Can Soil Electrical Resistivity Measurements Aid the Identification of Forest Areas Prone to Windthrow Disturbance?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Resistivity Measurement and Data Processing
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Schelhaas, M.J.; Nabuurs, G.J.; Schuck, A. Natural disturbances in the European forests in the 19th and 20th centuries. Glob. Chang. Biol. 2003, 9, 1620–1633. [Google Scholar] [CrossRef]
- Seidl, R.; Schelhaas, M.; Rammer, W.; Verkerk, P. Increasing forest disturbances in Europe and their impact on carbon storage. Nat. Clim. Chang. 2014, 4, 806–810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fleischer, P.; Pichler, V.; Fleisher, P., Jr.; Holko, L.; Máliš, F.; Gömöryová, E.; Cudlín, P.; Holeksa, J.; Michalová, Z.; Homolová, Z.; et al. Forest ecosystem services affected by natural disturbances, climate and land-use changes in the Tatra Mountains. Clim. Res. 2017, 73, 57–71. [Google Scholar] [CrossRef] [Green Version]
- Schönenberger, W.; Angst, C.; Bründl, M.; Dobbertin, M.; Duelli, P.; Egli, S.; Frey, W.; Gerber, W.; Kupferschmid Albisetti, A.D.; Lüscher, P.; et al. Vivians Erbe-Waldentwicklung nach Windwurf im Gebirge. Merkbl. Prax. 2003, 36, 1–12. [Google Scholar]
- Angst, C.; Bürgi, A.; Duelli, P.; Egli, S.; Heiniger, U.; Hindenlang, K.; Lässig, R.; Lüscher, P.; Moser, B.; Nobis, M.; et al. Waldentwicklung nach Windwurf in Tieferen Lagen der Schweiz. Schlussbericht eines Projektes im Rahmen des Programms «LOTHAR Evaluations- und Grundlagenprojekte»; Eidgenössische Forschungsanstalt für Wald, Schnee und Landschaft: Birmensdorf, Switzerland, 2004. [Google Scholar]
- Shabani, S.; Akbarinia, M. Prediction Spatial pattern of windthrow phenomenon in deciduous temperate forests using logistic regression and random forest. Cerne 2017, 23, 387–394. [Google Scholar] [CrossRef] [Green Version]
- Dupuy, L.; Fourcaud, T.; Stokes, A. A Numerical Investigation into the Influence of Soil Type and Root Architecture on Tree Anchorage. Plant Soil 2005, 278, 119–134. [Google Scholar] [CrossRef]
- Canham, C.D.; Papaik, M.J.; Latty, E.F. Interspecific variation in susceptibility to windthrow as a function of tree size and storm severity for northern temperate tree species. Can. J. For. Res. 2001, 31, 1–10. [Google Scholar] [CrossRef]
- Woods, K.D. Intermediate disturbance in a late-successional hemlock-northern hardwood forest. J. Ecol. 2004, 92, 464–476. [Google Scholar] [CrossRef]
- Jayawickreme, D.H.; Jobbágy, E.G.; Jackson, R.B. Geophysical subsurface imaging for ecological applications. New Phytol. 2014, 201, 1170–1175. [Google Scholar] [CrossRef]
- Kurjak, D.; Střelcová, K.; Ditmarová, Ľ.; Priwitzer, T.; Homolák, M.; Pichler, V. Physiological response of irrigated and non-irrigated Norway spruce trees as a consequence of drought in field conditions. Eur. J. For. Res. 2012, 131, 1737–1746. [Google Scholar] [CrossRef]
- Nourtier, M.; Chanzy, A.; Cailleret, M.; Yingge, X.; Huc, R.; Davi, H. Transpiration of silver Fir (Abies alba mill.) during and after drought in relation to soil properties in a Mediterranean mountain area. Ann. For. Sci. 2014, 71, 683–695. [Google Scholar] [CrossRef]
- Carrière, S.D.; Martin-StPaul, N.K.; Ruffault, J.; Pimont, F.; Simioni, G.; Doussan, C.; Chalikakis, K.; Limousin, J.-M.; Scotti, I.; Courdier, F.; et al. Assessing inter-individual drought-responses of Quercus ilex to local soil conditions using electrical resistivity tomography. Sci. Total Environ. 2020, 698, 134247. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Robles, U.; Arredondo Moreno, J.T.; Huber-Sannwald, E.; Ramos-Leal, J.A.; Yepez Gonzalez, E.A. Technical note: Application of geophysical tools for tree root studies in forest ecosystems in complex soils. Biogeosciences 2017, 14, 5343–5357. [Google Scholar] [CrossRef] [Green Version]
- Telford, W.M.; Geldart, L.P.; Sheriff, R.E. Applied Geophysics, 2nd ed.; Cambridge University Press: New York, NY, USA, 1990. [Google Scholar]
- United Nations Educational, Scientific and Cultural Organization. Beech Primeval Forests of the Carpathians and the Ancient Beech Forests of Germany. 2011. Available online: http://whc.unesco.org/en/list/1133 (accessed on 23 October 2019).
- Bulletin Meteorology and Climatology; Slovak Hydrometeorological Institute: Bratislava, Slovakia, 2014.
- Gubka, A.; Kunca, A.; Longauerová, V.; Maľová, M.; Vakula, J.; Galko, J.; Nikolov, C.; Rell, S.; Zúbrik, M.; Leontovyč, R. Forest Protection Service Centre Banská Štiavnica; National Forest Center: Zvolen, Slovakia, 2014; p. 8. [Google Scholar]
- Loke, M.H. Electrical Imaging Surveys for Environmental and Engineering Studies: A Practical Guide to 2-D and 3-D Surveys. 2000. Available online: www.geometrics.com (accessed on 23 October 2019).
- Samouëlian, A.; Cousin, I.; Tabbagh, A.; Bruand, A.; Richard, G. Electrical resistivity survey in soil science: A review. Soil Tillage Res. 2005, 83, 173–193. [Google Scholar] [CrossRef] [Green Version]
- Daddow, R.L.; Warrington, G.E. Growth-Limiting Soil Bulk Densities as Influenced by Soil Texture; USDA Forest Service Watershed Systems Development Group: Fort Collins, CO, USA, 1983; p. 17.
- Šamonil, P.; Antolík, L.; Svoboda, M.; Adam, D. Dynamics of windthrow events in a natural fir-beech forest in the Carpathians mountains. For. Ecol. Manag. 2009, 257, 1148–1156. [Google Scholar] [CrossRef]
- Pawlik, L.; Migoń, P.; Owczarek, P.; Kacprzak, A. Surface processes and interactions with forest vegetation on a steep mudstone slope, Stołowe Mountains, SW Poland. Catena 2013, 109, 203–216. [Google Scholar] [CrossRef]
- Leuschner, C. Mechanismen der Konkurrenzüberlegenheit der Rotbuche. Ber. Reinh. Tüxen Ges. 1998, 10, 5–18. [Google Scholar]
- Scharnweber, T.; Manthey, M.; Wilmking, M. Differential radial growth patterns between beech (Fagus sylvatica L.) and oak (Quercus robur L.) on periodically waterlogged soils. Tree Physiol. 2013, 33, 425–437. [Google Scholar] [CrossRef]
- Kreuzwieser, J.; Rennenberg, H. Molecular and physiological responses of trees to waterlogging stress. Plant Cell Environ. 2014, 37, 2245–2259. [Google Scholar] [CrossRef]
- Dobson, M.C.; Moffat, A.J. The Potential for Woodland Establishment on Landfill Sites; Her Majesty’s Stationery Office (HMSO): London, UK, 1993. [Google Scholar]
- Peranić, J.; Jagodnik, V.; Arbanas, Ž. Rainfall infiltration and stability analysis of an unsaturated slope in residual soil from flysch rock mass. Reykjavik 2019. [Google Scholar] [CrossRef]
- Kodrík, J.; Kodrík, M. Root biomass of beech as a factor influencing the wind tree stability. J. For. Sci. 2002, 48, 549–564. [Google Scholar] [CrossRef]
- Coder, K.D. Soil Compaction and Trees: Causes, Symptoms and Effects; University of Georgia School of Forest Resources: Athens, GA, USA, 2000; pp. 1–37. [Google Scholar]
- Zhao, Y.; Krzic, M.; Bulmer, C.E.; Schmidt, M.G.; Simard, S.W. Relative bulk density as a measure of compaction and its influence on tree height. Can. J. For. Res. 2010, 40, 1724–1735. [Google Scholar] [CrossRef]
- Dahlin, T. 2D resistivity surveying for environmental and engineering applications. First Break 1996, 14, 275–283. [Google Scholar] [CrossRef] [Green Version]
- Giao, P.H.; Chung, S.G.; Kim, D.Y.; Tanaka, H. Electric imaging and laboratory resistivity testing for geotechnical investigation of Pusan clay deposits. J. Appl. Geophys. 2003, 52, 157–175. [Google Scholar] [CrossRef]
Depth (m) | Soil Horizon | Skeleton Content | Rooting Density | Sand (0.05–2.0 mm) (%) | Silt (0.002–0.05 mm) (%) | Clay (<0.002 mm) (%) | Bulk Density (g·cm−3) |
---|---|---|---|---|---|---|---|
0.00–0.04 | Umbric | 15% (fine gravel) | Intermediate | 11.6 | 71.5 | 16.9 | 0.913 |
0.04–0.10 | Umbric/Cambic | 25%–30% (gravel) | Intermediate | 10.1 | 71.6 | 18.3 | 0.934 |
0.10–0.30 | Cambic 1 | 30% gravel, stones) | Intermediate | 10.6 | 76.0 | 13.5 | 1.069 |
0.30–0.61 | Cambic 2 | 20% (stones) | Low | 15.4 | 62.9 | 21.7 | 1.254 |
0.61–1.00 | Cambic/Parent rock | 60% (stones) | Low | 20.4 | 57.2 | 22.5 | 1.266 |
Surface Area A (55.09% of the Total Area, with Electrical Resistivity ≤400 Ohm·m) | Surface Area B (54.91% of the Total Area, With Electrical Resistivity >400 Ohm·m) | |
---|---|---|
Observed frequencies | 8 | 1 |
Expected frequencies | 4.96 | 4.04 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Homolák, M.; Gömöryová, E.; Pichler, V. Can Soil Electrical Resistivity Measurements Aid the Identification of Forest Areas Prone to Windthrow Disturbance? Forests 2020, 11, 234. https://doi.org/10.3390/f11020234
Homolák M, Gömöryová E, Pichler V. Can Soil Electrical Resistivity Measurements Aid the Identification of Forest Areas Prone to Windthrow Disturbance? Forests. 2020; 11(2):234. https://doi.org/10.3390/f11020234
Chicago/Turabian StyleHomolák, Marián, Erika Gömöryová, and Viliam Pichler. 2020. "Can Soil Electrical Resistivity Measurements Aid the Identification of Forest Areas Prone to Windthrow Disturbance?" Forests 11, no. 2: 234. https://doi.org/10.3390/f11020234
APA StyleHomolák, M., Gömöryová, E., & Pichler, V. (2020). Can Soil Electrical Resistivity Measurements Aid the Identification of Forest Areas Prone to Windthrow Disturbance? Forests, 11(2), 234. https://doi.org/10.3390/f11020234