 25, 1565–1596. [Google Scholar] [CrossRef]
- Hansen, M.C.; Loveland, T.R. A review of large area monitoring of land cover change using Landsat data. Remote Sens. Environ. 2012, 122, 66–74. [Google Scholar] [CrossRef]
- Markogianni, V.; Dimitriou, E.; Kalivas, D.P. Land-use and vegetation change detection in Plastira artificial lake catchment (Greece) by using remote-sensing and GIS techniques. Int. J. Remote Sens. 2013, 34, 1265–1281. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E. Continuous change detection and classification of land cover using all available Landsat data. Remote Sens. Environ. 2014, 144, 152–171. [Google Scholar] [CrossRef] [Green Version]
- Angelici, G.; Brynt, N.; Friendman, S. Techniques for land use change detection using Landsat imagery. In Proceedings of the 43rd Annual Meeting of the American Society of Photogrammetry and Joint Symposium on Land Data Systems, Falls Church, VA, USA, 27 February–5 March 1977; pp. 217–228. [Google Scholar]
- Allum, J.A.E.; Dreisinger, R. Remote sensing of vegetation change near Inco’s Sudbury mining complexes. Int. J. Remote Sens. 1987, 8, 399–416. [Google Scholar] [CrossRef]
- Li, X.; Yeh, A.G.O. Principal component analysis of stacked multitemporal images for the monitoring of rapid urban expansion in the Pearl River Delta. Int. J. Remote Sens. 1998, 19, 1501–1518. [Google Scholar] [CrossRef]
- Zha, Y.; Gao, J.; Ni, S. Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. Int. J. Remote Sens. 2003, 24, 583–594. [Google Scholar] [CrossRef]
- Townsend, P.A.; Helmers, D.P.; Kingdon, C.C.; McNeil, B.E.; De Beurs, K.M.; Eshleman, K.N. Changes in the extent of surface mining and reclamation in the Central Appalachians detected using a 1976–2006 Landsat time series. Remote Sens. Environ. 2009, 113, 62–72. [Google Scholar] [CrossRef]
- Lu, D.; Weng, Q. A survey of image classification methods and techniques for improving classification performance. Int. J. Remote Sens. 2007, 28, 823–870. [Google Scholar] [CrossRef]
- Lizarazo, I.; Elsner, P. Fuzzy segmentation for object-based image classification. Int. J. Remote Sens. 2009, 30, 1643–1649. [Google Scholar] [CrossRef]
- Vapnik, V. The Nature of Statistical Learning Theory; Springer: New York, NY, USA, 1995. [Google Scholar]
- Cristianini, N.; Shawe-Taylor, J. An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Mountrakis, G.; Im, J.; Ogole, C. Support vector machines in remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2011, 66, 247–259. [Google Scholar] [CrossRef]
- Huang, C.; Song, K.; Kim, S.; Townshend, J.R.G.; Davis, P.; Masek, J.G.; Goward, S.N. Use of a dark object concept and support vector machines to automate forest cover change analysis. Remote Sens. Environ. 2008, 112, 970–985. [Google Scholar] [CrossRef]
- Carrao, H.; Goncalves, P.; Caetano, M. Contribution of multispectral and multitemporal information from MODIS images to land cover classification. Remote Sens. Environ. 2008, 112, 986–997. [Google Scholar] [CrossRef]
- Knorn, J.; Rabe, A.; Radeloff, V.C.; Kuemmerle, T.; Kozak, J.; Hostert, P. Land cover mapping of large areas using chain classification of neighboring Landsat satellite images. Remote Sens. Environ. 2009, 113, 957–964. [Google Scholar] [CrossRef]
- Kavzoglu, T.; Colkesen, I. A kernel functions analysis for support vector machines for land cover classification. Int. J. Appl. Earth Obs. Geoinf. 2009, 11, 352–359. [Google Scholar] [CrossRef]
- Karteris, M.A. The utility of digital Thematic Mapper data for natural resources classification. Int. J. Remote Sens. 1990, 11, 1589–1598. [Google Scholar] [CrossRef]
- Fuller, R.M.; Groom, G.B.; Jones, A.R. Land cover map of Great Britain. An automated classification of Landsat Thematic Mapper data. Photogramm. Eng. Remote Sens. 1994, 60, 553–562. [Google Scholar]
- Vogelmann, J.E.; Sohl, T.L.; Campell, P.V.; Shaw, D.M. Regional Land Cover Characterization Using Landsat Thematic Mapper Data and Ancillary Data Sources. Environ. Monit. Assess. 1998, 51, 415–428. [Google Scholar] [CrossRef]
- Muller, S.V.; Racoviteanu, A.E.; Walker, D.A. Landsat MSS-derived land-cover map of northern Alaska: Extrapolation methods and a comparison with photo-interpreted and AVHRR-derived maps. Int. J. Remote Sens. 1999, 20, 2921–2946. [Google Scholar] [CrossRef]
- Williams, D.L.; Nelson, R.F. Use of Remotely Sensed Data for Assessing Forest Stand Conditions in the Eastern U.S. IEEE Trans. Geosci. Remote Sens. 1986, 24, 130–138. [Google Scholar] [CrossRef]
- DiGirolamo, P.A. A Comparison of Change Detection Methods in an Urban Environment Using LANDSAT TM and ETM+ Satellite Imagery: A Multi-Temporal, Multi-Spectral Analysis of Gwinnett County, GA 1991–2000. Master’s Thesis, Department of Anthropology at Digital Archive at GSU, Georgia State Universit, Atlanta, GA, USA, 2006. [Google Scholar]
- Mancino, G.; Nolè, A.; Ripullone, F.; Ferrara, A. Landsat TM imagery and NDVI differencing to detect vegetation change: Assessing natural forest expansion in Basilicata, southern Italy. iFor. Biogeosci. For. 2012, 7, 75–84. [Google Scholar] [CrossRef] [Green Version]
- Abd, H.A.; Al-Najjar, H.A. Maximum Likelihood for Land-Use/LandCover Mapping and Change Detection Using Landsat Satellite Images: A Case Study “South Of Johor”. Int. J. Comput. Eng. Res. 2013, 3, 26–33. [Google Scholar]
- Gaitanis, A.; Kalogeropoulos, K.; Detsis, V.; Chalkias, C. Monitoring 60 Years of Land Cover Change in the Marathon Area, Greece. Land 2015, 4, 337–354. [Google Scholar] [CrossRef] [Green Version]
- Tzotsos, A.; Argialas, D. Support Vector Machine Classification for Object-Based Image Analysis. In Object-Based Image Analysis—Spatial Concepts for Knowledge-Driven Remote Sensing Applications; Blaschke, T., Lang, S., Hay, G., Eds.; Springer: Berlin, Germany, 2008; pp. 663–679. [Google Scholar]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Arenas-Castro, S.; Fernández-Haeger, J.; Jordano-Barbudo, D. Evaluation and Comparison of QuickBird and ADS40-SH52 Multispectral Imagery for Mapping Iberian Wild Pear Trees (Pyrus bourgaeana, Decne) in a Mediterranean Mixed Forest. Forests 2014, 5, 1304–1330. [Google Scholar] [CrossRef]
- Iglesias, C.; Santos, A.J.A.; Martínez, J.; Pereira, H.; Anjos, O. Influence of Heartwood on Wood Density and Pulp Properties Explained by Machine Learning Techniques. Forests 2017, 8, 20. [Google Scholar] [CrossRef] [Green Version]
- Ramezan, C.A.; Warner, T.A.; Maxwell, A.E. Evaluation of Sampling and Cross-Validation Tuning Strategies for Regional-Scale Machine Learning Classification. Remote Sens. 2019, 11, 185. [Google Scholar] [CrossRef] [Green Version]
- Xie, Z.; Chen, Y.; Lu, D.; Li, G.; Chen, E. Classification of Land Cover, Forest, and Tree Species Classes with ZiYuan-3 Multispectral and Stereo Data. Remote Sens. 2019, 11, 164. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Zhou, Z.; Zhao, Q.; Han, Z.; Wang, P.; Xu, J.; Dian, Y. Evaluation of Different Algorithms for Estimating the Growing Stock Volume of Pinus massoniana Plantations Using Spectral and Spatial Information from a SPOT6 Image. Forests 2020, 11, 540. [Google Scholar] [CrossRef]
- Galgamuwa, G.A.P.; Wang, J.; Barden, C.J. Expansion of Eastern Redcedar (Juniperus virginiana L.) into the Deciduous Woodlands within the Forest—Prairie Ecotone of Kansas. Forests 2020, 11, 154. [Google Scholar] [CrossRef] [Green Version]
- Keuchel, J.; Naumann, S.; Heiler, M.; Siegmund, A. Automatic land cover analysis for Tenerife by supervised classification using remotely sensed data. Remote Sens. Environ. 2003, 86, 530–541. [Google Scholar] [CrossRef]
- Li, D.C.; Liu, C.W. A class possibility based kernel to increase classification accuracy for small data sets using support vector machines. Expert Syst. Appl. 2010, 37, 3104–3110. [Google Scholar] [CrossRef]
- Foody, G.M.; Mathur, A. A Relative Evaluation of Multiclass Image Classification by Support Vector Machines. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1335–1343. [Google Scholar] [CrossRef] [Green Version]
- Foody, G.M.; Mathur, A. Toward intelligent training of supervised image classifications: Directing training data acquisition for SVM classification. Remote Sens. Environ. 2004, 93, 107–117. [Google Scholar] [CrossRef]
- Piper, J. Variability and bias in experimentally measured classifier error rates. Pattern Recognit. Lett. 1992, 13, 685–692. [Google Scholar] [CrossRef]
- Mather, P.M. Computer-Processing of Remotely-Sensed Images, 3rd ed.; Wiley: Chichester, UK, 2004. [Google Scholar]
- Van Niel, T.G.; McVicar, T.R.; Datt, B. On the relationship between training sample size and data dimensionality of broadbandmulti-temporal classification. Remote Sens. Environ. 2005, 98, 468–480. [Google Scholar] [CrossRef]
- Pal, M.; Mather, P.M. Some issues in the classification of DAIS hyperspectral data. Int. J. Remote Sens. 2006, 27, 2895–2916. [Google Scholar] [CrossRef]
- Anderson, J.R.; Hardy, E.E.; Roach, J.T.; Witmer, R.E. A Land Use and Land Cover Classification for Use with Remote Sensing Data. USGS Professional Paper 964; Government Printing Office: Washington, DC, USA, 1976. [Google Scholar]
- Campell, B.J. Introduction to Remote Sensing, 3rd ed.; Virginia Polytechnic Institute and State University, Ed.; The Guilford Publications Press: New York, NY, USA; London, UK, 2002. [Google Scholar]
- Kuemmerle, T.; Chaskovskyy, O.; Knorn, J.; Radeloff, V.C.; Kruhlov, I. Forest cover change and illiegal logging in the Ukranian Carpathians in the transition period from 1988 to 2007. Remote Sens. Environ. 2009, 113, 1194–1207. [Google Scholar] [CrossRef]
- Srivastava, P.K.; Han, D.; Rico-Ramirez, M.A.; Bray, M.; Islam, T. Selection of classification techniques for land use/land cover change investigation. Adv. Space Res. 2012, 50, 1250–1265. [Google Scholar] [CrossRef]
- Congalton, R.; Green, K. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices; CRC: Boca Raton, FL, USA, 1999; p. 137. [Google Scholar]
- Inzana, J.; Kusky, T.; Higgs, G.; Tucker, R. Supervised classifications of Landsat TM band ratio images and Landsat TM band ratio image with radar for geological interpretations of central Madagascar. J. Afr. Earth Sci. 2003, 37, 59–72. [Google Scholar] [CrossRef]
- Bahadur, K.C. Improving Landsat and IRS Image Classification: Evaluation of Unsupervised and Supervised Classification through Band Ratios and DEM in a Mountainous Landscape in Nepal. Remote Sens. 2009, 1, 1257–1272. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.K.; Srivastava, P.K.; Gupta, M.; Thakur, J.K.; Mukherjee, S. Appraisal of land use/land cover of mangrove forest ecosystem using support vector machine. Environ. Earth Sci. 2013, 71, 2245–2255. [Google Scholar] [CrossRef]
- Sukawattanavijit, C.; Chen, J. Fusion of RADARSAT-2 imagery with LANDSAT-8 multispectral data for improving land cover classification performance using SVM. In Proceedings of the IEEE 5th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), Singapore, 1–4 September 2015; pp. 567–572. [Google Scholar]
- Shao, Y.; Lunetta, R.S. Comparison of support vector machine, neural network, and CART algorithms for the land-cover classification using limited training data points. ISPRS J. Photogramm. Remote Sens. 2012, 70, 78–87. [Google Scholar] [CrossRef]
- Colson, D.; Petropoulos, G.P.; Ferentinos, K.P. Exploring the Potential of Sentinels-1 & 2 of the Copernicus Mission in Support of Rapid and Cost-effective Wildfire Assessment. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 262–276. [Google Scholar]
- Brown, A.R.; Petropoulos, G.P.; Ferentinos, K.P. Appraisal of the Sentinel-1 & 2 use in a large-scale wildfire assessment: A case study from Portugal’s fires of 2017. Appl. Geogr. 2018, 100, 78–89. [Google Scholar]
- Evans, A.; Lamine, S.; Kalivas, D.P.; Petropoulos, G.P. Exploring the potential of EO data and GIS for ecosystem health modeling in response to wildfire: A case study in central Greece. Environ. Eng. Manag. J. 2018, 17, 2165–2178. [Google Scholar]
- Srivastava, P.K.; Petropoulos, G.P.; Gupta, M.; Singh, S.K.; Islam, T.; Loka, D. Deriving forest fire probability maps from the fusion of visible/infrared satellite data and geospatial data mining. Model. Earth Syst. Environ. 2019, 5, 627–643. [Google Scholar] [CrossRef]
- Amos, C.; Petropoulos, G.P.; Ferentinos, K.P. Determining the use of Sentinel-2A MSI for wildfire burning & severity detection. Int. J. Remote Sens. 2019, 40, 905–930. [Google Scholar]
Type | Details | Source | Reference Year(s) |
---|---|---|---|
LandsatTM satellite images | Raster | United States Geological Survey (U.S.G.S.) | 1993, 2001, 2010 |
DEM | Raster | ASTER GDEM | |
Aerial photographs | Raster | Hellenic Military Geographical Service | 1991, 2001, 2005 |
Orthophoto maps | Raster | Ministry of Agriculture | 1997 |
Corine Land Cover | Vector | NRC/LC | 2000 |
Mandra–Idyllia Mun. Boundaries | Vector | Hellenic Statistical Authority | 2011 |
Satellite images | Raster | Google Earth | 2010, 2002 |
Large Scale Othophotomaps (LSO) maps | Tables | Greek Cadastre | 2008 |
Classification Classes | Classes Information | Description |
---|---|---|
1. Aleppo Pine Forest | 1.1 Mixed and Pure mature clusters | Pure forests of Aleppo Pine that can yield forest products, as well as mixed stands with a dominant species of Aleppo pines. |
1.2 Natural Renaissance (neophyte) | Dense pure clusters of Aleppo Pine in a new plantation, of existing mature forests or in a mixture with evergreen broadleaves. | |
2. Cephalonian Fir Forest | Pure forest of endemic Cephalonian Fir and mixed clusters with Cephalonian fir as the dominant species. | |
3. Forest | Sparse bushy forest areas of coniferous-broadleaf or mixed formations on degraded soils, native forest vegetation on fields and semi-natural areas. | |
4. Grassland | Areas with dry leafy vegetation on stony soils of uncultivated cultivation, as well as mixtures thereof with sporadic woody species. | |
5. Agricultural Areas | 5.1 Cultivated areas | Cultivated land, barren fields, land with plowing samples (stone piles, embankments), arable land, meadows. |
5.2 Fallow | Abandoned fields with permanent or temporary abandonment of agricultural holdings. | |
6. Burnt Areas | Forest and rural areas after a recent fire. | |
7. Bare soil | Bare and unexploited areas with the revelation of the mother soil material, natural rocks, inactive quarries. | |
8. Artificial Areas | Areas with continuous or discontinuous urban fabric, industrialized areas, photovoltaic parks, road networks with asphalt coating, transport networks, waste disposal sites, etc. | |
9. Water | Sea, lakes and rivers. |
Variable | Usual Separation of Spectral Bands | LandsatTM Spectral Band Ratios | Spectral Bands Landsat TM |
---|---|---|---|
1 | b1 | ||
2 | b2 | ||
3 | b3 | ||
4 | b4 | ||
5 | b5 | ||
6 | b7 | ||
7 | Forests/Agricultural areas | b2/b3 | |
8 | Soils with iron oxides | b3/b1 | |
9 | Vegetation categories | b3/b2 | |
10 | Bare soil/urban areas | b3/b4 | |
11 | Artificial areas | b3/b5 | |
12 | Vegetation distribution/density | b4/b3 | |
13 | Forests/arable land | b7/b2 | |
14 | Clay soils | b5/b7 |
Class | 1993 | 2001 | 2010 | |||
---|---|---|---|---|---|---|
Cover (%) | Area (Km2) | Cover (%) | Area (Km2) | Cover (%) | Area (Km2) | |
Burnt Areas | 1.32 | 5.64 | - | - | 1.05 | 4.50 |
Agricultural Areas | 20.22 | 86.32 | 21.6 | 92.24 | 24.84 | 106.08 |
Grassland | 10.73 | 45.81 | 9.27 | 39.59 | 4.52 | 19.29 |
Cephalonian Fir Forest | 0.9 | 3.82 | 0.87 | 3.73 | 1.25 | 5.33 |
Bare soil | 2.09 | 8.91 | 0.68 | 2.89 | 0.58 | 2.47 |
Aleppo Pine Forest | 19.84 | 84.72 | 19.34 | 82.59 | 24.69 | 105.41 |
Forest mixed | 41.67 | 177.89 | 45.35 | 193.72 | 40.16 | 171.47 |
Artificial Areas | 3.24 | 13.93 | 2.89 | 12.36 | 2.91 | 12.43 |
Total | 100 | 427.04 | 100 | 427.12 | 100 | 426.98 |
Ground Truth (Percent) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Class | Agra | Regenareation | Water | Urban | Brushland | Pine | Bare | Fir | Genist | Crops | Burned | Total |
Agra | 97.73 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 2.87 |
Regenareation | 0.00 | 98.75 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 5.27 |
Water | 0.00 | 0.00 | 100.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 35.82 |
Urban | 0.00 | 0.00 | 0.00 | 90.63 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 3.87 |
Brushland | 0.00 | 0.00 | 0.00 | 0.00 | 98.20 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 10.94 |
Pine | 0.00 | 0.00 | 0.00 | 0.00 | 0.60 | 100.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 5.20 |
Bare | 0.00 | 0.00 | 0.00 | 3.13 | 0.00 | 0.00 | 96.92 | 0.00 | 0.00 | 0.00 | 0.00 | 4.34 |
Fir | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 100.00 | 0.00 | 0.00 | 0.00 | 3.67 |
Genist | 0.00 | 0.00 | 0.00 | 1.56 | 0.00 | 0.00 | 3.08 | 0.00 | 100.00 | 0.66 | 0.00 | 4.67 |
Crops | 0.00 | 1.25 | 0.00 | 4.69 | 1.20 | 0.00 | 0.00 | 0.00 | 0.00 | 99.34 | 0.00 | 20.55 |
Burned | 2.27 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 100.00 | 2.80 |
Total | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fragou, S.; Kalogeropoulos, K.; Stathopoulos, N.; Louka, P.; Srivastava, P.K.; Karpouzas, S.; P. Kalivas, D.; P. Petropoulos, G. Quantifying Land Cover Changes in a Mediterranean Environment Using Landsat TM and Support Vector Machines. Forests 2020, 11, 750. https://doi.org/10.3390/f11070750
Fragou S, Kalogeropoulos K, Stathopoulos N, Louka P, Srivastava PK, Karpouzas S, P. Kalivas D, P. Petropoulos G. Quantifying Land Cover Changes in a Mediterranean Environment Using Landsat TM and Support Vector Machines. Forests. 2020; 11(7):750. https://doi.org/10.3390/f11070750
Chicago/Turabian StyleFragou, Sotiria, Kleomenis Kalogeropoulos, Nikolaos Stathopoulos, Panagiota Louka, Prashant K. Srivastava, Sotiris Karpouzas, Dionissios P. Kalivas, and George P. Petropoulos. 2020. "Quantifying Land Cover Changes in a Mediterranean Environment Using Landsat TM and Support Vector Machines" Forests 11, no. 7: 750. https://doi.org/10.3390/f11070750
APA StyleFragou, S., Kalogeropoulos, K., Stathopoulos, N., Louka, P., Srivastava, P. K., Karpouzas, S., P. Kalivas, D., & P. Petropoulos, G. (2020). Quantifying Land Cover Changes in a Mediterranean Environment Using Landsat TM and Support Vector Machines. Forests, 11(7), 750. https://doi.org/10.3390/f11070750