MODIS-Derived Estimation of Soil Respiration within Five Cold Temperate Coniferous Forest Sites in the Eastern Loess Plateau, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Soil Respiration Measurement
2.3. MODIS Land Surface Products
2.4. Data Processing and Analysis
2.4.1. Methods for Rs Modelling
2.4.2. Statistical Analysis
3. Results
3.1. Seasonal Variations of Rs
3.2. Correlations between Rs and Ts and LST
3.3. Correlations between Rs and VIs
3.4. Combined Correlations between Rs and Ts (or LST) and NDVI
3.5. Modeled Soil Respiration Validation
4. Discussion
4.1. The Impact of Temperature on Rs
4.2. Vegetation Index as a Driver of Rs
4.3. Spatial Scale of the Data
4.4. Limitation of the Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Raich, J.W.; Potter, C.S.; Bhagawati, D. Interannual variability in global soil respiration, 1980–1994. Glob. Chang. Biol. 2002, 8, 800–812. [Google Scholar] [CrossRef]
- Richardson, A.D.; Braswell, B.H.; Hollinger, D.Y.; Burman, P.; Davidson, E.A.; Evans, R.S.; Flanagan, L.B.; Munger, J.W.; Savage, K.; Urbanski, S.P.; et al. Comparing simple respiration models for eddy flux and dynamic chamber data. Agric. For. Meteorol. 2006, 141, 219–234. [Google Scholar] [CrossRef]
- Huang, N.; Gu, L.; Niu, Z. Estimating soil respiration using spatial data products: A case study in a deciduous broadleaf forest in the Midwest USA. J. Geophys. Res. Atmos. 2014, 119, 6393–6408. [Google Scholar] [CrossRef]
- Deimling, T.; Meinshausen, M.; Levermann, A.; Huber, V.; Frieler, K.; Lawrence, D.M.; Brovkin, V. Estimating the near-surface permafrost-carbon feedback on global warming. Biogeosciences 2012, 9, 649–665. [Google Scholar] [CrossRef] [Green Version]
- Buchmann, N. Biotic and abiotic factors controlling soil respiration rates in Picea abies stands. Soil Biol. Biochem. 2000, 32, 1625–1635. [Google Scholar] [CrossRef]
- Davidson, E.A.; Belk, E.; Boone, R.D. Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Glob. Chang. Biol. 1998, 4, 217–227. [Google Scholar] [CrossRef] [Green Version]
- Li, H.J.; Yan, J.X.; Yue, X.F.; Wang, M.B. Significance of soil temperature and moisture for soil respiration in a Chinese mountain area. Agric. For. Meteorol. 2008, 148, 490–503. [Google Scholar] [CrossRef]
- Han, C.; Liu, T.; Duan, L.; Zhang, S.; Singh, V.P. Spatio-temporal distribution of soil respiration in dune-meadow cascade ecosystems in the Horqin Sandy Land, China. CATENA 2017, 157, 397–406. [Google Scholar] [CrossRef]
- Yu, S.; Chen, Y.; Zhao, J.; Fu, S.; Li, Z.; Xia, H.; Zhou, L. Temperature sensitivity of total soil respiration and its heterotrophic and autotrophic components in six vegetation types of subtropical China. Sci. Total Environ. 2017, 607–608, 160–167. [Google Scholar] [CrossRef]
- Wang, Q.; He, T.; Wang, S.; Liu, L. Carbon input manipulation affects soil respiration and microbial community composition in a subtropical coniferous forest. Agric. For. Meteorol. 2013, 178–179, 152–160. [Google Scholar] [CrossRef]
- Chen, S.; Huang, Y.; Zou, J.; Shen, Q.; Hu, Z.; Qin, Y.; Chen, H.; Pan, G. Modeling interannual variability of global soil respiration from climate and soil properties. Agric. For. Meteorol. 2010, 150, 590–605. [Google Scholar] [CrossRef]
- Huang, N.; Wang, L.; Guo, Y.; Hao, P.; Niu, Z. Modeling spatial patterns of soil respiration in maize fields from vegetation and soil property factors with the use of remote sensing and geographical Information System. PLoS ONE 2014, 9, e105150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luan, J.; Liu, S.; Zhu, X.; Wang, J.; Liu, K. Roles of biotic and abiotic variables in determining spatial variation of soil respiration in secondary oak and planted pine forests. Soil Biol. Biochem. 2012, 44, 143–150. [Google Scholar] [CrossRef]
- Chen, S.; Zou, J.; Hu, Z.; Chen, H.; Lu, Y. Global annual soil respiration in relation to climate, soil properties and vegetation characteristics: Summary of available data. Agric. For. Meteorol. 2014, 198–199, 335–346. [Google Scholar] [CrossRef]
- Reichstein, M.; Rey, A.; Freibauer, A.; Tenhunen, J.; Valentini, R.; Banza, J.; Casals, P.; Cheng, Y.; Grünzweig, J.; Irvine, J.; et al. Modeling temporal and large-scale spatial variability of soil respiration from soil water availability, temperature and vegetation productivity indices. Glob. Biogeochem. Cycle 2003, 17, 1104. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhang, Z.; Zha, T.; Luo, Z.; Zheng, J.; Sun, O.J. Predicting soil respiration using carbon stock in roots, litter and soil organic matter in forests of Loess Plateau in China. Soil Biol. Biochem. 2013, 57, 135–143. [Google Scholar] [CrossRef]
- Sims, D.A.; Rahman, A.F.; Cordova, V.D.; El-Masri, B.Z.; Baldocchi, D.D.; Bolstad, P.V.; Flanagan, L.B.; Goldstein, A.H.; Hollinger, D.Y.; Misson, L.; et al. A new model of gross primary productivity for North American ecosystems based solely on the enhanced vegetation index and land surface temperature from MODIS. Remote Sens. Environ. 2008, 112, 1633–1646. [Google Scholar] [CrossRef]
- Gao, Y.; Yu, G.; Li, S.; Yan, H.; Zhu, X.; Wang, Q. A remote sensing model to estimate ecosystem respiration in Northern China and the Tibetan Plateau. Ecol. Model. 2015, 304, 34–43. [Google Scholar] [CrossRef]
- Huang, N.; Gu, L.; Black, T.A.; Wang, L.; Niu, Z. Remote sensing-based estimation of annual soil respiration at two contrasting forest sites. J. Geophys. Res. Biog. 2015, 120, 2306–2325. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.; Gaumont-Guay, D.; Black, T.A.; Jassal, R.S.; Xu, S.; Chen, J.M.; Gonsamo, A. Soil respiration mapped by exclusively use of MODIS data for forest landscapes of Saskatchewan, Canada. ISPRS J. Photogramm. Remote Sens. 2014, 94, 80–90. [Google Scholar] [CrossRef]
- Gamon, J.A.; Field, C.B.; Goulden, M.L.; Griffin, K.L.; Hartley, A.E.; Joel, G.; Peñuelas, J.; Valentini, R. Relationships between NDVI, canopy structure, and photosynthesis in three Californian vegetation types. Ecol. Appl. 1995, 5, 28–41. [Google Scholar] [CrossRef] [Green Version]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Vina, A.; Ciganda, V.; Rundquist, D.C.; Arkebauer, T.J. Remote estimation of canopy chlorophyll content in crops. Geophys. Res. Lett. 2005, 32, L08403. [Google Scholar] [CrossRef] [Green Version]
- Lloyd, J.; Taylor, J.A. On the temperature dependence of soil respiration. Funct. Ecol. 1994, 8, 315–323. [Google Scholar] [CrossRef]
- Migliavacca, M.; Reichstein, M.; Richardson, A.D.; Colombo, R.; Sutton, M.A.; Lasslop, G.; Tomelleri, E.; Wohlfahrt, G.; Carvalhais, N.; Cescatti, A.; et al. Semi-empirical modeling of abiotic and biotic factors controlling ecosystem respiration across eddy covariance sites. Glob. Chang. Biol. 2011, 17, 390–409. [Google Scholar] [CrossRef]
- Benali, A.; Carvalho, A.C.; Nunes, J.P.; Carvalhais, N.; Santos, A. Estimating air surface temperature in Portugal using MODIS LST data. Remote Sens. Environ. 2012, 124, 108–121. [Google Scholar] [CrossRef]
- Zhang, W.; Huang, Y.; Yu, Y.; Sun, W. Empirical models for estimating daily maximum, minimum and mean air temperatures with MODIS land surface temperatures. Int. J. Remote Sens. 2011, 32, 9415–9440. [Google Scholar] [CrossRef]
- Huang, N.; Niu, Z. Estimating soil respiration using spectral vegetation indices and abiotic factors in irrigated and rainfed agroecosystems. Plant Soil 2012, 367, 535–550. [Google Scholar] [CrossRef]
- Sánchez, M.L.; Ozores, M.I.; López, M.J.; Colle, R.; Torre, B.D.; García, M.A.; Pérez, I. Soil CO2 fluxes beneath barley on the central Spanish plateau. Agric. For. Meteorol. 2003, 118, 85–95. [Google Scholar] [CrossRef]
- Liang, Y.; Cai, Y.; Yan, J.; Li, H. Estimation of soil respiration by its driving factors based on multi-source data in a sub-alpine meadow in north China. Sustainability 2019, 11, 3274. [Google Scholar] [CrossRef] [Green Version]
- Ai, J.L.; Jia, G.S.; Epstein, H.E.; Wang, H.S.; Zhang, A.Z.; Hu, Y.H. MODIS-based estimates of global terrestrial ecosystem respiration. J. Geophys. Res. Biog. 2018, 123, 326–352. [Google Scholar] [CrossRef]
- Crosson, W.L.; Al-Hamdan, M.Z.; Hemmings, S.N.J.; Wade, G.M. A daily merged MODIS Aqua–Terra land surface temperature data set for the conterminous United States. Remote Sens. Environ. 2012, 119, 315–324. [Google Scholar] [CrossRef]
- Liu, H.S.; Li, L.H.; Han, X.G.; Huang, J.H.; Sun, J.X.; Wang, H.Y. Respiratory substrate availability plays a crucial role in the response of soil respiration to environmental factors. Appl. Soil Ecol. 2006, 32, 284–292. [Google Scholar] [CrossRef]
Sites | NMF | ENF | DNF-1 | DNF-2 | DNF-3 |
---|---|---|---|---|---|
Latitude | N 37°53′08.4″ | N 37°52′34.4″ | N 37°53′33.7″ | N 37°53′24.3″ | N 37°53′03.4″ |
Longitude | E 111°25′56.6″ | E 111°26′31.0″ | E 111°31′05.0″ | E 111°30′15.1″ | E 111°30′34.5″ |
Elevation (m) | 2163 | 1986 | 2387 | 2264 | 2105 |
Slope (°) | ~16 | ~8 | ~25 | ~32 | ~1 |
Aspect | SW | SW | SW | SW | SW |
Soil texture | Loamy sand | Loamy sand | Loamy sand | Sandy loam | Sandy loam |
Soil depth (cm) | 10–35 | 10–30 | 10–35 | 10–30 | 10–30 |
SBD (g cm−3) a | 0.73 | 1.26 | 1.04 | 1.11 | 1.27 |
WHC (%) b | 37.25 | 20.32 | 30.62 | 24.19 | 27.47 |
Plant combination | Coniferous mixed forest | Evergreen coniferous forest | Deciduous coniferous forest | Deciduous coniferous forest | Deciduous coniferous forest |
Dominant species | Picea wilsonii Mast. (Wilson Spruce), Larix principis-rupprechtii Mayr. (Prince Rupprecht’s Larch) | Picea wilsonii Mast. (Wilson Spruce) | Larix principis-rupprechtii Mayr. (Prince Rupprecht’s Larch) | Larix principis-rupprechtii Mayr. (Prince Rupprecht’s Larch) | Larix principis-rupprechtii Mayr. (Prince Rupprecht’s Larch) |
Stand density (tree ha−1) | 950 | 675 | 1175 | 1025 | 925 |
DBH (cm) c | 22.9 ± 8.7 | 29.6 ± 9.0 | 18.7 ± 8.2 | 26.6 ± 11.1 | 28.1 ± 10.3 |
Vegetation Index | Formulation | Reference |
---|---|---|
Normalized Difference Vegetation Index | [21] | |
Enhanced Vegetation Index | [22] | |
Green Edge Chlorophyll Index | [23] |
Site Code | Rs | T5 | LSTad | LSTan | NDVI | Ws | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | CV | Mean | CV | Mean | CV | Mean | CV | Mean | CV | Mean | CV | |
NMF | 4.24 ± 2.27 ab | 53.62 | 9.33 ± 4.71 ab | 50.49 | 15.21 ± 4.85 a | 31.92 | 6.71 ± 5.89 a | 87.77 | 0.68 ± 0.19 a | 28.34 | 54.19 ± 17.20 e | 31.74 |
ENF | 4.76 ± 2.54 b | 53.48 | 10.18 ± 4.96 ab | 48.72 | 15.08 ± 4.72 a | 31.27 | 6.27 ± 5.73 a | 91.41 | 0.69 ± 0.17 a | 24.35 | 29.62 ± 8.32 a | 28.09 |
DNF-1 | 3.57 ± 1.94 a | 54.36 | 8.45 ± 4.61 a | 54.62 | 14.55 ± 4.99 a | 34.29 | 5.30 ± 5.69 a | 107.24 | 0.62 ± 0.20 a | 32.88 | 48.57 ± 14.26 c | 29.37 |
DNF-2 | 4.95 ± 2.39 b | 48.33 | 10.20 ± 4.63 ab | 45.38 | 14.54 ± 4.98 a | 34.26 | 5.22 ± 5.74 a | 109.83 | 0.62 ± 0.21 a | 34.00 | 38.29 ± 12.31 b | 32.13 |
DNF-3 | 6.11 ± 2.94 c | 48.20 | 11.08 ± 5.03 b | 45.44 | 15.13 ± 4.73 a | 31.26 | 5.67 ± 5.72 a | 100.82 | 0.65 ± 0.21 a | 31.91 | 37.50 ± 9.50 b | 25.34 |
All | 4.73 ± 2.57 | 54.15 | 9.85 ± 4.84 | 49.14 | 14.90 ± 4.83 | 31.79 | 5.84 ± 5.74 | 97.77 | 0.65 ± 0.20 | 31.75 | 41.64 ± 15.35 | 38.97 |
Temperature | NMF | ENF | DNF-1 | DNF-2 | DNF-3 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T5 | T10 | T15 | T5 | T10 | T15 | T5 | T10 | T15 | T5 | T10 | T15 | T5 | T10 | T15 | |
LSTan | 0.88 | 0.86 | 0.82 | 0.92 | 0.90 | 0.87 | 0.90 | 0.90 | 0.85 | 0.91 | 0.89 | 0.85 | 0.92 | 0.90 | 0.89 |
LSTtn | 0.89 | 0.87 | 0.83 | 0.91 | 0.89 | 0.87 | 0.89 | 0.89 | 0.83 | 0.89 | 0.87 | 0.83 | 0.91 | 0.89 | 0.88 |
LSTtd | 0.73 | 0.69 | 0.62 | 0.83 | 0.79 | 0.74 | 0.73 | 0.70 | 0.61 | 0.72 | 0.68 | 0.62 | 0.77 | 0.73 | 0.69 |
LSTad | 0.68 | 0.64 | 0.58 | 0.74 | 0.71 | 0.65 | 0.72 | 0.68 | 0.59 | 0.69 | 0.65 | 0.59 | 0.74 | 0.70 | 0.65 |
Model | Temperature | NMF | ENF | DNF-1 | DNF-2 | DNF-3 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | R2 | RMSE | R2 | RMSE | R2 | RMSE | ||
Equation (1) | T5 | 0.74 | 1.25 | 0.79 | 1.34 | 0.76 | 1.14 | 0.77 | 1.53 | 0.74 | 2.01 |
T10 | 0.74 | 1.25 | 0.77 | 1.35 | 0.72 | 1.21 | 0.76 | 1.49 | 0.71 | 2.03 | |
T15 | 0.74 | 1.22 | 0.76 | 1.32 | 0.68 | 1.23 | 0.73 | 1.48 | 0.67 | 2.08 | |
LSTan | 0.64 | 1.50 | 0.73 | 1.54 | 0.79 | 1.13 | 0.74 | 1.48 | 0.71 | 1.97 | |
LSTnightav | 0.65 | 1.46 | 0.73 | 1.54 | 0.78 | 1.17 | 0.72 | 1.55 | 0.70 | 2.03 | |
LSTtn | 0.63 | 1.48 | 0.69 | 1.63 | 0.76 | 1.26 | 0.67 | 1.68 | 0.67 | 2.16 | |
LSTtav | 0.57 | 1.56 | 0.68 | 1.73 | 0.70 | 1.36 | 0.64 | 2.01 | 0.67 | 2.20 | |
LSTav | 0.56 | 1.61 | 0.67 | 1.76 | 0.72 | 1.34 | 0.65 | 2.00 | 0.67 | 2.19 | |
LSTaav | 0.53 | 1.70 | 0.64 | 1.85 | 0.71 | 1.36 | 0.62 | 2.03 | 0.65 | 2.22 | |
LSTtd | 0.44 | 1.83 | 0.59 | 1.98 | 0.55 | 1.62 | 0.49 | 2.03 | 0.56 | 2.53 | |
LSTdayav | 0.41 | 1.90 | 0.54 | 2.08 | 0.58 | 1.63 | 0.48 | 2.09 | 0.53 | 2.57 | |
LSTad | 0.35 | 2.02 | 0.44 | 2.25 | 0.54 | 1.68 | 0.41 | 2.19 | 0.47 | 2.65 | |
Equation (2) | T5 | 0.74 | 1.24 | 0.80 | 1.32 | 0.78 | 1.05 | 0.81 | 1.40 | 0.77 | 1.88 |
T10 | 0.75 | 1.24 | 0.79 | 1.33 | 0.74 | 1.12 | 0.79 | 1.37 | 0.75 | 1.90 | |
T15 | 0.75 | 1.21 | 0.77 | 1.30 | 0.70 | 1.15 | 0.75 | 1.38 | 0.70 | 1.96 | |
LSTan | 0.62 | 1.51 | 0.71 | 1.56 | 0.79 | 1.09 | 0.75 | 1.42 | 0.74 | 1.85 | |
LSTnightav | 0.63 | 1.46 | 0.72 | 1.54 | 0.80 | 1.10 | 0.74 | 1.47 | 0.74 | 1.89 | |
LSTtn | 0.62 | 1.46 | 0.70 | 1.58 | 0.78 | 1.17 | 0.71 | 1.57 | 0.71 | 1.98 | |
LSTtav | 0.56 | 1.59 | 0.69 | 1.70 | 0.72 | 1.31 | 0.66 | 1.96 | 0.69 | 2.08 | |
LSTav | 0.55 | 1.63 | 0.67 | 1.74 | 0.73 | 1.29 | 0.66 | 1.95 | 0.69 | 2.08 | |
LSTaav | 0.53 | 1.69 | 0.64 | 1.81 | 0.72 | 1.31 | 0.64 | 1.99 | 0.67 | 2.12 | |
LSTtd | 0.43 | 1.84 | 0.60 | 1.94 | 0.56 | 1.57 | 0.51 | 1.98 | 0.58 | 2.42 | |
LSTdayav | 0.42 | 1.89 | 0.56 | 2.03 | 0.59 | 1.57 | 0.51 | 2.03 | 0.56 | 2.47 | |
LSTad | 0.38 | 1.98 | 0.48 | 2.19 | 0.56 | 1.62 | 0.45 | 2.13 | 0.51 | 2.56 |
Model | VI | NMF | ENF | DNF-1 | DNF-2 | DNF-3 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | R2 | RMSE | R2 | RMSE | R2 | RMSE | ||
Equation (3) | NDVI | 0.76 | 1.17 | 0.68 | 1.46 | 0.72 | 0.98 | 0.74 | 1.17 | 0.71 | 1.65 |
EVI | 0.65 | 1.44 | 0.63 | 1.70 | 0.65 | 1.37 | 0.63 | 1.65 | 0.61 | 2.03 | |
CIgreen edge | 0.66 | 1.49 | 0.54 | 1.76 | 0.57 | 1.63 | 0.60 | 1.71 | 0.60 | 2.11 | |
Equation (4) | NDVI | 0.73 | 1.18 | 0.66 | 1.48 | 0.72 | 1.02 | 0.76 | 1.17 | 0.71 | 1.55 |
EVI | 0.66 | 1.32 | 0.60 | 1.59 | 0.65 | 1.13 | 0.64 | 1.42 | 0.63 | 1.77 | |
CIgreen edge | 0.70 | 1.23 | 0.60 | 1.60 | 0.66 | 1.12 | 0.69 | 1.33 | 0.71 | 1.55 |
Equation | NMF | ENF | DNF-1 | DNF-2 | DNF-3 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
R2 | RMSE | AIC | R2 | RMSE | AIC | R2 | RMSE | AIC | R2 | RMSE | AIC | R2 | RMSE | AIC | |
Soil temperature at 5 cm depth | |||||||||||||||
Rs = a × eb×T | 0.74 | 1.25 | 29.59 | 0.79 | 1.34 | 37.67 | 0.76 | 1.14 | 19.19 | 0.77 | 1.53 | 53.68 | 0.74 | 2.01 | 85.13 |
Rs = Rref × e(b(1/56.02−1/(T+46.02))) | 0.74 | 1.24 | 28.89 | 0.80 | 1.32 | 36.27 | 0.78 | 1.05 | 10.10 | 0.81 | 1.40 | 43.10 | 0.77 | 1.88 | 77.06 |
Soil temperature at 5 cm depth and NDVI | |||||||||||||||
Rs = a + b × T × VI | 0.82 | 0.96 | −1.21 | 0.79 | 1.16 | 20.74 | 0.80 | 0.85 | −14.18 | 0.79 | 1.10 | 15.08 | 0.77 | 1.51 | 51.47 |
Rs = a + b × T + c × VI | 0.80 | 1.02 | 8.21 | 0.77 | 1.21 | 27.75 | 0.78 | 0.91 | −5.40 | 0.80 | 1.08 | 14.39 | 0.76 | 1.52 | 54.79 |
Rs = a × e(b×T+c×VI) | 0.84 | 1.10 | 17.24 | 0.84 | 1.17 | 23.81 | 0.79 | 0.90 | −6.01 | 0.81 | 1.18 | 25.67 | 0.78 | 1.57 | 58.38 |
Rs = a × eb×T × VIc | 0.85 | 1.10 | 17.30 | 0.84 | 1.17 | 24.03 | 0.79 | 0.91 | −5.15 | 0.82 | 1.18 | 24.87 | 0.79 | 1.56 | 57.64 |
Rs =Rref × e((b(1/56.02−1/(T+46.02)))+c×VI) | 0.84 | 1.10 | 16.71 | 0.85 | 1.16 | 23.22 | 0.80 | 0.88 | −8.32 | 0.84 | 1.16 | 22.86 | 0.81 | 1.55 | 56.89 |
Rs =Rref × e((b(1/56.02−1/(T+46.02))) × VIc | 0.85 | 0.96 | 1.36 | 0.85 | 1.16 | 23.55 | 0.80 | 0.90 | −6.63 | 0.84 | 1.16 | 23.24 | 0.81 | 1.55 | 57.06 |
Nighttime LST from Aqua MODIS | |||||||||||||||
Rs = a × eb×LST | 0.64 | 1.50 | 50.92 | 0.73 | 1.54 | 54.19 | 0.79 | 1.13 | 18.00 | 0.74 | 1.48 | 49.17 | 0.71 | 1.97 | 82.56 |
Rs = Rref × e(b(1/56.02−1/(LST+46.02))) | 0.62 | 1.51 | 52.13 | 0.71 | 1.56 | 55.94 | 0.79 | 1.09 | 13.86 | 0.75 | 1.42 | 44.28 | 0.74 | 1.85 | 75.11 |
Nighttime LST from Aqua MODIS and NDVI | |||||||||||||||
Rs = a + b × LST × VI | 0.71 | 1.22 | 26.91 | 0.71 | 1.37 | 40.37 | 0.74 | 0.97 | 0.71 | 0.71 | 1.28 | 32.94 | 0.70 | 1.66 | 63.04 |
Rs = a + b × LST + c × VI | 0.75 | 1.12 | 18.96 | 0.72 | 1.34 | 39.70 | 0.75 | 0.97 | 2.58 | 0.77 | 1.15 | 22.21 | 0.74 | 1.57 | 58.03 |
Rs = a × e(b×LST+c×VI) | 0.81 | 1.11 | 18.56 | 0.81 | 1.31 | 37.76 | 0.81 | 0.98 | 3.99 | 0.79 | 1.20 | 27.43 | 0.77 | 1.64 | 63.53 |
Rs = a × eb×LST × VIc | 0.81 | 1.11 | 17.80 | 0.80 | 1.32 | 38.26 | 0.81 | 1.00 | 5.54 | 0.79 | 1.20 | 27.28 | 0.77 | 1.61 | 61.37 |
Rs =Rref × e((b(1/56.02−1/(LST+46.02)))+c×VI) | 0.81 | 1.11 | 17.81 | 0.81 | 1.30 | 36.65 | 0.82 | 0.95 | −0.38 | 0.81 | 1.17 | 24.70 | 0.79 | 1.60 | 60.20 |
Rs =Rref × e((b(1/56.02−1/(LST+46.02))) × VIc | 0.82 | 1.11 | 17.60 | 0.80 | 1.31 | 37.55 | 0.82 | 0.97 | 2.56 | 0.81 | 1.19 | 26.08 | 0.79 | 1.59 | 59.75 |
Equation | NMF | ENF | DNF-1 | DNF-2 | DNF-3 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
R2 | RMSE | EF | R2 | RMSE | EF | R2 | RMSE | EF | R2 | RMSE | EF | R2 | RMSE | EF | |
Soil temperature at 5 cm depth | |||||||||||||||
Rs = a × eb×T | 0.76 | 1.36 | 0.48 | 0.79 | 1.25 | 0.31 | 0.78 | 1.19 | 0.27 | 0.77 | 1.50 | 0.21 | 0.74 | 1.88 | −0.32 |
Rs = Rref × e(b(1/56.02−1/(T+46.02))) | 0.76 | 1.37 | 0.49 | 0.79 | 1.25 | 0.33 | 0.80 | 1.10 | 0.45 | 0.78 | 1.37 | 0.36 | 0.76 | 1.73 | −0.05 |
Soil temperature at 5 cm depth and VI | |||||||||||||||
Rs = a = b × T × VI | 0.81 | 1.18 | 0.63 | 0.87 | 1.01 | 0.63 | 0.84 | 0.87 | 0.70 | 0.84 | 1.09 | 0.66 | 0.84 | 1.40 | 0.47 |
Rs = a = b × T + c × VI | 0.79 | 1.26 | 0.59 | 0.81 | 1.11 | 0.53 | 0.80 | 1.00 | 0.60 | 0.81 | 1.11 | 0.64 | 0.80 | 1.58 | 0.31 |
Rs = a × e(b×T+c×VI) | 0.81 | 1.20 | 0.60 | 0.83 | 1.10 | 0.56 | 0.80 | 1.05 | 0.53 | 0.82 | 1.25 | 0.48 | 0.78 | 1.71 | −0.06 |
Rs = a × eb×T × VIc | 0.81 | 1.20 | 0.60 | 0.87 | 1.03 | 0.61 | 0.83 | 0.97 | 0.59 | 0.81 | 1.24 | 0.50 | 0.78 | 1.66 | 0.06 |
Rs =Rref × e((b(1/56.02−1/(T+46.02)))+c×VI) | 0.81 | 1.21 | 0.61 | 0.85 | 1.07 | 0.58 | 0.83 | 0.95 | 0.62 | 0.82 | 1.21 | 0.53 | 0.79 | 1.64 | 0.06 |
Rs =Rref × e((b(1/56.02−1/(T+46.02))) × VIc | 0.81 | 1.21 | 0.61 | 0.86 | 1.04 | 0.61 | 0.83 | 0.95 | 0.62 | 0.82 | 1.21 | 0.53 | 0.79 | 1.62 | 0.12 |
Nighttime LST from Aqua MODIS | |||||||||||||||
Rs =a × eb×LST | 0.67 | 1.58 | 0.35 | 0.66 | 1.49 | 0.22 | 0.71 | 1.15 | 0.46 | 0.69 | 1.41 | 0.44 | 0.67 | 1.87 | 0.00 |
Rs = Rref × e(b(1/56.02−1/(LST+46.02))) | 0.66 | 1.60 | 0.37 | 0.64 | 1.50 | 0.26 | 0.72 | 1.09 | 0.54 | 0.71 | 1.37 | 0.48 | 0.71 | 1.77 | 0.15 |
Nighttime LST from Aqua MODIS and VI | |||||||||||||||
Rs = a = b × LST × VI | 0.73 | 1.40 | 0.49 | 0.76 | 1.24 | 0.49 | 0.77 | 1.00 | 0.62 | 0.75 | 1.19 | 0.59 | 0.78 | 1.58 | 0.34 |
Rs = a = b × LST = c × VI | 0.74 | 1.37 | 0.53 | 0.79 | 1.16 | 0.55 | 0.76 | 1.00 | 0.61 | 0.77 | 1.55 | 0.38 | 0.80 | 1.57 | 0.41 |
Rs = a × e(b×LST+c×VI) | 0.76 | 1.31 | 0.54 | 0.82 | 1.20 | 0.50 | 0.76 | 1.03 | 0.58 | 0.77 | 1.16 | 0.61 | 0.76 | 1.68 | 0.23 |
Rs = a × eb×LST × VIc | 0.76 | 1.33 | 0.53 | 0.81 | 1.13 | 0.58 | 0.76 | 1.04 | 0.58 | 0.77 | 1.16 | 0.61 | 0.77 | 1.63 | 0.31 |
Rs =Rref × e((b(1/56.02−1/(LST+46.02)))+c×VI) | 0.77 | 1.30 | 0.55 | 0.81 | 1.15 | 0.57 | 0.78 | 0.98 | 0.63 | 0.78 | 1.12 | 0.64 | 0.76 | 1.65 | 0.25 |
Rs =Rref × e((b(1/56.02−1/(LST+46.02))) × VIc | 0.76 | 1.32 | 0.55 | 0.81 | 1.15 | 0.57 | 0.77 | 0.99 | 0.62 | 0.78 | 1.14 | 0.63 | 0.77 | 1.60 | 0.34 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, J.; Zhang, X.; Liu, J.; Li, H.; Ding, G. MODIS-Derived Estimation of Soil Respiration within Five Cold Temperate Coniferous Forest Sites in the Eastern Loess Plateau, China. Forests 2020, 11, 131. https://doi.org/10.3390/f11020131
Yan J, Zhang X, Liu J, Li H, Ding G. MODIS-Derived Estimation of Soil Respiration within Five Cold Temperate Coniferous Forest Sites in the Eastern Loess Plateau, China. Forests. 2020; 11(2):131. https://doi.org/10.3390/f11020131
Chicago/Turabian StyleYan, Junxia, Xue Zhang, Ju Liu, Hongjian Li, and Guangwei Ding. 2020. "MODIS-Derived Estimation of Soil Respiration within Five Cold Temperate Coniferous Forest Sites in the Eastern Loess Plateau, China" Forests 11, no. 2: 131. https://doi.org/10.3390/f11020131
APA StyleYan, J., Zhang, X., Liu, J., Li, H., & Ding, G. (2020). MODIS-Derived Estimation of Soil Respiration within Five Cold Temperate Coniferous Forest Sites in the Eastern Loess Plateau, China. Forests, 11(2), 131. https://doi.org/10.3390/f11020131