Demonstrating the Effect of Height Variation on Stand-Level Optimization with Diameter-Structured Matrix Model
Abstract
1. Introduction
2. Material and Methods
2.1. The Optimization Problem
2.2. Model Estimation and Data
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Xie, Q.; He, Z.-R.; Wandg, X. Optimal harvesting in diffusive population models with size random growth and distributed recruitment. Electron. J. Differ. Eq. 2016, 214, 1–13. [Google Scholar]
- Goetz, R.U.; Xabadia, A.; Calvo, E. Optimal forest management in the presence of intraspecific competition. Math. Popul. Stud. 2016, 18, 151–171. [Google Scholar] [CrossRef]
- Lefkovitch, L. The study of population growth in organisms grouped by stages. Biometrics 1965, 21, 1–18. [Google Scholar] [CrossRef]
- Caswell, H. Matrix Population Models: Construction, Analysis and Interpretation, 2nd ed.; Sinauer Associates Inc.: Sunderland, MA, USA, 2001. [Google Scholar]
- Picard, N.; Mortier, F.; Chagneau, P. Influence of estimations of the vital rates in the stock recovery rate using matrix models for tropical rainforests. Ecol. Model. 2008, 214, 349–360. [Google Scholar] [CrossRef]
- Liang, J.; Picard, N. Matrix model of forest dynamics: An overview and Outlook. For. Sci. 2013, 59, 359–378. [Google Scholar] [CrossRef]
- Picard, N.; Liang, J. Matrix models for size-structured populations: Unrealistic fast growth or simply diffusion? PLoS ONE 2014, 9, e98254. [Google Scholar] [CrossRef]
- Liang, J.; Zhou, M. A geospatial model of forest dynamics with controlled trend surface. Ecol. Model. 2010, 221, 2339–2352. [Google Scholar] [CrossRef]
- Liang, J.; Zhou, M.; Verbyla, D.; Zhang, L.; Springsteen, A.L.; Malone, T. Mapping forest dynamics under climate change: A matrix model. For. Ecol. Manag. 2011, 262, 2250–2262. [Google Scholar] [CrossRef]
- Hu, H.; Wang, S.; Guo, Z.; Xu, B.; Fang, J. The stage-classified matrix models project a significant increase in biomass carbon stocks in China’s forests between 2005 and 2050. Sci. Rep. 2015, 5, 11203. [Google Scholar] [CrossRef]
- Pihlainen, S.; Tahvonen, O.; Niinimäki, S. The economics of timber and bioenergy production and carbon storage in Scots pine stands. Can. J. For. Res. 2014, 44, 1091–1102. [Google Scholar] [CrossRef]
- Assmuth, A.; Rämö, J.; Tahvonen, O. Economics of size-structured forestry with carbon storage. Can. J. For. Res. 2018, 48, 11–22. [Google Scholar] [CrossRef]
- Pyy, J.; Ahtikoski, A.; Laitinen, E.; Siipilehto, J. Introducing a Non-Stationary Matrix Model for Stand-Level Optimization, an Even-Aged Pine (Pinus sylvestris L.) Stand in Finland. Forests 2017, 8, 163. [Google Scholar] [CrossRef]
- Pyy, J.; Ahtikoski, A.; Lapin, A.; Laitinen, E. Solution of Optimal Harvesting Problem by Finite Difference Approximations of Size-Structured Population Model. Math. Comp. Appl. 2018, 23, 22. [Google Scholar] [CrossRef]
- Cao, T.; Valsta, L.; Mäkelä, A. A comparison of carbon assessment methods for optimizing timber production and carbon sequestration in Scots pine stands. For. Ecol. Manag. 2010, 260, 1726–1734. [Google Scholar] [CrossRef]
- Niinimäki, S.; Tahvonen, O.; Mäkelä, A. Applying a process-based model in Norway spruce management. For. Ecol. Manag. 2012, 265, 102–115. [Google Scholar] [CrossRef]
- Tahvonen, O.; Pihlainen, S.; Niinimäki, S. On the economics of optimal timber production in boreal Scots pine stands. Can. J. For. Res. 2013, 43, 719–730. [Google Scholar] [CrossRef]
- Hurttala, H.; Cao, T.; Valsta, L. Optimization of Scots pine (Pinus sylvestris) management with the total net return from the value chain. J. For. Econ. 2017, 28, 1–11. [Google Scholar] [CrossRef]
- Pohjola, J.; Valsta, L. Carbon credits and management of Scots pine and Norway spruce stands in Finland. For. Policy Econ. 2007, 9, 789–798. [Google Scholar] [CrossRef]
- Ahtikoski, A.; Salminen, H.; Ojansuu, R.; Hynynen, J.; Kärkkäinen, K.; Haapanen, M. Optimizing stand management involving the effect of genetic gain: Preliminary results for Scots pine in Finland. Can. J. For. Res. 2013, 43, 1–7. [Google Scholar] [CrossRef]
- Juutinen, A.; Ahtikoski, A.; Lehtonen, M.; Mäkipää, R.; Ollikainen, M. The impact of a short-term carbon payment scheme on forest management. For. Policy Econ. 2018, 90, 115–127. [Google Scholar] [CrossRef]
- Grimm, V. Ten years of individual-based modelling in ecology: What have we learned and what could we learn in the future? Ecol. Model. 1999, 115, 129–148. [Google Scholar] [CrossRef]
- Zuidema, P.A.; Jonsegas, E.; Chien, P.D.; During, H.J.; Schieving, F. Integral projection models for trees: A new parametrization method and a validation of model output. J. Ecol. 2010, 98, 345–355. [Google Scholar] [CrossRef]
- Sable, S.E.; Rose, K.A. A comparison of individual-based and matrix projection models for simulating yellow perch population dynamics in Oneida Lake, New York, USA. Ecol. Model. 2008, 215, 105–121. [Google Scholar] [CrossRef]
- Haapanen, M.; Hynynen, J.; Ruotsalainen, S.; Siipilehto, J.; Kilpeläinen, M.-L. Realised and projected gains in growth, quality and simulated yield of genetically improved Scots pine in southern Finland. Eur. J. For. Res. 2016, 135, 997–1009. [Google Scholar] [CrossRef]
- Ahtikoski, A.; Haapanen, M.; Hynynen, J.; Karhu, J.; Kärkkäinen, K. Genetically improved reforestation stock provides simultaneous benefits for growers and a sawmill, a case study in Finland. Scand. J. For. Res. 2018, 33, 484–492. [Google Scholar] [CrossRef]
- Lyhykäinen, H.T.; Mäkinen, H.; Mäkelä, A.; Pastila, S.; Heikkilä, A.; Usenius, A. Predicting lumber grade and by-product yields for Scots pine trees. For. Ecol. Manag. 2009, 258, 146–158. [Google Scholar] [CrossRef]
- Ojansuu, R.; Mäkinen, H.; Heinonen, J. Including variation in branch and tree properties improves timber grade estimates in Scots pine stands. Can. J. For. Res. 2018, 48, 542–553. [Google Scholar] [CrossRef]
- Mäkinen, H. Effect of intertree competition on branch characteristics of Pinus sylvestris families. Scand. J. For. Res. 1996, 11, 129–136. [Google Scholar] [CrossRef]
- Gort, J.; Zubizarret-Gerendiain, A.; Peltola, H.; Kilpeläinen, A.; Pulkkinen, P.; Jaatinen, R.; Kellomäki, S. Differences in branch characteristics of Scots pine (Pinus sylvestris L.) genetic entries grown at different spacing. Ann. For. Sci. 2010, 67, 70. [Google Scholar] [CrossRef]
- Malinen, J.; Kilpeläinen, H.; Verkasalo, E. Validating the predicted saw log and pulpwood proportions and gross value of Scots pine and Norway spruce harvest at stand level by Most Similar Neighbour analyses and a stem quality database. Silva Fenn. 2018, 52. [Google Scholar] [CrossRef]
- Mäkinen, H.; Isomäki, A. Thinning intensity and growth of Scots pine stands in Finland. For. Ecol. Manag. 2004, 201, 311–325. [Google Scholar] [CrossRef]
- Siipilehto, J.; Kangas, A. Näslundin pituuskäyrä ja siihen perustuvia malleja läpimitan ja pituuden välisestä riippuvuudesta suomalaisissa talousmetsissä. MetsäTieteen Aikakauskirja 2015, 4, 215–236. [Google Scholar]
- Laasasenaho, J. Taper curve and volume functions for pine, spruce and birch. Commun. Lnst. For. Fenn. 1982, 108, 1–74. [Google Scholar]
- Hynynen, J.; Ojansuu, R.; Hökkä, H.; Siipilehto, J.; Salminen, H.; Haapala, P. Models for predicting stand development in MELA System. Metsäntutkimus laitoksen tiedonantoja. Finn. For. Res. Inst. Res. Pap. 2002, 835, 31–35. [Google Scholar]
- Xue, H.; Mäkelä, A.; Valsta, L.; Vanclay, J.K.; Cao, T. Comparison of population-based algorithms for optimizing thinnings and rotation using a process-based growth model. Scand. J. For. Res. 2019. [Google Scholar] [CrossRef]
- Mäkelä, A.; del Rìo, M.; Hynynen, J.; Hawkins, M.J.; Reyer, C.; Soares, P.; van Oijen, M.; Tomé, M. Using stand-scale forest models for estimating indicators of sustainable forest management. For. Ecol. Manag. 2012, 285, 164–178. [Google Scholar] [CrossRef]
- Pukkala, T. Population-based methods in the optimization of stand management. Silva Fenn. 2009, 43, 261–274. [Google Scholar] [CrossRef]
- Anita, S.; Arnautu, V.; Stefanescu, R. Numerical optimal harvesting for a periodic age-structured population dynamics with logistic term. Numer. Funct. Anal. Optim. 2009, 30, 183–198. [Google Scholar] [CrossRef]
- Ikonen, V.-P.; Kellomäki, S.; Peltola, H. Sawn timber properties of Scots pine as affected by initial stand density, thinning and pruning: A simulation based approach. Silva Fenn. 2009, 43, 411–431. [Google Scholar] [CrossRef]
- Lopez-Torres, I.; Perez, S.O.; Robredo, F.G.; Belda, C.F. Optimizing the management of uneven-aged Pinus nigra stands between two stable positions. iFor. Biosci. For. 2016, 9, 599–607. [Google Scholar] [CrossRef]


| Thinning | Stand Age (a) | Removal (m ha) | Thinning Intensity (% of Basal Area Removed) | Saw Log Proportion (%) | MaxNPV (€ha) | MAI (m ha a) |
|---|---|---|---|---|---|---|
| // | // | // | c/ / | // | // | |
| Interest rate | ||||||
| 1st | 45/45/50 | 77.3/72.1/62.9 | 54/50/35 | 60/61/67 | 3059/2872/2582 | 2.93/2.94/2.90 |
| 2nd | 70/65/75 | 59.8/52.3/78.5 | 33/27/42 | 64/64/72 | ||
| clearcut | 95/95/90 | 141.4/155.1/120.0 | 100/100/100 | 39/42/50 | ||
| total | 278.5/279.5/261.4 | 50/51/61 | ||||
| Interest rate | ||||||
| 1st | 40/40/50 | 60.9/61.9/50.6 | 61/62/28 | 53/52/71 | 2169/2036/1760 | 2.80/2.79/2.76 |
| 2nd | 65/65/55 | 60.1/58.4/50.0 | 32/31/32 | 64/64/60 | ||
| clearcut | 90/90/70 | 131.0/130.5/92.4 | 100/100/100 | 35/35/38 | ||
| total | 252.0/250.9/193.0 | 46/46/52 | ||||
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pyy, J.; Laitinen, E.; Ahtikoski, A. Demonstrating the Effect of Height Variation on Stand-Level Optimization with Diameter-Structured Matrix Model. Forests 2020, 11, 226. https://doi.org/10.3390/f11020226
Pyy J, Laitinen E, Ahtikoski A. Demonstrating the Effect of Height Variation on Stand-Level Optimization with Diameter-Structured Matrix Model. Forests. 2020; 11(2):226. https://doi.org/10.3390/f11020226
Chicago/Turabian StylePyy, Johanna, Erkki Laitinen, and Anssi Ahtikoski. 2020. "Demonstrating the Effect of Height Variation on Stand-Level Optimization with Diameter-Structured Matrix Model" Forests 11, no. 2: 226. https://doi.org/10.3390/f11020226
APA StylePyy, J., Laitinen, E., & Ahtikoski, A. (2020). Demonstrating the Effect of Height Variation on Stand-Level Optimization with Diameter-Structured Matrix Model. Forests, 11(2), 226. https://doi.org/10.3390/f11020226

