Homogenization of Temperate Mixed Deciduous Forests in Białowieża Forest: Similar Communities Are Becoming More Similar
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sampling
2.3. Data Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Nadeau, C.P.; Urban, M.C.; Bridle, J.R. Climates Past, Present, and Yet-to-Come Shape Climate Change Vulnerabilities. TREE 2017, 32, 786–800. [Google Scholar] [CrossRef] [PubMed]
- Hisano, M.; Searle, E.B.; Chen, H.Y.H. Biodiversity as a solution to mitigate climate change impacts on the functioning of forest ecosystems. Biol. Rev. 2018, 93, 439–456. [Google Scholar] [CrossRef] [PubMed]
- Peñuelas, J.; Lloret, F.; Montoya, R. Severe Drought Effects on Mediterranean Woody Flora in Spain. For. Sci. 2001, 47, 214–218. [Google Scholar]
- Vittoz, P.; Randin, C.; Dutoit, A.; Bonnet, F.; Hegg, O. Low impact of climate change on subalpine grasslands in the Swiss Northern Alps. Glob. Chang. Biol. 2009, 15, 209–220. [Google Scholar] [CrossRef]
- Becker-Scarpitta, A.; Vissault, S.; Vellend, M. Four decades of plant community change along a continental gradient of warming. Glob. Chang. Biol. 2018, 25, 1629–1641. [Google Scholar] [CrossRef] [PubMed]
- Diekmann, M.; Dupré, C. Acidification and eutrophication of deciduous forests in northwestern Germany demonstrated by indicator species analysis. J. Veg. Sci. 1997, 8, 855–864. [Google Scholar] [CrossRef]
- Bernhardt-Römermann, M.; Baeten, L.; Craven, D.; De Frenne, P.; Hédl, R.; Lenoir, J.; Bert, D.; Brunet, J.; Chudomelová, M.; Decocq, G.; et al. Drivers of temporal changes in temperate forest plant diversity vary across spatial scales. Glob. Chang. Biol. 2015, 21, 3726–3737. [Google Scholar] [CrossRef]
- Becker, T.; Spanka, J.; Schröder, L.; Leuschner, C. Forty years of vegetation change in former coppice-with-standards woodlands as a result of management change and N deposition. Appl. Veg. Sci. 2017, 20, 304–313. [Google Scholar] [CrossRef]
- Hejda, M.; Pyšek, P.; Jarošík, V. Impact of invasive plants on the species richness, diversity and composition of invaded communities. J. Ecol. 2009, 97, 393–403. [Google Scholar] [CrossRef]
- Vilà, M.; Espinar, J.L.; Hejda, M.; Hulme, P.E.; Jarošík, V.; Maron, J.L.; Pergl, J.; Schaffner, U.; Sun, Y.; Pyšek, P. Ecological impacts of invasive alien plants: A meta-analysis of their effects on species, communities and ecosystems. Ecol. Lett. 2011, 14, 702–708. [Google Scholar] [CrossRef]
- Slabejová, D.; Bacigál, T.; Hegedüšová, K.; Májeková, J.; Medvecká, J.; Mikulová, K.; Šibíková, M.; Škodová, I.; Zaliberová, M.; Jarolímek, I. Comparison of the understory vegetation of native forests and adjacent Robinia pseudoacacia plantations in the Carpathian-Pannonian region. For. Ecol. Manag. 2019, 439, 28–40. [Google Scholar] [CrossRef]
- Mikulová, K.; Jarolímek, I.; Bacigál, T.; Hegedüšová, K.; Májeková, J.; Medvecká, J.; Slabejová, D.; Šibík, J.; Škodová, I.; Zaliberová, M.; et al. The Effect of Non-Native Black Pine (Pinus nigra J. F. Arnold) Plantations on Environmental Conditions and Undergrowth Diversity. Forests 2019, 10, 548. [Google Scholar] [CrossRef]
- McGill, B.J.; Dornelas, M.; Gotelli, N.J.; Magurran, A.E. Fifteen forms of biodiversity trend in the Anthropocene. TREE 2015, 30, 104–113. [Google Scholar] [CrossRef] [PubMed]
- Heijmans, M.M.P.D.; Mauquoy, D.; van Geel, B.; Berendse, F. Long-term effects of climate change on vegetation and carbon dynamics in peat bogs. J. Veg. Sci. 2008, 19, 307–320. [Google Scholar] [CrossRef]
- Hughes, L. Biological consequences of global warming: Is the signal already apparent? TREE 2000, 15, 56–61. [Google Scholar] [CrossRef]
- Ross, L.C.; Woodin, S.J.; Hester, A.J.; Thompson, D.B.A.; Birks, H.J.B. Biotic homogenization of upland vegetation: Patterns and drivers at multiple spatial scales over five decades. J. Veg. Sci. 2012, 23, 755–770. [Google Scholar] [CrossRef]
- Olden, J.D.; Comte, L.; Giam, X. The Homogocene: A research prospectus for the study of biotic homogenisation. NeoBiota 2018, 37, 23–36. [Google Scholar] [CrossRef]
- Olden, J.D.; Rooney, T.P. On defining and quantifying biotic homogenization. Glob. Ecol. Biogeog. 2006, 15, 113–120. [Google Scholar] [CrossRef]
- van der Plas, F.; Manning, P.; Soliveres, S.; Allan, E.; Scherer-Lorenzen, M.; Verheyen, K.; Wirth, C.; Zavala, M.A.; Ampoorter, E.; Baeten, L.; et al. Biotic homogenization can decrease landscape-scale forest multifunctionality. Proc. Natl. Acad. Sci. USA 2016, 113, 3557–3562. [Google Scholar] [CrossRef]
- Šibíková, M.; Jarolímek, I.; Hegedüšová, K.; Májeková, J.; Mikulová, K.; Slabejová, D.; Škodová, I.; Zaliberová, M.; Medvecká, J. Effect of planting alien Robinia pseudoacacia trees on homogenization of Central European forest vegetation. Sci. Total Environ. 2019, 687, 1164–1175. [Google Scholar] [CrossRef]
- Bühler, C.; Roth, T. Spread of common species results in local-scale floristic homogenization in grassland of Switzerland. Div. Distr. 2011, 17, 1089–1098. [Google Scholar] [CrossRef]
- Qian, H.; Ricklefs, R.E. The role of exotic species in homogenizing the North American flora. Ecol. Lett. 2006, 9, 1293–1298. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, M.W.; Thorne, J.H.; Viers, J.H. Biotic homogenization of the California flora in urban and urbanizing regions. Biol. Cons. 2006, 127, 282–291. [Google Scholar] [CrossRef]
- Gong, C.F.; Chen, J.; Yu, S. Biotic homogenization and differentiation of the flora in artificial and near-natural habitats across urban green spaces. Land. Urb. Plan. 2013, 120, 158–169. [Google Scholar] [CrossRef]
- Stotz, G.C.; Gianoli, E.; Cahill, J.F., Jr. Biotic homogenization within and across eight widely distributed grasslands following invasion by Bromus inermis. Ecology 2019, 100, e02717. [Google Scholar] [CrossRef] [PubMed]
- Lôbo, D.; Leão, T.; Melo, F.P.L.; Santos, A.M.M.; Tabarelli, M. Forest fragmentation drives Atlantic forest of northeastern Brazil to biotic homogenization. Div. Distr. 2011, 17, 287–296. [Google Scholar] [CrossRef]
- McCune, J.L.; Vellend, M.; Fridley, J. Gains in native species promote biotic homogenization over four decades in a human-dominated landscape. J. Ecol. 2013, 101, 1542–1551. [Google Scholar] [CrossRef]
- Olden, J.D.; Poff, N.L.; Douglas, M.R.; Douglas, M.E.; Fausch, K.D. Ecological and evolutionary consequences of biotic homogenization. TREE 2004, 19, 18–24. [Google Scholar] [CrossRef]
- Czerepko, J. Długookresowe zmiany roślinności w zespole sosnowego boru bagiennego Vaccinio uliginosi-Pinetum Kleist 1929. Leśn. Pr. Bad. 2011, 72, 21–29. [Google Scholar]
- Malzahn, E. Monitoring zagrożeń i zanieczyszczenia środowiska leśnego Puszczy Białowieskiej. Kosmos 2002, 51, 435–441. [Google Scholar]
- Boczoń, A.; Kowalska, A.; Ksepko, M.; Sokołowski, K. Climate Warming and Drought in the Bialowieza Forest from 1950–2015 and Their Impact on the Dieback of Norway Spruce Stands. Water 2018, 10, 1502. [Google Scholar] [CrossRef]
- Pierzgalski, E.; Boczoń, A.; Tyszka, J. Zmienność opadów i położenia wód gruntowych w Białowieskim Parku Narodowym. Kosmos 2002, 51, 415–425. [Google Scholar]
- Adamowski, W. The flora of vascular plants. In Białowieża National Park. Know It—Understand It—Protect It; Okołów, C., Karaś, M., Bołbot, A., Eds.; Białowieski Park Narodowy: Białowieża, Poland, 2009; pp. 59–72. [Google Scholar]
- Jaroszewicz, B.; Cholewińska, O.; Gutowski, J.M.; Zimny, M.; Samojlik, T.; Latałowa, M. Białowieża Forest—A Relic of the High Naturalness of European Forests. Forests 2019, 10, 849. [Google Scholar] [CrossRef]
- Latałowa, M.; Zimny, M.; Pędziszewska, A.; Kupryjanowicz, M. Postglacjalna historia puszczy Białowieskiej—Roślinność, klimat i działalność człowieka. Parki Nar. Rez. Przyr. 2016, 35, 3–49. [Google Scholar]
- Sabatini, F.; Sabatini, M.; Burrascano, S.; Keeton, W.S.; Levers, C.; Lindner, M.; Pötzschner, F.; Verkerk, P.J.; Bauhus, J.; Buchwald, E.; et al. Where are Europe’s last primary forests? Div. Distr. 2018, 24, 1426–1439. [Google Scholar] [CrossRef]
- Sokołowski, A.W. Lasy Puszczy Białowieskiej; Centrum Informacyjne Lasów Państwowych: Warszawa, Poland, 2004. [Google Scholar]
- Wesołowski, T.; Gutowski, J.M.; Jaroszewicz, B.; Kowalczyk, R.; Niedziałkowski, K.; Rok, J.; Wójcik, J.M. Park Narodowy Puszczy Białowieskiej—Ochrona Przyrody i Rozwój Lokalnych Społeczności. Article 2. 2018, pp. 1–28. Available online: www.forestbiology.org (accessed on 7 April 2020).
- Więcko, E. Puszcza Białowieska [The Białowieża Forest]; PWN: Warszawa, Poland, 1984. [Google Scholar]
- Faliński, J.B. Vegetation Dynamics in Temperate Lowland Primeval Forests: Ecological Studies in Białowieża Forest; Dr. W. Junk Publishers: Dordrecht, The Netherlands, 1986. [Google Scholar]
- Prusinkiewicz, Z.; Michalczuk, C. Gleby Białowieskiego Parku Narodowego (z mapą 1:20 000). Phytocoenosis 1998, 10 (Suppl. 10), 1–40. [Google Scholar]
- Świtoniak, M.; Kabała, C.; Charzyński, P. Proposal of English equivalents for the soil taxa names in the Polish Soils Classification. Soil Sci. Ann. 2016, 67, 103–116. [Google Scholar] [CrossRef][Green Version]
- Matuszkiewicz, W. Zespoły leśne Białowieskiego Parku Narodowego. Die Waldassoziationen von Białowieża-Nationalpark. Ann. UMCS 1952, (Suppl. 6), 1–218. [Google Scholar]
- Kapfer, J.; Hédl, R.; Jurasinski, G.; Kopecký, M.; Schei, F.H.; Grytnes, J.-A. Resurveying historical vegetation data—Opportunities and challenges. Appl. Veg. Sci. 2017, 20, 164–171. [Google Scholar] [CrossRef]
- Braun-Blanquet, J. Pflanzensoziologie; Biologische Studienbücher: Berlin, Germany, 1928. [Google Scholar]
- Verheyen, K.; Baeten, L.; De Frenne, P.; Bernhardt-Römermann, M.; Brunet, J.; Cornelis, J.; Decocq, G.; Dierschke, H.; Eriksson, O.; Hédl, R.; et al. Driving factors behind the eutrophication signal in understorey plant communities of deciduous temperate forests. J. Ecol. 2012, 100, 352–365. [Google Scholar] [CrossRef]
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016. [Google Scholar]
- Oksanen, F.J.; Blanchet, G.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; et al. vegan: Community Ecology Package, R Package Version 2.5-1; Available online: https://www.researchgate.net/publication/324693493_vegan_Community_Ecology_Package_Ordination_methods_diversity_analysis_and_other_functions_for_community_and_vegetation_ecologists_Version_25-1_URL_httpsCRANR-projectorgpackagevegan (accessed on 12 May 2020).
- De Caceres, M.; Legendre, P. Associations between Species and Groups of Sites: Indices and Statistical Inference. Ecology 2009, 90. [Google Scholar] [CrossRef] [PubMed]
- Van Der Wal, R.; Pearce, I.; Brooker, R.; Scott, D.; Welch, D.; Woodin, S. Interplay between nitrogen deposition and grazing causes habitat degradation. Ecol. Lett. 2003, 6, 141–146. [Google Scholar] [CrossRef]
- Jacobs, B.F.; Kingston, J.D.; Jacobs, L.L. The Origin of Grass-Dominated Ecosystems. Ann. Miss. Bot. Gard. 1999, 86, 590–643. [Google Scholar] [CrossRef]
- Gross, N.; Suding, K.N.; Lavorel, S. Leaf dry matter content and lateral spread predict response to land use change for six subalpine grassland species. J. Veg. Sci. 2007, 18, 289–300. [Google Scholar] [CrossRef]
- Jaroszewicz, B.; Pirożnikow, E.; Sondej, I. Endozoochory by the guild of ungulates in Europe’s primeval forest. Forest Eco. Manag. 2013, 305, 21–28. [Google Scholar] [CrossRef]
- Jaroszewicz, B.; Pirożnikow, E. Dung longevity influences the fate of endozoochorically dispersed seeds in forest ecosystems. Botany 2011, 89, 779–785. [Google Scholar] [CrossRef]
- Bobbink, R.; Hicks, K.; Galloway, J.; Spranger, T.; Alkemade, R.; Ashmore, M.; Bustamante, M.; Cinderby, S.; Davidson, E.; Dentener, F.; et al. Global assessment of nitrogen deposition effects on terrestrial plant diversity: A synthesis. Ecol. Appl. 2010, 20, 30–59. [Google Scholar] [CrossRef]
- Wang, Z.; Fan, Z.; Zhao, Q.; Wang, M.; Ran, J.; Huang, H.; Niklas, K.J. Global Data Analysis Shows That Soil Nutrient Levels Dominate Foliar Nutrient Resorption Efficiency in Herbaceous Species. Front. Plant. Sci. 2018, 9, 1431. [Google Scholar] [CrossRef]
- Xing, A.; Xu, L.; Shen, H.; Du, E.; Liu, X.; Fang, Y. Long term effect of nitrogen addition on understory community in a Chinese boreal forest. Sci. Tot. Env. 2019, 646, 989–995. [Google Scholar] [CrossRef]
- Jędrzejewska, B.; Jędrzejewski, W.; Bunevich, A.N.; Miłkowski, L.; Krasiński, Z.A. Factors shaping population densities and increase rates of ungulates in Białowieża Primeval Forest (Poland and Belarus) in the 19th and 20th centuries. Acta Theriol. 1997, 42, 399–451. [Google Scholar] [CrossRef]
- Holland, E.A.; Braswell, B.H.; Sulzman, J.; Lamarque, J.-F. Nitrogen deposition onto the United States and Western Europe: Synthesis of observations and models. Ecol. Appl. 2005, 15, 38–57. [Google Scholar] [CrossRef]
- Gilliam, F.S. Response of the herbaceous layer of forest ecosystems to excess nitrogen deposition. J. Ecol. 2006, 94, 1176–1191. [Google Scholar] [CrossRef]
- Keith, S.A.; Newton, A.C.; Morecroft, M.D.; Bealey, C.E.; Bullock, J.M. Taxonomic homogenization of woodland plant communities over 70 years. Proc. R. Soc. B 2009, 276, 3539–3544. [Google Scholar] [CrossRef] [PubMed]
- Łubek, A.; Kukwa, M.; Jaroszewicz, B.; Czortek, P. Changes in the epiphytic lichen biota of Białowieża Primeval Forest are not explained by climate warming. Sci. Tot. Env. 2018, 643, 468–478. [Google Scholar] [CrossRef] [PubMed]
- Landuyt, D.; Maes, S.; Depauw, L.; Ampoorter, E.; Blondeel, H.; Perring, M.; Brūmelis, G.; Brunet, J.; Decocq, G.; van Ouden, J.; et al. Drivers of aboveground understorey biomass and nutrient stocks in temperate deciduous forests. J. Ecol. 2019. [Google Scholar] [CrossRef]
- Maes, S.L.; Blondeel, H.; Perring, M.P.; Depauw, L.; Brümelis, G.; Brunet, J.; Decocq, G.; den Ouden, J.; Härdtle, W.; Hédl, R.; et al. Litter quality, land-use history, and nitrogen deposition effects on topsoil conditions across European temperate forests. Forest Ecol. Manag. 2019, 433, 405–418. [Google Scholar] [CrossRef]
- Toreti, A.; Belward, A.; Perez-Dominguez, I.; Naumann, G.; Luterbacher, J.; Cronie, O.; Seguini, L.; Manfron, G.; Lopez-Lozano, R.; Baruth, B.; et al. The exceptional 2018 European water seesaw calls for action on adaptation. Earth’s Future 2019, 7, 652–663. [Google Scholar] [CrossRef]
- Raunkiaer, C. The Life Forms of Plants and Statistical Plant Geography; Clarendon Press: Oxford, UK, 1934. [Google Scholar]
- Morrison, L.W. Observer error in vegetation surveys: A review. J. Plant. Ecol. 2016, 9, 367–379. [Google Scholar] [CrossRef]
- Sparks, T.H.; Jaroszewicz, B.; Krawczyk, M.; Tryjanowski, P. Advancing phenology in Europe’s last lowland primeval forest: Non-linear temperature response. Clim. Res. 2009, 39, 221–226. [Google Scholar] [CrossRef]
- 69. Shukla, P.R.; Skea, J.; Calvo Buendia, E.; Masson-Delmotte, V.; Pörtner, H.-O.; Roberts, D.C.; Zhai, P.; Slade, R.; Connors, S.; van Diemen, R.; et al. (Eds.) Climate Change and Land: An IPCC special report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems. IPCC. 2019. Available online: https://www.ipcc.ch/report/SRCCL/ (accessed on 7 April 2020).
- Zellweger, F.; Coomes, D.; Lenoir, J.; Depauw, L.; Maes, S.L.; Wulf, M.; Kirby, K.J.; Brunet, J.; Kopecký, M.; Máliš, F.; et al. Seasonal drivers of understorey temperature buffering in temperate deciduous forests across Europe. Glob. Ecol. Biogeog. 2019, 28, 1774–1786. [Google Scholar] [CrossRef]
- Matuszkiewicz, J.M.; Kozłowska, A.B. Przegląd fitosocjologiczny zbiorowisk leśnych Polski—Ciepłolubne dąbrowy. Fragm. Flor. Geobot. 1991, 36, 203–256. [Google Scholar]
Factor | Querceto-Carpinetum CaricetosumPilosae | Querceto-Carpinetum Typicum | Querceto-Carpinetum Stachyetosum Silvaticae | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean Diff | SD | t | p-Value | Mean Diff | SD | t | p-Value | Mean Diff | SD | t | p-Value | |
Tree_cov (%) | 11.6 | 13.44 | 4.32 | 0.0002 | 13.896 | 19.19 | 4.8455 | <0.0001 | 11.13 | 13.84 | 2.728 | 0.013 |
Shrub_cov (%) | 19.52 | 31.39 | 3.11 | 0.005 | 26.6 | 24.71 | 5.7981 | <0.0001 | 22.09 | 31.05 | 3.3369 | 0.0031 |
Understorey_cov (%) | 11.8 | 24.32 | 2.43 | 0.02 | 11.37 | 22.32 | 2.7459 | 0.01042 | 19.95 | 22.66 | 4.13 | 0.0004 |
EV_L | 0.26 | 0.43 | 3.05 | 0.0055 | −0.0760 | 0.45 | −0.9033 | 0.374 | −0.03 | 0.42 | −0.33 | 0.743 |
EV_T | 0.184 | 0.23 | 3.93 | 0.0006 | 0.0837 | 0.23 | 1.9360 | 0.063 | 0.081 | 0.18 | 2.0855 | 0.049 |
EV_M | −0.3147 | 0.41 | −3.817 | 0.00083 | −0.1787 | 0.33 | −2.9322 | 0.006638 | −0.1521 | 0.33 | 2.1392 | 0.0443 |
EV_N | −0.46 | 0.49 | −4.75 | <0.0001 | −0.3551 | 0.66 | −2.8777 | 0.00758 | −0.2236 | 0.44 | −2.3918 | 0.0262 |
EV_pH | 0.16 | 0.50 | 1.59 | 0.1243 | 0.2413 | 0.55 | 2.3677 | 0.02504 | 0.2975 | 0.44 | 3.1779 | 0.0045 |
SCAI | −0.301 | 0.42 | −3.59 | 0.00146 | −0.4829 | 0.403 | −6.45 | <0.0001 | −0.5139 | 0.76 | −3.1849 | 0.0044 |
Species richness | 0.96 | 10.26 | 0.47 | 0.644 | 1.5517 | 8.65 | 0.96601 | 0.3423 | 5.364 | 10.93 | 2.3025 | 0.035 |
Shannon–Wiener Index | 0.49 | 0.30 | 8.22 | <0.0001 | 0.656 | 0.29 | 12.204 | <0.0001 | 0.6685 | 0.32 | 9.83 | <0.0001 |
1949 | 2018 | ||||
---|---|---|---|---|---|
Querceto-Carpinetum Stachyetosum Silvaticae | |||||
Indicator Species | Stat-Value | p-Value | Indicator Species | Stat-Value | p-Value |
Stellaria nemorum | 0.728 | 0.001 | Geranium robertianum | 0.608 | 0.035 |
Impatiens noli tangere | 0.701 | 0.001 | Fraxinus excelsior | 0.566 | 0.039 |
Urtica dioica | 0.689 | 0.001 | Equisetum sylvaticum | 0.520 | 0.004 |
Stachys sylvatica | 0.685 | 0.001 | Lathyrus vernus | 0.489 | 0.029 |
Circea lutetiana | 0.658 | 0.001 | Rumex obtusifolius | 0.428 | 0.021 |
Fraxinus excelsior | 0.641 | 0.001 | Euonymus europaea | 0.386 | 0.035 |
Dryopteris carthusiana | 0.636 | 0.006 | Crepis paludosa | 0.369 | 0.023 |
Geranium robertianum | 0.625 | 0.007 | - | - | - |
Chrysosplenium alternifolium | 0.622 | 0.001 | - | - | - |
Asarum europaeum | 0.616 | 0.003 | - | - | - |
Geum urbanum | 0.615 | 0.003 | - | - | - |
Festuca gigantea | 0.599 | 0.006 | - | - | - |
Glechoma hederacea | 0.564 | 0.002 | - | - | - |
Carex remota | 0.542 | 0.001 | - | - | - |
Brachypodium sylvaticum | 0.527 | 0.002 | - | - | - |
Circea alpina | 0.502 | 0.002 | - | - | - |
Lapsana communis | 0.500 | 0.003 | - | - | - |
Deschampsia caespitosa | 0.495 | 0.014 | - | - | - |
Ranunculus repens | 0.477 | 0.004 | - | - | - |
Equisetum sylvaticum | 0.433 | 0.024 | - | - | - |
Mercurialis perennis | 0.426 | 0.010 | - | - | - |
Ranunculus cassubicus | 0.389 | 0.043 | - | - | - |
Crepis paludosa | 0.369 | 0.019 | - | - | - |
Elymus europaeus | 0.369 | 0.029 | - | - | - |
Padus avium | 0.369 | 0.015 | - | - | - |
Querceto-Carpinetum caricetosum pilosae | |||||
Species | Stat-Value | p-Value | Species | Stat-Value | p-Value |
Carex pilosa | 0.948 | 0.001 | Carex pilosa | 0.715 | 0.002 |
Anemone nemorosa | 0.654 | 0.019 | Polygonatum multiflorum | 0.563 | 0.032 |
Maiantheum bifolium | 0.618 | 0.004 | - | - | - |
Sorbus aucuparia | 0.545 | 0.014 | - | - | - |
Carex digitata | 0.518 | 0.048 | - | - | - |
Calamagrostis arundinacea | 0.506 | 0.003 | - | - | - |
Phegopteris connectilis | 0.489 | 0.006 | - | - | - |
Luzula pilosa | 0.435 | 0.010 | - | - | - |
Plathantera bifolia | 0.346 | 0.038 | - | - | - |
Querceto-Carpinetum typicum | |||||
Species | Stat-Value | p-Value | Species | Stat-Value | p-Value |
Galium odoratum | 0.738 | 0.019 | - | - | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cholewińska, O.; Adamowski, W.; Jaroszewicz, B. Homogenization of Temperate Mixed Deciduous Forests in Białowieża Forest: Similar Communities Are Becoming More Similar. Forests 2020, 11, 545. https://doi.org/10.3390/f11050545
Cholewińska O, Adamowski W, Jaroszewicz B. Homogenization of Temperate Mixed Deciduous Forests in Białowieża Forest: Similar Communities Are Becoming More Similar. Forests. 2020; 11(5):545. https://doi.org/10.3390/f11050545
Chicago/Turabian StyleCholewińska, Olga, Wojciech Adamowski, and Bogdan Jaroszewicz. 2020. "Homogenization of Temperate Mixed Deciduous Forests in Białowieża Forest: Similar Communities Are Becoming More Similar" Forests 11, no. 5: 545. https://doi.org/10.3390/f11050545
APA StyleCholewińska, O., Adamowski, W., & Jaroszewicz, B. (2020). Homogenization of Temperate Mixed Deciduous Forests in Białowieża Forest: Similar Communities Are Becoming More Similar. Forests, 11(5), 545. https://doi.org/10.3390/f11050545