Aboveground Carbon Content and Storage in Mature Scots Pine Stands of Different Densities
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Oberthür, S.; Ott, H.E. The Kyoto Protocol: International Climate Policy for the 21st Century; Springer Science & Business Media: Berlin, Germany, 1999; p. 360. [Google Scholar]
- Batjes, N.H. Total carbon and nitrogen in the soils of the world. Eur. J. Soil Sci. 1996, 47, 151–163. [Google Scholar] [CrossRef]
- Jobbágy, E.G.; Jackson, R.B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl. 2000, 10, 423–436. [Google Scholar] [CrossRef]
- Jandl, R.; Lindner, M.; Vesterdal, L.; Bauwens, B.; Baritz, R.; Hagedorn, F.; Johnson, D.W.; Minkkinen, K.; Byrne, K.A. How strongly can forest management influence soil carbon sequestration? Geoderma 2007, 137, 253–268. [Google Scholar] [CrossRef]
- Lamlom, S.H.; Savidge, R.A. A reassessment of carbon content in wood: Variation within and between 41 North American species. Biomass Bioenergy 2003, 25, 381–388. [Google Scholar] [CrossRef]
- Malmsheimer, R.W.; Bowyer, J.L.; Fried, J.S.; Gee, E.; Izlar, R.L.; Miner, R.A.; Munn, I.A.; Oneil, E.; Stewart, W.C. Managing forests because carbon matters: Integrating energy, products, and land management policy. J. For. 2011, 109, 7–51. [Google Scholar] [CrossRef]
- Noormets, A.; Epron, D.; Domec, J.C.; McNulty, S.G.; Fox, T.; Sun, G.; King, J.S. Effects of forest management on productivity and carbon sequestration: A review and hypothesis. For. Ecol. Manag. 2015, 355, 124–140. [Google Scholar] [CrossRef]
- Sedjo, R.A. Forests: A tool to moderate global warming. Environ. Sci. Policy Sustain. Dev. 1989, 31, 14–20. [Google Scholar] [CrossRef]
- Dewar, R.C.; Cannell, M.G. Carbon sequestration in the trees, products and soils of forest plantations: An analysis using UK examples. Tree Physiol. 1992, 11, 49–71. [Google Scholar] [CrossRef]
- Hollinger, D.Y.; Maclaren, J.P.; Beets, P.N.; Turland, J. Carbon sequestration by New Zealand’s Plantation forests. N. Z. J. For. Sci. 1993, 23, 194–208. [Google Scholar]
- Laiho, R.; Laine, J. Tree stand biomass and carbon content in an age sequence of drained pine mires in southern Finland. For. Ecol. Manag. 1997, 93, 161–169. [Google Scholar] [CrossRef]
- Bert, D.; Danjon, F. Carbon concentration variations in the roots, stem and crown of mature Pinus pinaster (Ait.). For. Ecol. Manag. 2006, 222, 279–295. [Google Scholar] [CrossRef]
- Thomas, S.C.; Malczewski, G. Wood carbon content of tree species in Eastern China: Interspecific variability and the importance of the volatile fraction. J. Environ. Manag. 2007, 85, 659–662. [Google Scholar] [CrossRef] [PubMed]
- Thomas, S.C.; Martin, A.R. Carbon content of tree tissues: A synthesis. Forests 2012, 3, 332–352. [Google Scholar] [CrossRef]
- Martin, A.R.; Doraisami, M.; Thomas, S.C. Global patterns in wood carbon concentration across the world’s trees and forests. Nat. Geosci. 2018, 11, 915–920. [Google Scholar] [CrossRef]
- Tahvonen, O.; Pihlainen, S.; Niinimäki, S. On the economics of optimal timber production in boreal Scots pine stands. Can. J. For. Res. 2013, 43, 719–730. [Google Scholar] [CrossRef]
- Janssens, I.A.; Sampson, D.A.; Cermak, J.; Meiresonne, L.; Riguzzi, F.; Overloop, S.; Ceulemans, R. Above- and belowground phytomass and carbon storage in a Belgian Scots pine stand. Ann. For. Sci. 1999, 56, 81–90. [Google Scholar] [CrossRef]
- GUS. Główny Urząd Statystyczny. Leśnictwo; Informacje i Opracowania Statystyczne: Warszawa, Poland, 2017. [Google Scholar]
- Valinger, E.; Elfving, B.; Mörling, T. Twelve-year growth response of Scots pine to thinning and nitrogen fertilisation. For. Ecol. Manag. 2000, 134, 45–53. [Google Scholar] [CrossRef]
- Mäkinen, H.; Isomäki, A. Thinning intensity and long-term changes in increment and stem form of Scots pine trees. For. Ecol. Manag. 2004, 203, 21–34. [Google Scholar] [CrossRef]
- Giuggiola, A.; Bugmann, H.; Zingg, A.; Dobbertin, M.; Rigling, A. Reduction of stand density increases drought resistance in xeric Scots pine forests. For. Ecol. Manag. 2013, 310, 827–835. [Google Scholar] [CrossRef]
- Karu, H.; Szava-Kovats, R.; Pensa, M.; Kull, O. Carbon sequestration in a chronosequence of Scots pine stands in a reclaimed opencast oil shale mine. Can. J. For. Res. 2009, 39, 1507–1517. [Google Scholar] [CrossRef]
- Vanninen, P.; Mäkelä, A. Carbon budget for Scots pine trees: Effects of size, competition and site fertility on growth allocation and production. Tree Physiol. 2005, 25, 17–30. [Google Scholar] [CrossRef]
- Armolaitis, K.; Varnagirytė-Kabašinskienė, I.; Stupak, I.; Kukkola, M.; Mikšys, V.; Wojcik, J. Carbon and nutrients of Scots pine stands on sandy soils in Lithuania in relation to bioenergy sustainability. Biomass Bioenergy 2013, 54, 250–259. [Google Scholar] [CrossRef]
- Skonieczna, J.; Małek, S.; Polowy, K.; Węgiel, A. Element content of Scots pine (Pinus sylvestris L.) stands of different densities. Drewno 2014, 57, 77–87. [Google Scholar] [CrossRef]
- Bembenek, M.; Giefing, D.E.; Jelonek, T.; Karaszewski, Z.; Kruszyk, R.; Tomczak, A.; Woszczyk, M.; Mederski, P.S. Carbon content in juvenile and mature wood of Scots pine (Pinus sylvestris L.). Balt. For. 2015, 21, 279–284. [Google Scholar]
- Tolunay, D. Carbon concentrations of tree components, forest floor and understorey in young Pinus sylvestris stands in north-western Turkey. Scand. J. For. Res. 2009, 24, 394–402. [Google Scholar] [CrossRef]
- Durkaya, A.; Durkaya, B.; Makineci, E.; Orhan, I. Aboveground biomass and carbon storage relationship of Turkish pines. Fresenius Environ. Bull. 2015, 24, 3573–3583. [Google Scholar]
- Lee, J.; Tolunay, D.; Makineci, E.; Çömez, A.; Son, Y.M.; Kim, R.; Son, Y. Estimating the age-dependent changes in carbon stocks of Scots pine (Pinus sylvestris L.) stands in Turkey. Ann. For. Sci. 2016, 73, 523–531. [Google Scholar] [CrossRef]
- Erkan, N.; Güner, S.T. Determination of carbon concentration of tree components for Scotch pine forests in Turkmen Mountain (Eskisehir, Kutahya) Region. Forestist 2018, 68, 87–92. [Google Scholar] [CrossRef]
- Mjöfors, K.; Strömgren, M.; Nohrstedt, H.-Ö.; Johansson, M.-B.; Gärdenäs, A.I. Indications that site preparation increases forest ecosystem carbon stocks in the long term. Scand. J. For. Res. 2017, 32, 717–725. [Google Scholar] [CrossRef]
- Bravo-Oviedo, A.; Ruiz-Peinado, R.; Modrego, P.; Alonso, R.; Montero, G. Forest thinning impact on carbon stock and soil condition in Southern European populations of P. sylvestris L. For. Ecol. Manag. 2015, 357, 259–267. [Google Scholar] [CrossRef]
- Ruiz-Peinado, R.; Bravo-Oviedo, A.; Montero, G.; del Río, M. Carbon stocks in a Scots pine afforestation under different thinning intensities management. Mitig. Adapt. Strateg. Glob. Chang. 2016, 21, 1059–1072. [Google Scholar] [CrossRef]
- Pohjola, J.; Valsta, L. Carbon credits and management of Scots pine and Norway spruce stands in Finland. For. Policy Econ. 2007, 9, 789–798. [Google Scholar] [CrossRef]
- Goetz, R.U.; Hritonenko, N.; Mur, R.J.; Xabadia, A.; Yatsenko, Y. Forest management and carbon sequestration in size-structured forests: The case of Pinus sylvestris in Spain. For. Sci. 2010, 56, 242–256. [Google Scholar] [CrossRef]
- Goetz, R.U.; Hritonenko, N.; Mur, R.; Xabadia, À.; Yatsenko, Y. Forest management for timber and carbon sequestration in the presence of climate change: The case of Pinus sylvestris. Ecol. Econ. 2013, 88, 86–96. [Google Scholar] [CrossRef]
- Moreno-Fernández, D.; Díaz-Pinés, E.; Barbeito, I.; Sánchez-González, M.; Montes, F.; Rubio, A.; Cañellas, I. Temporal carbon dynamics over the rotation period of two alternative management systems in Mediterranean mountain Scots pine forests. For. Ecol. Manag. 2015, 348, 186–195. [Google Scholar] [CrossRef]
- Węgiel, A.; Małek, S.; Bielinis, E.; Grebner, D.L.; Polowy, K.; Skonieczna, J. Determination of elements removal in different harvesting scenarios of Scots pine (Pinus sylvestris L.) stands. Scand. J. For. Res. 2018, 33, 261–270. [Google Scholar] [CrossRef]
- Węgiel, A.; Bembenek, M.; Łacka, A.; Mederski, P.S. Relationship between stand density and value of timber assortments: A case study for Scots pine stands in north-western Poland. N. Z. J. For. Sci. 2018, 48, 1–9. [Google Scholar] [CrossRef]
- Picard, N.; Saint-André, L.; Henry, M. Manual for Building Tree Volume and Biomass Allometric Equations: From Field Measurement to Prediction; FAO: Rome, Italy; CIRAD: Montpellier, France, 2012; p. 215. [Google Scholar]
- Bruchwald, A. New empirical formula for determination of volume of Scots pine stands. Folia For. Pol. 1996, 38, 5–10. [Google Scholar]
- Kojola, S.; Ahtikoski, A.; Hökkä, H.; Penttilä, T. Profitability of alternative management regimes in Scots pine stands on drained peatlands. Eur. J. For. Res. 2012, 131, 413–426. [Google Scholar] [CrossRef]
- Curtis, R.O.; Marshall, D.D.; Bell, J.F. LOGS: A pioneering example of silvicultural research in coast Douglas-fir. J. For. 1997, 95, 19–25. [Google Scholar]
- Kuliešis, A.; Saladis, J.; Kuliešis, A.A. Development and productivity of young Scots pine stands by regulating density. Balt. For. 2010, 16, 235–246. [Google Scholar]
- Nilsson, U.; Agestam, E.; Ekö, P.-M.; Elfving, B.; Fahlvik, N.; Johansson, U.; Karlsson, K.; Lundmark, T.; Wallentin, C. Thinning of Scots pine and Norway spruce monocultures in Sweden. Stud. For. Suec. 2010, 219, 1–46. [Google Scholar]
- Zhang, J.; Oliver, W.W.; Ritchie, M.W. Effect of stand densities on stand dynamics in white fir (Abies concolor) forests in northeast California, USA. For. Ecol. Manag. 2007, 244, 50–59. [Google Scholar] [CrossRef]
- Del Río, M.; Calama, R.; Cañellas, I.; Roig, S.; Montero, G. Thinning intensity and growth response in SW-European Scots pine stands. Ann. For. Sci. 2008, 65. [Google Scholar] [CrossRef]
- Gizachew, B.; Brunner, A. Density-growth relationships in thinned and unthinned Norway spruce and Scots pine stands in Norway. Scand. J. For. Res. 2011, 26, 543–554. [Google Scholar] [CrossRef]
- Routa, J.; Kellomäki, S.; Strandman, H. Effects of forest management on total biomass production and CO2 emissions from use of energy biomass of Norway spruce and Scots pine. Bioenergy Res. 2012, 5, 733–747. [Google Scholar] [CrossRef]
- Egnell, G.; Ulvcrona, K.A. Stand productivity following whole-tree harvesting in early thinning of Scots pine stands in Sweden. For. Ecol. Manag. 2015, 340, 40–45. [Google Scholar] [CrossRef]
- Moulinier, J.; Brais, S.; Harvey, B.D.; Koubaa, A. Response of boreal Jack pine (Pinus banksiana Lamb.) stands to a gradient of commercial thinning intensities, with and without N fertilization. Forests 2015, 6, 2678–2702. [Google Scholar] [CrossRef]
- Zhou, D.; Zhao, S.Q.; Liu, S.; Oeding, J. A meta-analysis on the impacts of partial cutting on forest structure and carbon storage. Biogeosciences 2013, 10, 3691–3703. [Google Scholar] [CrossRef]
- Güner, Ş.T.; Makineci, E. Determination of annual organic carbon sequestration in soil and forest floor of Scots pine forests on the Türkmen Mountain (Eskişehir, Kütahya). J. Fac. For. Istanb. Univ. 2017, 67, 109–115. [Google Scholar] [CrossRef]
- Alegria, C. Simulation of silvicultural scenarios and economic efficiency for maritime pine (Pinus pinaster Aiton) wood-oriented management in centre inland of Portugal. For. Syst. 2011, 20, 361–378. [Google Scholar] [CrossRef]
- Litton, C.M.; Ryan, M.G.; Knight, D.H. Effects of tree density and stand age on carbon allocation patterns in postfire lodgepole pine. Ecol. Appl. 2004, 14, 460–475. [Google Scholar] [CrossRef]
Stand Number | Age (Years) | Stand Density (tree·ha−1) | Mean DBH ± SD (cm) | Mean Height ± SD (m) | Basal Area (m2·ha−1) | Volume (m3·ha−1) |
---|---|---|---|---|---|---|
1 * | 82 | 476 | 28.2 ± 4.5 | 22.9 ± 1.7 | 30.5 | 325 |
2 | 87 | 518 | 27.5 ± 4.9 | 23.6 ± 2.0 | 31.8 | 350 |
3 | 82 | 534 | 25.9 ± 4.3 | 22.4 ± 1.5 | 28.4 | 298 |
4 | 82 | 564 | 28.0 ± 4.5 | 24.5 ± 1.4 | 35.5 | 401 |
5 * | 82 | 594 | 25.7 ± 4.7 | 20.8 ± 1.4 | 31.5 | 306 |
6 | 82 | 596 | 27.1 ± 5.2 | 21.6 ± 1.4 | 35.7 | 358 |
7 | 82 | 618 | 24.6 ± 4.0 | 20.4 ± 1.5 | 30.2 | 288 |
8 | 82 | 632 | 24.0 ± 4.7 | 21.1 ± 1.4 | 29.6 | 293 |
9 | 82 | 632 | 25.6 ± 4.7 | 22.0 ± 1.4 | 33.6 | 347 |
10 | 82 | 634 | 24.6 ± 4.6 | 21.4 ± 1.6 | 31.0 | 311 |
11 | 82 | 640 | 26.0 ± 4.7 | 23.4 ± 1.7 | 35.1 | 385 |
12 | 82 | 644 | 26.4 ± 4.4 | 23.0 ± 1.4 | 35.9 | 384 |
13 | 82 | 648 | 25.9 ± 5.2 | 22.3 ± 1.7 | 35.4 | 373 |
14 * | 82 | 674 | 23.6 ± 4.3 | 19.6 ± 1.5 | 30.1 | 280 |
15 | 82 | 682 | 24.7 ± 4.9 | 22.8 ± 1.7 | 34.0 | 363 |
16 | 82 | 708 | 21.8 ± 4.2 | 19.5 ± 2.2 | 27.3 | 250 |
17 | 82 | 720 | 22.3 ± 4.3 | 24.7 ± 3.8 | 29.1 | 345 |
18 | 82 | 756 | 21.7 ± 4.4 | 20.5 ± 2.0 | 28.9 | 281 |
19 * | 82 | 758 | 23.9 ± 5.3 | 20.1 ± 2.0 | 35.7 | 340 |
20 * | 82 | 836 | 21.8 ± 4.0 | 19.3 ± 1.7 | 31.5 | 291 |
Tree Part | Equation | Equation Coefficients | R2 | RSE | ||
---|---|---|---|---|---|---|
a | b | c | ||||
Stem (wood + bark) | a · (D2 · H2)b | 0.012996 | 0.761234 | 0.9357 | 22.187 | |
Thick branches | a · Db · Hc | 0.048094 | 3.333163 | −1.53455 | 0.7281 | 8.9224 |
Thin branches | a · (D2 · H2)b | 0.001054 | 0.879284 | 0.6744 | 1.5290 | |
Dead branches | a · Db · Hc | 0.023518 | 3.569452 | 1.87147 | 0.7457 | 3.3543 |
Needles | a · (D)b | 0.011092 | 2.012406 | 0.7499 | 1.9823 |
Tree Part | Aboveground Biomass (Mg·ha−1) | Carbon Content (%) | |||||
---|---|---|---|---|---|---|---|
Mean | SD | Proportion | Mean | SD | Min | Max | |
Stem wood | 116.0 | 16.2 | 76.3% | 47.0 | 0.5 | 46.3 | 48.1 |
Stem bark | 10.1 | 1.4 | 6.6% | 47.1 | 1.0 | 45.8 | 49.1 |
Thick branches | 13.3 | 1.9 | 8.7% | 48.8 | 1.0 | 45.5 | 50.0 |
Thin branches | 3.0 | 0.3 | 2.0% | 50.2 | 0.6 | 49.2 | 51.3 |
Dead branches | 5.0 | 0.8 | 3.3% | 49.6 | 1.0 | 48.4 | 52.5 |
Needles | 4.7 | 0.4 | 3.1% | 50.3 | 0.3 | 49.7 | 50.9 |
Total | 152.1 | 100% |
Stand Number | Stand Density (tree·ha−1) | Above Ground Biomass (Mg·ha−1) | Carbon Stock (Mg·ha−1) | ||||
---|---|---|---|---|---|---|---|
SW | SB | BR | FL | Total | |||
1 | 476 | 147.6 | 52.5 | 4.6 | 10.6 | 2.3 | 69.9 |
2 | 518 | 160.2 | 58.1 | 5.1 | 10.3 | 2.3 | 75.8 |
3 | 534 | 137.3 | 49.4 | 4.3 | 9.2 | 2.1 | 65.1 |
4 | 564 | 183.7 | 67.1 | 5.9 | 11.3 | 2.6 | 86.9 |
5 | 594 | 140.7 | 48.9 | 4.3 | 11.2 | 2.3 | 66.8 |
6 | 596 | 162.9 | 56.5 | 5.0 | 13.1 | 2.6 | 77.2 |
7 | 618 | 133.1 | 46.6 | 4.1 | 10.4 | 2.2 | 63.2 |
8 | 632 | 135.8 | 48.4 | 4.2 | 9.6 | 2.2 | 64.5 |
9 | 632 | 159.7 | 57.1 | 5.0 | 11.1 | 2.5 | 75.7 |
10 | 634 | 143.4 | 51.1 | 4.5 | 10.2 | 2.3 | 68.0 |
11 | 640 | 177.6 | 65.0 | 5.7 | 10.9 | 2.6 | 84.1 |
12 | 644 | 176.2 | 63.7 | 5.6 | 11.6 | 2.7 | 83.5 |
13 | 648 | 171.1 | 61.4 | 5.4 | 11.7 | 2.6 | 81.1 |
14 | 674 | 130.0 | 45.2 | 4.0 | 10.5 | 2.2 | 61.8 |
15 | 682 | 169.0 | 61.8 | 5.4 | 10.3 | 2.5 | 80.1 |
16 | 708 | 118.0 | 41.9 | 3.7 | 8.6 | 2.0 | 56.1 |
17 | 720 | 168.4 | 64.9 | 5.7 | 7.1 | 2.2 | 79.8 |
18 | 756 | 132.5 | 48.0 | 4.2 | 8.7 | 2.1 | 63.0 |
19 | 758 | 157.3 | 54.8 | 4.8 | 12.5 | 2.6 | 74.7 |
20 | 836 | 137.1 | 48.5 | 4.2 | 10.1 | 2.3 | 65.2 |
Parameter | Mean DBH | Mean Height | Basal Area | Stand Volume | Above Ground Biomass | Stand Density |
---|---|---|---|---|---|---|
C stock in stem | 0.486 * | 0.850 *** | 0.713 *** | 0.961 *** | 0.986 *** | −0.160 |
C stock in branches | 0.599 *** | −0.053 | 0.827 *** | 0.501 * | 0.413 | −0.223 |
C stock in needles | 0.534 * | 0.321 | 0.999 *** | 0.846 *** | 0.809 *** | −0.045 |
C stock in aboveground biomass | 0.011 | 0.789 *** | 0.815 *** | 0.991 *** | 1.000 *** | −0.184 |
Percentage of C stock in stem | −0.019 | 0.790 *** | −0.026 | 0.447 * | 0.534 * | 0.005 |
Percentage of C stock in branches | 0.061 | −0.762 *** | 0.051 | −0.416 | −0.505 * | −0.041 |
Percentage of C stock in needles | −0.334 | −0.956 *** | −0.186 | −0.666 *** | −0.721 *** | 0.292 |
Stand density | −0.860 *** | −0.508 * | −0.044 | −0.269 | −0.190 | − |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Węgiel, A.; Polowy, K. Aboveground Carbon Content and Storage in Mature Scots Pine Stands of Different Densities. Forests 2020, 11, 240. https://doi.org/10.3390/f11020240
Węgiel A, Polowy K. Aboveground Carbon Content and Storage in Mature Scots Pine Stands of Different Densities. Forests. 2020; 11(2):240. https://doi.org/10.3390/f11020240
Chicago/Turabian StyleWęgiel, Andrzej, and Krzysztof Polowy. 2020. "Aboveground Carbon Content and Storage in Mature Scots Pine Stands of Different Densities" Forests 11, no. 2: 240. https://doi.org/10.3390/f11020240
APA StyleWęgiel, A., & Polowy, K. (2020). Aboveground Carbon Content and Storage in Mature Scots Pine Stands of Different Densities. Forests, 11(2), 240. https://doi.org/10.3390/f11020240