Ground-Dwelling Invertebrate Abundance Positively Related to Volume of Logging Residues in the Southern Appalachians, USA
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Invertebrate Sampling and Identification
2.3. Microhabitat Characteristics
2.4. Downed Wood Volumes
2.5. Statistical Analysis
3. Results
3.1. Microhabitat Characteristics
3.2. Site-Level Woody Debris Volumes
3.3. Capture Summary
3.4. Invertebrate Responses
3.5. Ant Responses
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Harmon, M.E.; Franklin, J.F.; Swanson, F.J.; Sollins, P.; Gregory, S.V.; Lattin, J.D.; Anderson, N.H.; Cline, S.P.; Aumen, N.G.; Sedell, J.R.; et al. Ecology of coarse woody debris in temperate ecosystems. Adv. Ecol. Res. 1986, 15, 133–302. [Google Scholar] [CrossRef]
- Wiebe, S.A.; Morris, D.M.; Luckai, N.J.; Reid, D.E.B. The influence of coarse woody debris on soil carbon and nutrient pools 15 years after clearcut harvesting in black spruce-dominated stands in northwestern Ontario, Canada. Ecoscience 2014, 21, 11–20. [Google Scholar] [CrossRef]
- Gonzalez-Polo, M.; Fernández-Souto, A.; Austin, A.T. Coarse woody debris stimulates soil enzymatic activity and litter decomposition in an old-growth temperate forest of Patagonia, Argentina. Ecosystems 2013, 16, 1025–1038. [Google Scholar] [CrossRef]
- Powers, R.F. Effects of soil disturbance on the fundamental, sustainable productivity of managed forests. In Proceedings of a Symposium on the Kings River Sustainable Forest Ecosystem Project: Progress and Current Status; Verner, J., Ed.; USDA Forest Servicem Pacific Southwest Research Station: Albany, CA, USA, 2002; pp. 63–82. [Google Scholar]
- Harmon, M.E.; Franklin, J.F. Tree seedlings on logs in Picae-Tsuga forests of Oregon and Washington. Ecology 1989, 70, 48–59. [Google Scholar] [CrossRef]
- Szewczyk, J.; Szwagrzyk, J. Tree regeneration on rotten wood and on soil in old growth stand. Vegetatio 1996, 122, 37–46. [Google Scholar] [CrossRef]
- Simard, M.-J.; Bergeron, Y.; Sirois, L. Conifer seedling recruitment in a southeastern Canadian boreal forest: The importance of substrate. J. Veg. Sci. 1998, 9, 575–582. [Google Scholar] [CrossRef]
- O’Hanlon-Manners, D.L.; Kotanen, P.M. Logs as refuges from fungal pathogens for seeds of eastern hemlock (Tsuga canadensis). Ecology 2004, 85, 284–289. [Google Scholar] [CrossRef] [Green Version]
- Smethurst, P.J.; Nambiar, E.K.S. Effects of slash and litter management on fluxes of nitrogen and tree growth in a young Pinus radiata plantation. Can. J. Res. 1990, 20, 1498–1507. [Google Scholar] [CrossRef]
- O’Connell, A.M.; Grove, T.S.; Mendham, D.S.; Rance, S.J. Impact of harvest residue management on soil nitrogen dynamics in Eucalyptus globulus plantations in south western Australia. Soil Biol. Biochem. 2004, 36, 39–48. [Google Scholar] [CrossRef]
- Haskell, D.E.; Flaspohler, D.J.; Webster, C.R.; Meyer, M.W. Variation in soil temperature, moisture, and plant growth with the addition of downed woody material on lakeshore restoration sites. Restor. Ecol. 2012, 20, 113–121. [Google Scholar] [CrossRef]
- Fritts, S.R.; Grodsky, S.M.; Hazel, D.W.; Homyack, J.A.; Castleberry, S.B.; Moorman, C.E. Quantifying multi-scale habitat use of woody biomass by southern toads. Ecol. Manag. 2015, 346, 81–88. [Google Scholar] [CrossRef]
- McMinn, J.W.; Crossley, D.A., Jr. Biodiversity and Coarse Woody Debris in Southern Forests. Gen. Tech. Rep. SE-GTR-94 1996, 108–118. [Google Scholar] [CrossRef]
- Loeb, S.C. Responses of small mammals to coarse woody debris in a southeastern pine forest. J. Mammal. 1999, 80, 460–471. [Google Scholar] [CrossRef] [Green Version]
- Butts, S.R.; McComb, W.C. Associations of forest-floor vertebrates with coarse in managed debris forests of western Oregon. J. Wildl. Manag. 2000, 64, 95–104. [Google Scholar] [CrossRef]
- Grodsky, S.M.; Moorman, C.E.; Fritts, S.R.; Castleberry, B.; Wigley, T.B. Breeding, early-successional bird response to forest harvests for bioenergy. PLoS ONE 2016, 11, 1–20. [Google Scholar] [CrossRef]
- Siitonen, J.; Stokland, J.; Jonsson, B. Other associations with dead woody material. In Biodiversity in Dead Wood (Ecology, Biodiversity and Conservation Series); Cambridge University Press: Cambridge, UK, 2012; pp. 58–81. [Google Scholar] [CrossRef]
- Speight, M.C.D. Saproxylic Invertebrates and Their Conservation; Nature and Environment Series; Council of Europe: Strasbourg, France, 1989. [Google Scholar]
- Schmidl, J.; Bussler, H. Ökologische Gilden xylobionter Käfer Deutschlands. Nat. Und Landsch. 2004, 36, 202–218. [Google Scholar]
- Stokland, J.; Siitonen, J.; Jonsson, B. Introduction. In Biodiversity in Dead Wood (Ecology, Biodiversity and Conservation Series); Cambridge University Press: Cambridge, UK, 2012; pp. 1–9. [Google Scholar]
- Loeb, S.C. The role of coarse woody debris in the ecology of southeastern mammals. In Biodiversity and Coarse Woody Debris in Southern Forests, Proceedings of the Workshop on Coarse Woody Debris in Southern Forests: Effects on Biodiversity; McMinn, J.W., Crossley, D.A., Jr., Eds.; Gen Tech Rep SE-GTR-94; USDA Forest Service Southern Research Station USDA: Athens, GA, USA, 1996; pp. 108–118. [Google Scholar]
- Sharitz, R.R. Coarse woody debris and woody seedling recruitment in southeastern forests. In Biodiversity and Coarse Woody Debris in Southern Forests, Proceedings of the Workshop on Coarse Woody Debris in Southern Forests: Effects on Biodiversity; McMinn, J.W., Crossley, D.A., Jr., Eds.; USDA Gen Tech Report SE-GTR-94; USDA Forest Service Southern Research Station: Athens, GA, USA, 1996; pp. 28–34. [Google Scholar]
- Grodsky, S.M.; Moorman, C.E.; Fritts, S.R.; Campbell, J.W.; Sorenson, C.E.; Bertone, M.A.; Castleberry, S.B.; Wigley, T.B. Invertebrate community response to coarse woody debris removal for bioenergy production from intensively managed forests. Ecol. App. 2018, 28, 135–148. [Google Scholar] [CrossRef]
- Penney, M.M. Studies on the ecology of Feronia oblongopunctata (F.) (Coleoptera: Carabidae). Trans. Soc. Br. Entomol. 1967, 17, 129–139. [Google Scholar]
- Ulyshen, M.D. Wood decomposition as influenced by invertebrates. Biol. Rev. 2016, 91, 70–85. [Google Scholar] [CrossRef]
- Ulyshen, M.D.; Šobotnik, J. An introduction to the diversity, ecology, and conservation of saproxylic insects. In Saproxylic Insects: Diversity, Ecology and Conservation (Zoological Monographs 1); Springer International Publishing: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- Bouget, C.; Larrieu, L.; Nusillard, B.; Parmain, G. In search of the best local habitat drivers for saproxylic beetle diversity in temperate deciduous forests. Biodivers. Conserv. 2013, 22, 2111–2130. [Google Scholar] [CrossRef]
- Seibold, S.; Bässler, C.; Baldrian, P.; Reinhard, L.; Thorn, S.; Ulyshen, M.D.; Weiß, I.; Müller, J. Dead-wood addition promotes non-saproxylic epigeal arthropods but effects are mediated by canopy openness. Biol. Conserv. 2016, 204, 181–188. [Google Scholar] [CrossRef]
- Lassauce, A.; Lieutier, F.; Bouget, C. Woodfuel harvesting and biodiversity conservation in temperate forests: Effects of logging residue characteristics on saproxylic beetle assemblages. Biol. Conserv. 2012, 147, 204–212. [Google Scholar] [CrossRef]
- Evans, A.M.; Clinton, P.W.; Allen, R.B.; Frampton, C.M. The influence of logs on the spatial distribution of litter-dwelling invertebrates and forest floor processes in New Zealand forests. Ecol. Manag. 2003, 184, 251–262. [Google Scholar] [CrossRef]
- Jabin, M.; Mohr, D.; Kappes, H.; Topp, W. Influence of deadwood on density of soil macro-arthropods in a managed oak–beech forest. Ecol. Manag. 2004, 194, 61–69. [Google Scholar] [CrossRef]
- Jabin, M.; Topp, W.; Kulfan, J.; Zach, P. The distribution pattern of centipedes in four primeval forests of central Slovakia. Biodivers. Conserv. Eur. 2007, 16, 3437–3445. [Google Scholar] [CrossRef]
- Topp, W.; Kappes, H.; Kulfan, J.; Zach, P. Litter-dwelling beetles in primeval forests of Central Europe: Does deadwood matter? J. Insect Conserv. 2006, 10, 229–239. [Google Scholar] [CrossRef]
- Topp, W.; Kappes, H.; Kulfan, J.; Zach, P. Distribution pattern of woodlice (Isopoda) and millipedes (Diplopoda) in four primeval forests of the Western Carpathians (Central Slovakia). Soil Biol. Biochem. 2006, 38, 43–50. [Google Scholar] [CrossRef]
- Ulyshen, M.D.; Hanula, J.L. Litter-dwelling arthropod abundance peaks near coarse woody debris in loblolly pine forests of the southeastern United States. Fla. Entomol. 2009, 92, 163–164. [Google Scholar] [CrossRef]
- Castro, A.; Wise, D.H. Influence of fallen coarse woody debris on the diversity and community structure of forest-floor spiders (Arachnida: Araneae). Ecol. Manag. 2010, 260, 2088–2101. [Google Scholar] [CrossRef]
- Castro, A.; Wise, D.H. Influence of fine woody debris on spider diversity and community structure in forest leaf litter. Biodivers. Conserv. 2009, 18, 3705–3731. [Google Scholar] [CrossRef]
- Grodsky, S.M.; Campbell, J.W.; Fritts, S.R.; Wigley, T.B.; Moorman, C.E. Variable responses of non-native and native ants to coarse woody debris removal following forest bioenergy harvests. For. Ecol. Manag. 2018, 427, 414–422. [Google Scholar] [CrossRef]
- Nittérus, K.; Gunnarsson, B. Effect of microhabitat complexity on the local distribution of arthropods in clear-cuts. Environ. Entomol. 2006, 35, 1324–1333. [Google Scholar] [CrossRef]
- Rivers, J.W.; Mathis, C.L.; Moldenke, A.R.; Betts, M.G. Wild bee diversity is enhanced by experimental removal of timber harvest residue within intensively managed conifer forest. GCB Bioenergy 2018, 10, 766–781. [Google Scholar] [CrossRef] [Green Version]
- Shure, D.J.; Phillips, D.L. Litter fall patterns within different-sized disturbance patches in a southern Appalachian Mountain forest. Am. Midl. Nat. 1987, 118, 348–357. [Google Scholar] [CrossRef]
- Shure, D.J.; Phillips, D.L.; Edward Bostick, P. Gap size and succession in cutover southern Appalachian forests: An 18 year study of vegetation dynamics. Plant Ecol. 2006, 185, 299–318. [Google Scholar] [CrossRef]
- Ash, A.N. Effects of clear-cutting on litter parameters in the southern Blue Ridge Mountains. Castanea 1995, 60, 89–97. [Google Scholar]
- Fritts, S.R.; Moorman, C.E.; Hazel, D.W.; Jackson, B.D. Biomass harvesting guidelines affect downed woody debris retention. Biomass Bioenergy 2014, 70, 382–391. [Google Scholar] [CrossRef]
- Thiffault, E.; Béchard, A.; Paré, D.; Allen, D. Recovery rate of harvest residues for bioenergy in boreal and temperate forests: A review. Wires Energy Environ. 2015, 4, 429–451. [Google Scholar] [CrossRef]
- McMinn, J.W.; Clark, A., III. Harvesting Small Trees and Forest Residues (1992). Biomass Bioenergy 1989, 2, 131–147. [Google Scholar]
- Stokes, B.J. Harvesting small trees and forest residues. Biomass Bioenergy 1992, 2, 131–147. [Google Scholar] [CrossRef] [Green Version]
- Murkin, H.R.; Wrubleski, D.A.; Reid, F.A. Sampling invertebrates in aquatic and terrestrial habitats. In Research and Management Techniques for Wildlife and Habitats; Bookhout, T.A., Ed.; Allan Press: Lawrence, KS, USA, 1994; pp. 349–369. [Google Scholar]
- Spence, J.R.; Niemela, J.K. Sampling carabid assemblages with pitfall traps: The madness and the method. Can. Entomol. 1994, 126, 881–894. [Google Scholar] [CrossRef]
- Ausden, M. Invertebrates. In Ecological Census Techniques: A Handbook; Southerland, W.J., Ed.; Cambridge University Press: Cambridge, UK, 1996; pp. 139–177. [Google Scholar]
- Greenslade, P.M. Pitfall trapping as a method for studying populations of Carabidae (Coleoptera). J. Anim. Ecol. 1964, 33, 301–310. [Google Scholar] [CrossRef]
- MacGown, J.A. Ants (Fomicidae) of the Southeastern United States. In Mississippi Entomological Museum; Mississippi State University: Starkville, MS, USA, 2014; Available online: https://mississippientomologicalmuseum.org.msstate.edu/Researchtaxapages/Formicidaehome.html (accessed on 1 August 2018).
- Sorger, D.M. Urban Ant Identification Key—Southeastern USA. 2017. Available online: https://theantlife.com/science-communication/identification-keys (accessed on 1 August 2018).
- AntWeb. State/Province: North Carolina. California Academy of Sciences. 2018. Available online: https://www.antweb.org/taxonomicPage.do?rank=species&images=true&adm1Name=North%20Carolina&countryName=United%20States (accessed on 1 December 2018).
- Daubenmire, R. A canopy-coverage method of vegetational analysis. Northwest Sci. 1959, 33, 43–64. [Google Scholar]
- Bebber, D.; Thomas, S. Prism sweeps for coarse woody debris. Can. J. Res. 2003, 33, 1737–1743. [Google Scholar] [CrossRef] [Green Version]
- Osbourne, N.; Bardon, R.; Hazel, D. How to Rapidly Inventory Scattered and Piled Forest Harvest Residue; North Carolina Cooperative Extension Service: Raleigh, NC, USA, 2012. [Google Scholar]
- SAS Institute Inc. SAS Enterprise Guide Software, Version 7.15 HF3; SAS Institute Inc.: Cary, NC, USA, 2017. [Google Scholar]
- Calcagno, V. Glmulti: Model Selection and Multimodel Inference Made Easy. R package Version 1.0.7. 2013. Available online: https://CRAN.R-project.org/package=glmulti (accessed on 1 August 2018).
- Fox, J.; Weisberg, S. An R Companion to Applied Regression, 3rd ed.; Sage: Thousand Oaks, CA, USA, 2019. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2017. [Google Scholar]
- Taillie, P.J.; Peterson, M.N.; Moorman, C.E. The relative importance of multiscale factors in the distribution of Bachman’s Sparrow and the implications for ecosystem conservation. Condor Ornithol. App. 2015, 117, 137–146. [Google Scholar] [CrossRef]
- Burnham, K.P.; Anderson, D.R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach, 2nd ed.; Springer: New York, NY, USA, 2002. [Google Scholar]
- Schiegg, K. Effects of dead wood volume and connectivity on saproxylic insect species diversity. Écoscience 2000, 7, 290–298. [Google Scholar] [CrossRef]
- Schiegg, K. Are there saproxylic beetle species characteristic of high dead wood connectivity? Ecography 2000, 23, 579–587. [Google Scholar] [CrossRef]
- Haddad, N.M.; Tilman, D.; Haarstad, J.; Ritchie, M.; Knops, J.M.H. Contrasting effects of plant richness and composition on insect communities: A field experiment. Am. Nat. 2001, 158, 17–35. [Google Scholar] [CrossRef]
- Hodkinson, I.D. Terrestrial insects along elevation gradients: Species and community responses to altitude. Biol. Rev. 2005, 80, 489–513. [Google Scholar] [CrossRef] [Green Version]
- Jonsell, M. Saproxylic beetle species in logging residues: Which are they and which residues do they use? Norw. J. Entomol. 2008, 55, 109–122. [Google Scholar]
- Jonsell, M.; Hansson, J.; Wedmo, L. Diversity of saproxylic beetle species in logging residues in Sweden—Comparisons between tree species and diameters. Biol. Conserv. 2007, 138, 89–99. [Google Scholar] [CrossRef]
- Day, K.R.; Marshall, S.; Heaney, C. Associations between forest type and invertebrates: Ground beetle community patterns in a natural oakwood and juxtaposed conifer plantations. Forestry 1993, 66, 37–50. [Google Scholar] [CrossRef]
- Blair, J.M.; Parmelee, R.W.; Wyman, R.L. A comparison of the forest floor invertebrate communities of four forest types in the northeastern U.S. Pedobiologia 1994, 38, 146–160. [Google Scholar]
- Anderson, S.J.; Death, R.G. The effect of forest type on forest floor invertebrate community structure. N. Z. Nat. Sci. 2000, 25, 33–41. [Google Scholar]
- Ferguson, S.H.; Berube, D.K.A. Invertebrate diversity under artificial cover in relation to boreal forest habitat characteristics. Can. Field-Nat. 2004, 118, 386–392. [Google Scholar] [CrossRef] [Green Version]
- Kaizuka, J.; Iwasa, M. Carabid beetles (Coleoptera: Carabidae) in coniferous plantations in Hokkaido, Japan: Effects of tree species and environmental factors. Entomol. Sci. 2015, 18, 245–253. [Google Scholar] [CrossRef]
- Hiron, M.; Jonsell, M.; Kubart, A.; Thor, G.; Schroeder, M.; Dahlberg, A.; Johansson, V.; Ranius, T. Consequences of bioenergy wood extraction for landscape-level availability of habitat for dead wood-dependent organisms. J. Environ. Manag. 2017, 198, 33–42. [Google Scholar] [CrossRef]
- Taboada, Á.; Tárrega, R.; Calvo, L.; Marcos, E.; Marcos, J.A.; Salgado, J.M. Plant and carabid beetle species diversity in relation to forest type and structural heterogeneity. Eur. J. Res. 2010, 129, 31–45. [Google Scholar] [CrossRef]
- Grodsky, S.M.; Hernandez, R.R.; Campbell, J.W.; Hinson, K.R.; Keller, O.; Fritts, S.R.; Homyack, J.A.; Moorman, C.E. Ground beetle (Coleoptera: Carabidae) response to harvest residue retention: Implications for sustainable forest bioenergy. Forests 2020, 11, 48. [Google Scholar] [CrossRef] [Green Version]
- Todd, B.D.; Rothermel, B.B.; Reed, R.N.; Luhring, T.M.; Schlatter, K.; Trenkamp, L.; Gibbons, J.W. Habitat alteration increases invasive fire ant abundance to the detriment of amphibians and reptiles. Biol. Invasions 2008, 10, 539–546. [Google Scholar] [CrossRef]
- Gallé, R.; Gallé-Szpisjak, N.; Torma, A. Habitat structure influences the spider fauna of short-rotation poplar plantations more than forest age. Eur. J. Res. 2017, 136, 51–58. [Google Scholar] [CrossRef]
- Cornelisse, T.M.; Vasey, M.C.; Holl, K.D.; Letourneau, D.K. Artificial bare patches increase habitat for the endangered Ohlone tiger beetle (Cicindela ohlone). J. Insect Conserv. 2013, 17, 17–22. [Google Scholar] [CrossRef]
- Grodsky, S.M.; Moorman, C.E.; Fritts, S.R.; Hazel, D.W.; Homyack, J.A.; Castleberry, S.B.; Wigley, T.B. Winter bird use of harvest residues in clearcuts and the implications of forest bioenergy harvest in the southeastern United States. For. Ecol. Manag. 2016, 379, 91–101. [Google Scholar] [CrossRef] [Green Version]
- Evans, A.M.; Perschel, R.T.; Kittler, B.A. Overview of biomass harvesting guidelines. J. Sustain. For. 2013, 32, 89–107. [Google Scholar] [CrossRef]
Values Compared | Mean (±SE) | p-Value | |||
---|---|---|---|---|---|
2016 | 2017 | ||||
Near | Far | Near | Far | ||
Minimum Temperature (°C) | 19.76 (1.83) | 18.50 (1.49) | 18.07 (1.46) | 16.29 (1.78) | <0.0001 |
Maximum Temperature (°C) | 28.78 (4.34) | 48.77 (11.90) | 26.10 (3.90) | 44.29 (12.24) | <0.0001 |
Minimum Humidity (%) | 85.91 (16.91) | 50.82 (25.47) | 93.62 (7.81) | 45.02 (26.31) | <0.0001 |
Maximum Humidity (%) | 103.39 (1.70) | 102.85 (3.45) | 103.29 (1.20) | 102.40 (3.25) | 0.3888 |
Range of Humidity (%) | 17.47 (16.08) | 52.03 (23.82) | 9.67 (8.03) | 57.38 (27.01) | <0.0001 |
Site | Forest Type | Scattered Woody Debris Volume (m3 ha−1) | Piled Woody Debris Volume (m3 ha−1) | Site-Level Woody Debris Volume (m3 ha−1) |
---|---|---|---|---|
BR1 | White Pine | 81.06 | 72.76 | 153.82 |
BR3WP | White Pine | 60.92 | 32.13 | 93.05 |
DPWPB | White Pine | 76.11 | 70.55 | 146.66 |
DPWPNB | White Pine | 52.57 | 3.48 | 56.05 |
HOLMES | White Pine | 145.28 | 75.86 | 221.14 |
BR3HW | Hardwood | 71.29 | 32.47 | 103.76 |
DPHW | Hardwood | 40.39 | 133.65 | 174.05 |
MAC3 | Hardwood | 102.32 | 112.51 | 214.83 |
MAC5 | Hardwood | 93.10 | 133.49 | 226.59 |
MAC7 | Hardwood | 83.34 | 293.26 | 376.61 |
White Pine | Mean | 83.19 | 50.96 | 134.14 |
Standard Error | 16.35 | 14.30 | 28.20 | |
Hardwood | Mean | 78.09 | 141.08 | 219.17 |
Standard Error | 10.74 | 42.36 | 44.84 | |
Overall | Mean | 80.64 | 96.02 | 176.66 |
Standard Error | 9.26 | 25.88 | 28.71 |
Class | Order | Family | Subfamily | Species | Number of Captures |
---|---|---|---|---|---|
Arachnida | |||||
Araneae | 1313 | ||||
Opiliones | 400 | ||||
Pseudoscorpiones | 78 | ||||
Chilopoda/Diplopoda | 265 | ||||
Insecta | |||||
Coleoptera | |||||
Carabidae | 613 | ||||
Staphylinidae | 811 | ||||
Other | 553 | ||||
Larvae | 314 | ||||
Hymenoptera | |||||
Formicidae | 6244 | ||||
Amblyoponinae | Stigmatomma palipes Haldeman | 1 | |||
Formicinae | Brachymyrmex depilis Emery | 45 | |||
Camponotus spp. | 160 | ||||
Formica spp. | 306 | ||||
Lasius spp. | 172 | ||||
Nylanderia spp. | 122 | ||||
Dolichoderinae | Forelius spp. | 32 | |||
Tapinoma sessile Say | 96 | ||||
Myrmicinae | Aphaenogaster spp | 969 | |||
Crematogaster spp. | 91 | ||||
Monomorium spp. | 16 | ||||
Myrmecina spp. | 128 | ||||
Myrmica spp. | 122 | ||||
Pheidole spp. | 402 | ||||
Solenopsis spp. (minute) | 1831 | ||||
Solenopsis invicta Buren | 1325 | ||||
Stenamma spp. | 27 | ||||
Strumigenys spp. | 55 | ||||
Temnothorax spp. | 8 | ||||
Tetramorium spp. | 148 | ||||
Ponerinae | Brachyponera chinensis Emery | 11 | |||
Hypoponera spp. | 50 | ||||
Ponera spp. | 92 | ||||
Proceratiinae | Proceratium croceum Roger | 1 | |||
Orthoptera | |||||
Acrididae/Tetrigidae | 95 | ||||
Gryllidae | 467 | ||||
Rhaphidophoridae | 140 | ||||
TOTAL | 11293 |
Taxa (Order or Family) | Proximity (Near) | Type (White Pine) | Year (2017) | Bare Ground (% cover) | CWD (% cover) | FWD (% cover) | Vegetation (% cover) | Site-Level Woody Debris Volume (m3 ha−1) |
---|---|---|---|---|---|---|---|---|
Acrididae/Tetrigidae | −1.05 (0.29) * | 0.84 (0.27) * | −0.88 (0.23) * | - | - | 0.34 (0.13) * | 0.42 (0.14) * | 0.28 (0.13) * |
Araneae | −0.44 (0.10) * | 0.54 (0.07) * | - | −0.07 (0.03) * | −0.12 (0.05) * | −0.22 (0.04) * | 0.29 (0.04) * | 0.08 (0.03) * |
Beetles (other) | - | −0.24 (0.08) * | - | −0.15 (0.05) * | - | - | −0.10 (0.04)* | - |
Carabidae | - | −0.31 (0.08) * | −0.27 (0.08) * | - | −0.14 (0.04) * | - | - | - |
Chilopoda/Diplopoda | - | −0.30 (0.12) * | - | −0.34 (0.10) * | −0.20 (0.07) * | - | - | - |
Formicidae | 0.23 (0.05) * | −0.47 (0.03) * | 0.54 (0.03) * | 0.06 (0.01) * | 0.09 (0.02) * | - | 0.31 (0.02)* | - |
Gryllidae | −0.71 (0.18) * | 3.07 (0.19) * | 0.20 (0.09) * | 0.21 (0.03) * | 0.16 (0.08) * | −0.17 (0.07) * | - | 0.56 (0.07) * |
Opiliones | - | −1.120 (0.13) * | −1.22 (0.12) * | −0.41 (0.09) * | 0.10 (0.05) | - | - | - |
Rhaphidophoridae | - | −1.82 (0.29) * | −0.48 (0.17) * | −0.35 (0.14) * | - | - | - | 0.26 (0.08) * |
Staphylinidae | −0.86 (0.15) * | −0.99 (0.10) * | - | - | 0.29 (0.07)* | 0.32 (0.05) * | 0.30 (0.05) * | 0.35 (0.04) * |
Taxa | Prox. (Near) | Type (White Pine) | Year (2017) | BG (% Cover) | CWD (% Cover) | FWD (% Cover) | VEG (% cover) | Site-Level Woody Debris Vol. |
---|---|---|---|---|---|---|---|---|
Aphaenogaster | - | −1.46 (0.36) * | −0.60 (0.30) * | −0.88 (0.20) * | 0.47 (0.16) * | −0.25 (0.16) | - | 0.42 (0.21) * |
Camponotus | - | 0.52 (0.36) | - | −0.34 (0.20) | - | - | - | 0.51 (0.17) * |
Crematogaster | - | - | 1.03 (0.50) * | −0.80 (0.49) | - | - | 0.54 (0.23) * | −1.37 (0.39) * |
Formica | - | −0.78 (0.30) * | - | - | - | −0.39 (0.15) * | - | 0.60 (0.16) * |
Lasius | - | −1.13 (0.47) * | - | - | 0.62 (0.30) * | - | 1.02 (0.31) * | - |
Myrmecina | - | - | 0.42 (0.28) | −0.39 (0.19) * | - | - | - | 0.50 (0.14) * |
Myrmica | - | −0.89 (0.41) * | - | - | - | - | - | 0.48 (0.17) * |
Nylanderia | - | 3.92 (0.83) * | 0.75 (0.41) | - | - | - | - | 2.33 (0.36) * |
Pheidole | - | 1.19 (0.51) * | 1.25 (0.42) * | 0.29 (0.16) | −0.61 (0.26) * | −0.54 (0.27) * | - | 0.75 (0.24) * |
Ponera | - | −0.56 (0.31) | - | −0.43 (0.26) | 0.31 (0.15) * | |||
Solenopsis (minute) | - | - | - | - | - | - | 0.39 (0.27) * | - |
Solenopsis invicta | - | 1.79 (0.36) * | 1.05 (0.28) * | 0.33 (0.15) * | −0.29 (0.14) * | 0.27 (0.15) | - | 0.45 (0.17) * |
Tapinoma sessile | 0.91 (0.41) * | −0.68 (0.41) | 0.90 (0.40) * | - | - | −1.11 (0.45) * | 0.66 (0.25) * | - |
Tetramorium | - | 1.76 (0.47) * | 0.89 (0.42) * | - | - | −1.03 (0.35) * | −0.46 (0.23) * | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boggs, A.D.; Moorman, C.E.; Hazel, D.W.; Greenberg, C.H.; Sorger, D.M.; Sorenson, C.E. Ground-Dwelling Invertebrate Abundance Positively Related to Volume of Logging Residues in the Southern Appalachians, USA. Forests 2020, 11, 1149. https://doi.org/10.3390/f11111149
Boggs AD, Moorman CE, Hazel DW, Greenberg CH, Sorger DM, Sorenson CE. Ground-Dwelling Invertebrate Abundance Positively Related to Volume of Logging Residues in the Southern Appalachians, USA. Forests. 2020; 11(11):1149. https://doi.org/10.3390/f11111149
Chicago/Turabian StyleBoggs, April D., Christopher E. Moorman, Dennis W. Hazel, Cathryn H. Greenberg, D. Magdalena Sorger, and Clyde E. Sorenson. 2020. "Ground-Dwelling Invertebrate Abundance Positively Related to Volume of Logging Residues in the Southern Appalachians, USA" Forests 11, no. 11: 1149. https://doi.org/10.3390/f11111149
APA StyleBoggs, A. D., Moorman, C. E., Hazel, D. W., Greenberg, C. H., Sorger, D. M., & Sorenson, C. E. (2020). Ground-Dwelling Invertebrate Abundance Positively Related to Volume of Logging Residues in the Southern Appalachians, USA. Forests, 11(11), 1149. https://doi.org/10.3390/f11111149