Shrub Biomass Estimates in Former Burnt Areas Using Sentinel 2 Images Processing and Classification
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area Characteristics and Sampling Plots Location
2.2. Data Sources
2.2.1. Using GIS in the Project
2.2.2. The Processing and Classification of Sentinel 2 Images
- -
- Agriculture
- -
- Bare soil
- -
- Deciduous
- -
- Burnt areas
- -
- Coniferous
- -
- Grass
- -
- Rocky areas with shrubs
- -
- Shrubs
- -
- Urban areas
- -
- Water
3. Results
3.1. Landcover Characterization
3.2. Allometric Model for Shrub Biomass Estimation
3.3. Shrub Biomass Estimation Using NDVI Image Processing
4. Discussion
4.1. Sentinel 2 Images
4.2. Shrubland Characterization
4.3. Allometric Equation for Shrub Biomass Estimation
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
- Sentinel-2S2A_20160828T113040_20160828T164718_A006183_T29TPG_N02_04_01
- Sentinel-2S2A_20150804T113226_20160319T010337_A000606_T29TPN_N02_04_01
- Sentinel-2L1C_T29TPG_A010759_20170714T112114
- Sentinel-2L1C_T29TNG_A010759_20170714T112114
- Sentinel-2L1C_T29TPG_A015621_20180619T112602
- Sentinel-2L1C_T29TNG_A006784_20180624T112452
- Sentinel-2L1C_T29TNG_A021341_20190724T112448
- Sentinel-2L1C_T29TPG_A021484_20190803T112140
References
- Caetano, M.; Igreja, C.; Marcelino, F.; Costa, H. Estatísticas e dinâmicas territoriais multiescala de Portugal Continental 1995–2007–2010 com base na Carta de Uso e Ocupação do Solo (COS). Direcção Geral do Território 2017, 149. [Google Scholar]
- Oliveira, S.L.J.; Pereira, J.M.C.; Carreiras, J.M.B. Fire frequency analysis in Portugal (1975–2005), using Landsat-based burnt area maps. Int. J. Wildl. Fire 2011, 21, 48–60. [Google Scholar] [CrossRef]
- Marques, S.; Borges, J.G.; Garcia-Gonzalo, J.; Moreira, F.; Carreiras, J.M.B.; Oliveira, M.M.; Cantarinha, A.; Botequim, B.; Pereira, J.M.C. Characterization of wildfires in Portugal. Eur. J. For. Res. 2011, 130, 775–784. [Google Scholar] [CrossRef]
- Parente, J.; Pereira, M.G.; Amraoui, M.; Tedim, F. Science of the Total Environment Negligent and intentional fires in Portugal: Spatial distribution characterization. Sci. Total Environ. 2018, 624, 424–437. [Google Scholar] [CrossRef] [PubMed]
- Pereira, M.G.; Aranha, J.; Amraoui, M. Land cover fire proneness in Europe. For. Syst. 2014, 23, 598–610. [Google Scholar] [CrossRef]
- Ferreira Leite, F.; Bento Gonçalves, A.; Vieira, A. The recurrence interval of forest fires in Cabeço da Vaca (Cabreira Mountain-northwest of Portugal). Environ. Res. 2011, 111, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Ursino, N.; Romano, N. Wild forest fire regime following land abandonment in the Mediterranean region. Geophys. Res. Lett. 2014, 41, 8359–8368. [Google Scholar] [CrossRef]
- Cerdá, A.; Doerr, S.H. Influence of vegetation recovery on soil hydrology and erodibility following fire: An 11-year investigation. Int. J. Wildl. Fire 2005, 14, 423–437. [Google Scholar] [CrossRef]
- Pereira da Silva, T.; Cardoso Pereira, J.M.; Paúl, P.J.C.; Teresa Santos, M.N.; José Vasconcelos, M.P.; de Investigação, B.; Catedrático, P.; Auxiliar, I. Estimativa de Emissões Atmosféricas Originadas por Fogos Rurais em Portugal Estimate of Atmospheric Emissions Originated by Wildfires in Portugal. Silva Lusit. 2006, 14, 239–263. [Google Scholar]
- Viana, H. Modelling and Mapping Aboveground Biomass for energy Usage and Carbon Storage Assessment in Mediterranean Ecosystems. Ph.D. Thesis, Universidade de Trás os Montes e Alto Douro, Vila Real, Portugal, 2012. [Google Scholar]
- Aranha, J.; Calvão, A.R.; Lopes, D.; Viana, H. Quantificação Da Biomassa Consumida Nos Últimos 20 Anos De Fogos Florestais No Norte Portugal. Info 2011, 26, 44–49. [Google Scholar]
- Kazanis, D.; Xanthopoulos, G.; Arianoutsou, M. Understorey fuel load estimation along two post-fire chronosequences of Pinus halepensis Mill. forests in Central Greece. J. For. Res. 2012, 17, 105–109. [Google Scholar] [CrossRef]
- DL 76/2017-5.ª alteração ao DL 124-2006. Diário da República n.º 158/2017, Série I de 2017-08-17. DR. J. Portuguese Rep. 2017, 4734–4762. [Google Scholar]
- Viana, H.; Fernandes, P.; Rocha, R.; Lopes, D.; Aranha, J. Alometria, Dinâmicas da Biomassa e do Carbono Fixado em Algumas Espécies Arbustivas de Portugal. 6.º Congr. Florest. Nac. 2009, 244–252. [Google Scholar]
- Gratani, L.; Varone, L.; Ricotta, C.; Catoni, R. Mediterranean shrublands carbon sequestration: Environmental and economic benefits. Mitig. Adapt. Strateg. Glob. Chang. 2013, 18, 1167–1182. [Google Scholar] [CrossRef]
- Cairns, M.A.; Lajtha, K.; Beedlow, P.A. Dissolved carbon and nitrogen losses from forests of the Oregon Cascades over a successional gradient. Plant Soil 2009, 318, 185–196. [Google Scholar] [CrossRef]
- Zuazo, V.H.D.; Pleguezuelo, C.R.R. Soil-erosion and runoff prevention by plant covers: A review. Agron. Sustain. Dev. 2008, 28, 65–86. [Google Scholar] [CrossRef]
- Imeson, A. Desertification, Land Degradation and Sustainability; John Wiley & Sons: West Sussex, UK, 2012; ISBN 1119978483. [Google Scholar]
- Bochet, E.; Poesen, J.; Rubio, J.L. Runoff and soil loss under individual plants of a semi-arid Mediterranean shrubland: Influence of plant morphology and rainfall intensity. Earth Surf. Process. Landforms 2006, 31, 536–549. [Google Scholar] [CrossRef]
- Mangas, J.G.; Lozano, J.; Cabezas-Díaz, S.; Virgós, E. The priority value of scrubland habitats for carnivore conservation in Mediterranean ecosystems. Biodivers. Conserv. 2008, 17, 43–51. [Google Scholar] [CrossRef]
- Sandifer, P.A.; Sutton-Grier, A.E.; Ward, B.P. Exploring connections among nature, biodiversity, ecosystem services, and human health and well-being: Opportunities to enhance health and biodiversity conservation. Ecosyst. Serv. 2015, 12, 1–15. [Google Scholar] [CrossRef]
- Helming, K.; Diehl, K.; Geneletti, D.; Wiggering, H. Mainstreaming ecosystem services in European policy impact assessment. Environ. Impact Assess. Rev. 2013, 40, 82–87. [Google Scholar] [CrossRef]
- Viana, H.; Cohen, W.B.; Lopes, D.; Aranha, J. Assessment of forest biomass for use as energy. GIS-based analysis of geographical availability and locations of wood-fired power plants in Portugal. Appl. Energy 2010, 87, 2551–2560. [Google Scholar] [CrossRef]
- Quinta-Nova, L.; Fernandez, P.; Pedro, N. GIS-Based Suitability Model for Assessment of Forest Biomass Energy Potential in a Region of Portugal. IOP Conf. Ser. Earth Environ. Sci. 2017, 95, 042059. [Google Scholar] [CrossRef]
- Cohen, W.B.; Maiersperger, T.K.; Spies, T.A.; Oetter, D.R. Modelling forest cover attributes as continuous variables in a regional context with Thematic Mapper data. Int. J. Remote Sens. 2001, 22, 2279–2310. [Google Scholar] [CrossRef]
- Botequim, B.; Zubizarreta-Gerendiain, A.; Garcia-Gonzalo, J.; Silva, A.; Marques, S.; Fernandes, P.M.; Pereira, J.M.C.; Tomé, M. A model of shrub biomass accumulation as a tool to support management of portuguese forests. iForest 2014, 8, 114–125. [Google Scholar] [CrossRef]
- Nguyen, H.K.L.; Nguyen, B.N. Mapping biomass and carbon stock of forest by remote sensing and GIS technology at Bach Ma National Park, Thua Thien Hue province. J. Viet. Env. 2016, 8, 80–87. [Google Scholar]
- Deng, S.; Shi, Y.; Jin, Y.; Wang, L. A GIS-based approach for quantifying and mapping carbon sink and stock values of forest ecosystem: A case study. Energy Proc. 2011, 5, 1535–1545. [Google Scholar] [CrossRef]
- Wijaya, A.; Kusnadi, S.; Gloaguen, R.; Heilmeier, H. Improved strategy for estimating stem volume and forest biomass using moderate resolution remote sensing data and GIS. J. For. Res. 2010, 21, 1–12. [Google Scholar] [CrossRef]
- Roy, P.S.; Ravan, S.A. Biomass estimation using satellite remote sensing data—An investigation on possible approaches for natural forest. J. Biosci. 1996, 21, 535–561. [Google Scholar] [CrossRef]
- Chen, W.; Zhao, J.; Cao, C.; Tian, H. Shrub biomass estimation in semi-arid sandland ecosystem based on remote sensing technology. Glob. Ecol. Conserv. 2018, 16, e00479. [Google Scholar] [CrossRef]
- Norovsuren, B.; Tseveen, B.; Batomunkuev, V. Estimation for Forest Biomass and Coverage Using Satellite Data in Small Scale Area, Mongolia. IOP Conf. Ser. Eart Environ. Sci. 2019, 320, 012019. [Google Scholar] [CrossRef]
- Filella, I.; Peñuelas, J.; Llorens, L.; Estiarte, M. Reflectance assessment of seasonal and annual changes in biomass and CO2 uptake of a Mediterranean shrubland submitted to experimental warming and drought. Remote Sens. Environ. 2004, 90, 308–318. [Google Scholar] [CrossRef]
- Xiao, J.; Moody, A. A comparison of methods for estimating fractional green vegetation cover within a desert-to-upland transition zone in central New Mexico, USA. Remote Sens. Environ. 2005, 98, 237–250. [Google Scholar] [CrossRef]
- ICNF. Available online: http://www2.icnf.pt/portal/florestas/dfci/inc (accessed on 8 January 2020).
- EFFIS. Available online: https://effis.jrc.ec.europa.eu/applications/data-request-form (accessed on 8 January 2020).
- Copernicus. Available online: https://scihub.copernicus.eu/dhus/#/home (accessed on 10 January 2020).
- Glovis. Available online: https://glovis.usgs.gov/app (accessed on 10 January 2020).
- Chavez, P.S. An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data An Improved Dark-Object Subtraction Technique for Atmospheric Scattering Correction of Multispectral Data. Remote Sens. Environ. 1988, 24, 459–479. [Google Scholar] [CrossRef]
- Teillet, P.M.; Staenz, K.; William, D.J. Effects of spectral, spatial, and radiometric characteristics on remote sensing vegetation indices of forested regions. Remote Sens. Environ. 1997, 61, 139–149. [Google Scholar] [CrossRef]
- Louis, J.; Debaecker, V.; Pflug, B.; Main-knorn, M.; Bieniarz, J. Sentinel-2 Sen2cor: L2a Processor for Users. In Proceedings of the Living Planet Symposium, Prague, Czech Republic, 9–13 May 2016; Volume 2016, pp. 9–13. [Google Scholar]
- Sola, I.; García-Martín, A.; Sandonís-Pozo, L.; Álvarez-Mozos, J.; Pérez-Cabello, F.; González-Audícana, M.; Llovería, R. Montorio Assessment of atmospheric correction methods for Sentinel-2 images in Mediterranean landscapes. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 63–76. [Google Scholar] [CrossRef]
- Sentinel Online. Available online: https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi/processing-levels/level-2 (accessed on 9 January 2020).
- Meddens, A.J.H.; Kolden, C.A.; Lutz, J.A.; Abatzoglou, J.T.; Hudak, A.T. Spatiotemporal patterns of unburned areas within fire perimeters in the northwestern United States from 1984 to 2014. Ecosphere 2018, 9, 1–16. [Google Scholar] [CrossRef]
- Tedim, F.; Royé, D.; Bouillon, C.; Fernando, J.M.C.; Leone, V. Understanding unburned patches patterns in extreme wildfire events: A new approach. In Proceedings of the Advances in forest fire research—VIII International Conference on Forest Fire Research, Coimbra, Portugal, 9–16 November 2018; Viegas, D.X., Ed.; pp. 700–715. [Google Scholar] [CrossRef]
- Picos, J.; Alonso, L.; Bastos, G.; Armesto, J. Event-based integrated assessment of environmental variables and wildfire severity through Sentinel-2 Data. Forests 2019, 10, 1021. [Google Scholar] [CrossRef]
- Iqbal, K.; Hussain, A.; Negi, A.K. An overview of Biomass Estimation methods. Res. J. Soc. Sci. Manag. 2014, 4, 42–57. [Google Scholar]
- Banti, M.A.; Kiachidis, K.; Gemitzi, A. Estimation of spatio-temporal vegetation trends in different land use environments across Greece. J. Land Use Sci. 2019, 14, 21–36. [Google Scholar] [CrossRef]
- Díaz-Delgado, R.; Lloret, F.; Pons, X. Influence of fire severity on plant regeneration by means of remote sensing imagery. Int. J. Remote Sens. 2003, 24, 1751–1763. [Google Scholar] [CrossRef]
Allometric Model | R2 (Adj) | Ref |
---|---|---|
Trees, shrubs and herbaceous y = 73,709.9241 − 48,420.44 χ1 + 67,242.43 χ2 where, y = Biomass (kg), χ1 = NDVI value, χ2 = NDVI MIR index value | 0.70 | [30] |
Trees, shrubs and herbaceous Log10 y = 3.7163 − 0.01078 χ1 + 0.007065 χ2 where, y = Biomass (kg), χ1 = Brightness value, χ2 = Wetness value | 0.66 | [31] |
Shrubs y = 46:678 χ1 + 7:929 χ2 + 32:565 where, y = Biomass (kg), χ1 = Brightness value, χ2 = RVI (ratio vegetation index) | 0.70 | [31] |
Total biomass AGB prediction = 3.35 + 3.13 VV + 0.21 VH + 1.53 NDVI where: VV—the backscatter coefficients for a specific polarization; VH—the backscatter coefficients for a specific polarization; NDVI—normalized difference vegetation index. | 0.66 | [32] |
Shrubs Biomass y = 0.18363 + 0.85669 NDVI where, y = Biomass (Mg), NDVI—normalized difference vegetation index | 0.74 | [33] |
Fractional green vegetation cover (fc) fc = 0.114 + 1.284 NDVI (R2 = 0.89) | 0.89 | [34] |
Sample Class | N | Pa (%) | Ua (%) | Ce (%) | Oe (%) |
---|---|---|---|---|---|
Agriculture | 77 | 46 | 80 | 54 | 20 |
Bare soil | 35 | 80 | 48 | 20 | 52 |
Deciduous | 31 | 87 | 68 | 13 | 32 |
Burnt areas | 16 | 100 | 89 | 0 | 11 |
Coniferous | 161 | 96 | 96 | 4 | 4 |
Grass | 13 | 69 | 69 | 31 | 31 |
Rocky and shrubs | 46 | 83 | 64 | 17 | 36 |
Shrubs | 67 | 84 | 92 | 16 | 8 |
Urban areas | 31 | 48 | 65 | 52 | 35 |
Water | 9 | 89 | 100 | 11 | 0 |
2016 | 2017 | 2018 | ||||
---|---|---|---|---|---|---|
NW | NE | NW | NE | NW | NE | |
NDVI | ||||||
Count | 28 | 30 | 21 | 12 | 23 | 8 |
Minimum | 0.388 | 0.378 | 0.280 | 0.136 | 0.048 | 0.120 |
Maximum | 0.700 | 0.700 | 0.696 | 0.655 | 0.694 | 0.688 |
Average | 0.590 | 0.580 | 0.552 | 0.345 | 0.521 | 0.390 |
Standard deviation | 0.090 | 0.100 | 0.144 | 0.193 | 0.219 | 0.259 |
Age | ||||||
Count | 28 | 30 | 21 | 12 | 23 | 8 |
Minimum | 5 | 5 | 3 | 3 | 1 | 2 |
Maximum | 15 | 15 | 15 | 11 | 15 | 14 |
Average | 8.7 | 8.7 | 8.6 | 4.8 | 7.8 | 5.9 |
Standard deviation | 3.4 | 3.4 | 4.1 | 2.6 | 4.2 | 4.5 |
Shrub biomass | ||||||
Count | 28 | 30 | 21 | 12 | 23 | 8 |
Minimum | 3.49 | 4.80 | 1.73 | 0.46 | 0.19 | 0.67 |
Maximum | 34.48 | 37.60 | 34.48 | 27.90 | 30.82 | 37.60 |
Average | 17.04 | 18.76 | 16.46 | 6.50 | 15.97 | 12.77 |
Standard deviation | 8.24 | 10.37 | 11.62 | 8.69 | 10.26 | 14.58 |
NDVI (Dimension Less) | Shrubs Biomass (Mg ha−1) | |
---|---|---|
Count | 110 | 110 |
Minimum | 0.048 | 0.186 |
Maximum | 0.700 | 37.596 |
Average | 0.525 | 15.494 |
Standard deviation | 0.179 | 10.781 |
Standard error | 0.342 | 0.696 |
Median | 0.596 | 15.291 |
Date | Allometric Equation | R2 (Adj) | RMSE (Mg/ha) |
---|---|---|---|
2016 | 66.383 NDVI 2.6073 | 0.894 | 4.08 |
2017 | 68.476 NDVI 2.6053 | 0.876 | 4.22 |
2018 | 58.139 NDVI 1.9541 | 0.855 | 4.95 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aranha, J.; Enes, T.; Calvão, A.; Viana, H. Shrub Biomass Estimates in Former Burnt Areas Using Sentinel 2 Images Processing and Classification. Forests 2020, 11, 555. https://doi.org/10.3390/f11050555
Aranha J, Enes T, Calvão A, Viana H. Shrub Biomass Estimates in Former Burnt Areas Using Sentinel 2 Images Processing and Classification. Forests. 2020; 11(5):555. https://doi.org/10.3390/f11050555
Chicago/Turabian StyleAranha, José, Teresa Enes, Ana Calvão, and Hélder Viana. 2020. "Shrub Biomass Estimates in Former Burnt Areas Using Sentinel 2 Images Processing and Classification" Forests 11, no. 5: 555. https://doi.org/10.3390/f11050555
APA StyleAranha, J., Enes, T., Calvão, A., & Viana, H. (2020). Shrub Biomass Estimates in Former Burnt Areas Using Sentinel 2 Images Processing and Classification. Forests, 11(5), 555. https://doi.org/10.3390/f11050555