Spring Moisture Availability is the Major Limitation for Pine Forest Productivity in Southwest China
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling and Chronology Development
2.3. Climate Data
2.4. Statistic Analysis
2.4.1. Long-Term Growth
2.4.2. Growth–Climate Relationship
3. Results
3.1. Chronology Statistics
3.2. Long-Term Growth Trend
3.3. Critical Climate Periods for Pine Tree Growth
4. Discussion
4.1. Assessing Long-Term Growth Trends of Pine Trees
4.2. Spring Soil Moisture Availability is the Main Limiting Factor for Pine Tree Growth
4.3. Spring Soil Moisture Availability is More of a Limitation for the Growth of P. armandii than P. yunnanensis in Baoshan
4.4. Spring Soil Moisture Availability is More of a Limitation on the Growth of P. yunnanensis in Lijiang than in Baoshan
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ashton, M.S.; Tyrrell, M.L.; Spalding, D.; Gentry, B. Managing Forest Carbon in a Changing Climate; Springer: New York, NY, USA, 2012. [Google Scholar]
- Cap, J.; Liu, H.Y.; Zhao, B.; Li, Z.S.; Drew, D.M.; Zhao, X.H. Species-specific and elevation-differentiated responses of tree growth to rapid warming in a mixed forest lead to a continuous growth enhancement in semi-humid Northeast Asia. For. Ecol. Manag. 2019, 448, 76–84. [Google Scholar] [CrossRef]
- Piao, S.L.; Fang, J.Y.; Ciais, P.; Peylin, P.; Huang, Y.; Sitch, S.; Wang, T. The carbon balance of terrestrial ecosystems in China. Nature 2009, 458, 1009–1013. [Google Scholar] [CrossRef] [PubMed]
- Dai, E.F.; Wu, Z.; Ge, Q.S.; Xi, W.M.; Wang, X.F. Predicting the responses of forest distribution and aboveground biomass to climate change under RCP scenarios in southern China. Glob. Chang. Biol. 2016, 22, 3642–3661. [Google Scholar] [CrossRef]
- Salzer, M.W.; Hughes, M.K.; Bunn, A.G.; Kipfmueller, K.F. Recent unprecedented tree-ring growth in bristlecone pine at the highest elevations and possible causes. Proc. Natl. Acad. Sci. USA 2009, 106, 20348–20353. [Google Scholar] [CrossRef] [PubMed]
- Allen, C.D.; Breshears, D.D.; McDowell, N.G. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 2015, 6, 55. [Google Scholar] [CrossRef]
- Babst, F.; Poulter, B.; Bodesheim, P.; Mahecha, M.D.; Frank, D.C. Improved tree-ring archives will support earth-system sciencex. Nat. Ecol. Evol. 2017, 1. [Google Scholar] [CrossRef]
- Bi, Y.F.; Xu, J.C.; Yang, J.C.; Li, Z.S.; Gebrekirstos, A.; Liang, E.Y.; Zhang, S.B.; Yang, Y.; Yang, Y.P.; Yang, X.F. Ring-widths of the above tree-line shrub Rhododendron reveal the change of minimum winter temperature over the past 211 years in Southwestern China. Clim. Dyn. 2017, 48, 3919–3933. [Google Scholar] [CrossRef]
- Bi, Y.F.; Xu, J.C.; Gebrekirstos, A.; Guo, L.; Zhao, M.X.; Liang, E.Y.; Yang, X.F. Assessing drought variability since 1650 AD from tree-rings on the Jade Dragon Snow Mountain, southwest China. Int. J. Climatol. 2015, 35, 4057–4065. [Google Scholar] [CrossRef]
- Zhang, Y.; Yin, D.C.; Sun, M.; Wang, H.; Tian, K.; Xiao, D.R.; Zhang, W.G. Variations of Climate-Growth Response of Major Conifers at Upper Distributional Limits in Shika Snow Mountain, Northwestern Yunnan Plateau, China. Forests 2017, 8, 377. [Google Scholar] [CrossRef]
- Fan, Z.X.; Braeuning, A.; Cao, K.F.; Zhu, S.D. Growth-climate responses of high-elevation conifers in the central Hengduan Mountains, southwestern China. For. Ecol. Manag. 2009, 258, 306–313. [Google Scholar] [CrossRef]
- Li, Q.; Zhu, J.H.; Fan, L.H.; Feng, Y.; Xiao, W.F. Prediction of Forest Carbon Storage and Timber Yield Potential in Southwestern China. Ecol. Environ. Sci. 2018, 27, 416–423. [Google Scholar]
- Wu, J.; Zhang, P.W.; Zha, J.L.; Zhao, D.M.; Lu, W.X. Evaluating the long-term changes in temperature over the low-latitude plateau in China using a statistical downscaling method. Clim. Dyn. 2019, 52, 4269–4292. [Google Scholar] [CrossRef]
- IPCC. Intergovernmental Panel on Climate Change, Fifth Assessment Report, Working Group II: Impacts, Adaptation, and Vulnerability; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Cao, L.J.; Zhao, P.; Yan, Z.W.; Jones, P.; Zhu, Y.N.; Yu, Y.; Tang, G.L. Instrumental temperature series in eastern and central China back to the nineteenth century. J. Geophys. Res.-Atmos. 2013, 118, 8197–8207. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, J.F.; Ma, J.Z.; Wei, W.; Hu, Q. Research Progress on Pinus yunnanensis with Degradation Status and Ecosystem Functions of the Forest Stands. J. West China For. Sci. 2018, 47, 121–130. [Google Scholar] [CrossRef]
- Yang, B.A. Investigation on Causes of Death of Yunnan Pine in Yongren County. J. Green Sci. Technol. 2016, 27–28. [Google Scholar] [CrossRef]
- Yang, R.Q.; Fan, Z.X.; Li, Z.S.; Wen, Q.Z. Radial growth of Pinus yunnanensis at different elevations and their responses to climatic factors in the Yulong Snow Mountain, Northwest Yunnan, China. Acta Ecol. Sin. 2018, 38, 8983–8991. [Google Scholar] [CrossRef]
- Wu, X.D.; Lin, Z.Y. A preliminary study of the modern climate change in Hengduan Mountains. Geogr. Res. 1987, 6, 48–56. [Google Scholar]
- He, M.H.; Yang, B.; Brauning, A.; Rossi, S.; Ljungqvist, F.C.; Shishov, V.; Griessinger, J.; Wang, J.L.; Liu, J.J.; Qin, C. Recent advances in dendroclimatology in China. Earth Sci. Rev. 2009, 194, 521–535. [Google Scholar] [CrossRef]
- Liu, B.; Wang, Y.; Zhu, H.; Liang, E.; Camarero, J.J. Topography and age mediate the growth responses of Smith fir to climate warming in the southeastern Tibetan Plateau. Int. J. Biometeorol. 2016, 60, 1577–1587. [Google Scholar] [CrossRef]
- Yin, D.C.; Xu, D.R.; Tian, K.; Xiao, D.R.; Zhang, W.G.; Sun, D.C.; Sun, H.; Zhang, Y. Radial Growth Response of Abies georgei to Climate at the Upper Timberlines in Central Hengduan Mountains, Southwestern China. Forests 2018, 9, 606. [Google Scholar] [CrossRef]
- Li, Y.H. Study on diameter distribution of Pinus yunnanensis forest in plateau SW-Sichuan Province. J. Northwest For. Univ. 2018, 3, 219–225. [Google Scholar]
- Fu, P.L.; Griessinger, J.; Gebrekirstos, A.; Fan, Z.X.; Brauning, A. Earlywood and Latewood Stable Carbon and Oxygen Isotope Variations in Two Pine Species in Southwestern China during the Recent Decades. Front. Plant Sci. 2017, 7, 12. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.; Li, N.; Elias, T.S.; Mill, R.R. Flora of China (Vol.7 PINACEAE); Science Press: Beijing, China, 1978. [Google Scholar]
- Chen, F.L.; Chen, H.M.; Yang, Y.Y. Annual and seasonal changes in means and extreme events of precipitation and their connection to elevation over Yunnan Province, China. Quat. Int. 2015, 374, 46–61. [Google Scholar] [CrossRef]
- Tang, C.Q.; He, L.-Y.; Su, W.-H.; Zhang, G.-F.; Wang, H.-C.; Peng, M.-C.; Wu, Z.-L.; Wang, C.-Y. Regeneration, recovery and succession of a Pinus yunnanensis community five years after a mega-fire in central Yunnan, China. For. Ecol. Manag. 2013, 294, 188–196. [Google Scholar] [CrossRef]
- Bohner, J. General climatic controls and topoclimatic variations in Central and High Asia. Boreas 2006, 35, 279–295. [Google Scholar] [CrossRef]
- Wen, K.G. China Meteorological Disaster Dictionary (Yunnan Volume); China Meteorological Press: Beijing, China, 2006. [Google Scholar]
- National Meteorological Information Center. Available online: http://data.cma.cn/data/cdcindex/cid/6d1b5efbdcbf9a58.html (accessed on 27 November 2019).
- Deng, X.Q.; Huang, B.B.; Wen, Q.Z.; Hua, C.L.; Tao, J. A research on the distribution of Pinus yunnanensis forest in Yunnan Province. J. Yunnan Univ. 2013, 35, 843–848. [Google Scholar] [CrossRef]
- Wu, X.D. Dendrochronology and Climate Change; China Meteorological Press: Beijing, China, 1990; p. 368. [Google Scholar]
- Tree-Ring Lab. of Columbia University. Cofecha: Dating and Measurement Quality Control; Tree-Ring Lab. of Columbia University: Manhattan, NY, USA, 2013. [Google Scholar]
- Holmes, R.L. Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bull. 1983, 43, 68–78. [Google Scholar] [CrossRef]
- Tree-Ring Lab. of Columbia University. ARSTAN: Chronology Development, Plotting and Analysis; Tree-Ring Lab. of Columbia University: Manhattan, NY, USA, 2013. [Google Scholar]
- Fritts, H.C. Tree Rings and Climate; Elsevier: New York, NY, USA, 1976. [Google Scholar]
- Cook, E.R.; Peter, K. Calculating unbaised tree-ring indices for the study of climatic and environmantal change. Holocene 1997, 7, 361–370. [Google Scholar] [CrossRef]
- Liang, E.; Leuschner, C.; Dulamsuren, C.; Wagner, B.; Hauck, M. Global warming-related tree growth decline and mortality on the north-eastern Tibetan plateau. Clim. Chang. 2016, 134, 163–176. [Google Scholar] [CrossRef]
- Cook, E.R.; Briffa, K.R. A comparision of some tree-ring standardization methods. In Method of Dendrochronology: Application in Environmental Science; Cook, E.R., Kairiukstis, L.A., Eds.; Kluwer Acadenic Press: Dordrecht, The Netherlands, 1990. [Google Scholar]
- Osborn, T.J.; Briffa, K.R.; Jones, P.D. Ajusting variance for sample-size in tree ring chronologies and other regional mean times series. Dendrochronologia 1997, 15, 89–99. [Google Scholar]
- Esper, J.; Gärtner, H. Interpretation of Tree-Ring Chronologies (Interpretation von Jahrringchronologien). Erdkunde 2001, 3, 277–288. [Google Scholar] [CrossRef]
- Wigley, T.M.L.; Briffa, K.R.; Jones, P.D. On the average value of correlated time series, with application in dendroclimatology and hydrometeorology. J. Clim. Appl. Meteorol. 1984, 23, 201–213. [Google Scholar] [CrossRef]
- Yang, X.F.; Luedeling, E.; Chen, G.L.; Hyde, K.D.; Yang, Y.J.; Zhou, D.Q.; Xu, J.C.; Yang, Y.P. Climate change effects fruiting of the prize matsutake mushroom in China. Fungal Divers 2012, 56, 189–198. [Google Scholar] [CrossRef]
- Sun, C.F.; Liu, Y. Climate Response of Tree Radial Growth at Different Timescales in the Qinling Mountains. PLoS ONE 2016, 11. [Google Scholar] [CrossRef] [PubMed]
- Vaganov, E.A.; Hughes, M.K.; Kirdyanov, A.V.; Schweingruber, F.H.; Silkin, P.P. Influence of snowfall and melt timing on tree growth in subarctic Eurasia. Nature 1999, 400, 149–151. [Google Scholar] [CrossRef]
- Feng, X.H.; Chen, R.M.; Xiao, W.F.; Wang, R.L.; Wang, X.R.; Liu, Z.B. The critical temperature to Huashan Pine (Pinus armandi) radial growth based on the daily mean temperature (In Chinese with English abstract). Acta Ecol. Sin. 2012, 32, 1450–1457. [Google Scholar] [CrossRef]
- Mika, J.; Horvath, S.; Makra, L.; Dunkel, Z. The Palmer Drought Severity Index (PDSI) as an indicator of soil moisture. Phys. Chem. Earth 2005, 30, 223–230. [Google Scholar] [CrossRef]
- Babst, F.; Bouriaud, O.; Alexander, R.; Trouet, V.; Frank, D. Toward consistent measurements of carbon accumulation: A multi-site assessment of biomass and basal area increment across Europe. Dendrochronologia 2014, 32, 153–161. [Google Scholar] [CrossRef]
- Andrew, G.B. A dendrochronology program library in R (dplR). Dendrochronologia 2008, 26, 115–124. [Google Scholar] [CrossRef]
- R-Core-Team. R: A Language and Environment for Statistical Computing; Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Pumijumnong, N.; Wanyaphet, T. Seasonal cambial activity and tree-ring formation of Pinus merkusii and Pinus kesiya in Northern Thailand in dependence on climate. For. Ecol. Manag. 2006, 226, 279–289. [Google Scholar] [CrossRef]
- Luedeling, E.; Zhang, M.; McGranahan, G.; Leslie, C. Validation of winter chill models using historic records of walnut phenology. Agric. For. Meteorol. 2009, 149, 1854–1864. [Google Scholar] [CrossRef]
- Guo, L.; Cheng, J.M.; Luedeling, E.; Koerner, S.E.; He, J.S.; Xu, J.C.; Gang, C.C.; Li, W.; Luo, R.M.; Peng, C.H. Critical climate periods for grassland productivity on China’s Loess Plateau. Agric. For. Meteorol. 2017, 233, 101–109. [Google Scholar] [CrossRef]
- Luedeling, E.; Kunz, A.; Blanke, M.M. Identification of chilling and heat requirements of cherry trees-a statistical approach. Int. J. Biometeorol. 2013, 57, 679–689. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.C. Statistical Analysis With R; High Education Press: Beijing, China, 2008. [Google Scholar]
- Lu, H.C. Preliminary estimation of forest carbon reserves of Pinus yunnanensis. For. Invetory Plan. 2010, 35, 91–93. [Google Scholar] [CrossRef]
- Guo, G.A.; Li, Z.S.; Zhang, Q.B.; Ma, K.P.; Mu, C.L. Dendroclimatological studies of Picea likiangensis and Tsuga dumosa in Lijiang, China. IAWA 2009, 30, 435–441. [Google Scholar] [CrossRef]
- Masaki, S.; Brendan, M.B.; Tatsuo, S. Tree-ring based hydroclimate reconstruction over northern Vietnam fromFokienia hodginsii: Eighteenth century mega-drought and tropical Pacific influence. Clim. Dyn. 2009, 33, 331–340. [Google Scholar] [CrossRef]
- Singh, J.; Yadav, R.R.; Wilmking, M. A 694-year tree-ring based rainfall reconstruction from Himachal Pradesh, India. Clim. Dyn. 2009, 33, 1149–1158. [Google Scholar] [CrossRef]
- Rossi, S.; Girard, M.-J.; Morin, H. Lengthening of the duration of xylogenesis engenders disproportionate increases in xylem production. Glob. Chang. Biol. 2014, 20, 2261–2271. [Google Scholar] [CrossRef]
- Panthi, S.; Brauning, A.; Zhou, Z.k.; Fan, Z.X. Growth response of Abies georgei to climate increasde with elevation in the central Hengduan Mountains, southwest China. Dendrochronolagia 2018, 47, 1–9. [Google Scholar] [CrossRef]
- Wang, J.; Luo, L.C.; Lei, S.Q.; Zhang, Z.Y. A study on the eco-anatomical of extremely endangered pine of China: Pinus squamata. J. Jiangxi Agric. Univ. 2008, 30, 672–674. [Google Scholar] [CrossRef]
- Tao, Y.; He, Q. The temporal and spatial distribution of precipitation over Yunnan Province and its response to global warming. J. Yunnan Univ. 2008, 30, 587–595. [Google Scholar]
BSY | BSA | LJY | |
---|---|---|---|
Species | Pinus yunnanensis | Pinus armandii | P. yunnanensis |
Location | Baoshan | Baoshan | Lijiang |
Site code | BSY | BSA | LJY |
Latitude/longitude (degree) | 25.22° N/99.30° E | 25.21° N/99.30° E | 27.00° N/100.19° E |
Elevation (m a.s.l.) | 2350 | 2351 | 3229 |
Name meteorological Station | Longya Station | Longya Station | Lijiang Station |
PDSI grid | 25.25° N/99.25° E | 25.25° N/99.25° E | 26.75° N/100.25° E |
Trees (cores) | 33 (66) | 52 (103) | 24 (41) |
Time span (year) | 1983–2016 | 1979–2016 | 1967–2017 |
Average radial growth rate (mm) | 3.64 | 2.62 | 2.36 |
Standard deviation (SD) | 0.35 | 0.26 | 0.30 |
Mean sensitivity (MS) | 0.21 | 0.26 | 0.28 |
Mean inter-series correlation (Rbar) | 0.49 | 0.72 | 0.34 |
First-order autocorrelation (AC1) | 0.32 | 0.34 | 0.40 |
Expressed population signal (EPS) | 0.97 | 0.99 | 0.93 |
EPS > 0.85 | 1988 | 1984 | 1970 |
Mean segment length (MSL) | 30 | 30 | 40 |
Critical Climate Periods (CP) | Season | VIP Value from PLS | Standardized Coefficient (Beta Values) from PLS | Pearson Correlation Coefficients |
---|---|---|---|---|
Pinus yunnanensis at BSY in Baoshan | ||||
TEMP from January 21st to March 12th (CP1) | winter | 1.40 | 0.0002 | 0.14 |
TEMP from March 13th to June 11th (CP2) | spring | 1.13 | −0.0012 | −0.48 ** |
PREC from February 23rd to May 30th (CP3) | spring | 1.00 | 0.0020 | 0.55 ** |
PREC Pre from July 4th to September 21st (CP4) | summer | 0.86 | −0.0010 | −0.26 |
Pinus armandii at BSY in Baoshan | ||||
TEMP from December 2nd to March 1st (CP5) | winter | 0.98 | 0.0005 | 0.06 |
TEMP from March 2nd to June 17th (CP6) | spring | 1.17 | −0.0012 | −0.47 ** |
TEMP from July 15th to September 2nd (CP7) | summer | 1.3 | 0.0003 | 0.18 |
PREC from Oct 1st to May 25th (CP8) | Winter-spring | 0.86 | 0.0021 | 0.61 ** |
PREC July 8th to August 30th (CP9) | summer | 1.05 | −0.0011 | −0.43 * |
P. yunnanensis at LJY in Lijiang | ||||
TEMP from December 4th to January 31st (CP10) | winter | 1.08 | −0.0020 | −0.52 ** |
TEMP from February 19th to March 23rd (CP11) | Early spring | 1.00 | 0.0008 | 0.23 |
TEMP from May 6th to June 12th (CP12) | Late spring | 1.84 | −0.0033 | −0.75 ** |
PREC from January 16th to February 11th (CP13) | winter | 1.12 | 0.0010 | 0.26 |
PREC from Apr 28th to June 20th (CP14) | spring | 1.43 | 0.0010 | 0.25 |
PREC from June 21st to July 16th (CP15) | summer | 1.03 | −0.0017 | −0.50 ** |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bi, Y.; Whitney, C.; Li, J.; Yang, J.; Yang, X. Spring Moisture Availability is the Major Limitation for Pine Forest Productivity in Southwest China. Forests 2020, 11, 446. https://doi.org/10.3390/f11040446
Bi Y, Whitney C, Li J, Yang J, Yang X. Spring Moisture Availability is the Major Limitation for Pine Forest Productivity in Southwest China. Forests. 2020; 11(4):446. https://doi.org/10.3390/f11040446
Chicago/Turabian StyleBi, Yingfeng, Cory Whitney, Jianwen Li, Jingchao Yang, and Xuefei Yang. 2020. "Spring Moisture Availability is the Major Limitation for Pine Forest Productivity in Southwest China" Forests 11, no. 4: 446. https://doi.org/10.3390/f11040446
APA StyleBi, Y., Whitney, C., Li, J., Yang, J., & Yang, X. (2020). Spring Moisture Availability is the Major Limitation for Pine Forest Productivity in Southwest China. Forests, 11(4), 446. https://doi.org/10.3390/f11040446