Effects of Climate Change on Burn Probability of Forests in Daxing’anling
Abstract
:1. Introduction
2. Methods
2.1. Study Area
2.2. Framework of the Burn Probability Model
2.3. Data Sources
2.4. Climate Data Processing
2.5. Fire Weather Indices and Predicted Fire Numbers for 2030s
2.6. Fuel Types
2.7. Burn Probability Simulations
3. Results
3.1. Changes in Climate and Fire Weather in the 2030s
3.2. Burn Probability Simulation for Baseline and the 1991 to 2010 Period
3.3. Changes in Burn Probability in 2021–2050
4. Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
Appendix A
References
- Harvey, B.J. Human-caused climate change is now a key driver of forest fire activity in the western United States. Proc. Natl. Acad. Sci. USA 2016, 113, 11649–11650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scheller, R.M.; Kretchun, A.M.; Loudermilk, E.L.; Hurteau, M.D.; Weisberg, P.J.; Skinner, C. Interactions among fuel management, species composition, bark beetles, and climate change and the potential effects on forests of the Lake Tahoe Basin. Ecosystems 2018, 21, 643–656. [Google Scholar] [CrossRef]
- Stambaugh, M.C.; Guyette, R.P.; Stroh, E.D.; Struckhoff, M.A.; Whittier, J.B. Future southcentral US wildfire probability due to climate change. Clim. Change 2018, 147, 617–631. [Google Scholar] [CrossRef]
- Marlon, J.R.; Bartlein, P.J.; Walsh, M.K.; Harrison, S.P.; Brown, K.J.; Edwards, M.E.; Higuera, P.E.; Power, M.J.; Anderson, R.S.; Briles, C.; et al. Wildfire responses to abrupt climate change in North America. Proc. Natl. Acad. Sci. USA 2009, 106, 2519–2524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKenzie, D.; Littell, J.S. Climate change and the eco-hydrology of fire: Will area burned increase in a warming western USA? Ecol. Appl. 2017, 27, 26–36. [Google Scholar] [CrossRef] [PubMed]
- Jolly, W.M.; Cochrane, M.A.; Freeborn, P.H.; Holden, Z.A.; Brown, T.J.; Williamson, G.J.; Bowman, D.M. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat. Commun. 2015, 6, 7537. [Google Scholar] [CrossRef] [PubMed]
- Knorr, W.; Dentener, F.; Hantson, S.; Jiang, L.; Klimont, Z.; Arneth, A. Air quality impacts of European wildfire emissions in a changing climate. Atmos. Chem. Phys. 2016, 16, 5685–5703. [Google Scholar] [CrossRef] [Green Version]
- Change, N.C. Spreading like wildfire. Nat. Clim. Chang 2017, 7, 755. [Google Scholar] [CrossRef]
- Borunda, A. See How a Warmer World Primed California for Large Fires. Available online: https://www.nationalgeographic.com/environment/2018/11/climate-change-california-wildfire/ (accessed on 26 December 2018).
- Westerling, A.; Brown, T.; Schoennagel, T.; Swetnam, T.; Turner, M.; Veblen, T. Briefing: Climate and wildfire in western US forests. In Forest Conservation and Management in the Anthropocene: Conference Proceedings; Proceedings. RMRS-P-71; Sample, V.A., Bixler, R.K., Eds.; US Department of Agriculture, Forest Service. Rocky Mountain Research Station: Fort Collins, CO, USA, 2014; pp. 81–102. [Google Scholar]
- The Rising Cost of Fire Operations: Effects on the Forest Service’s NonFire Work. Available online: https://www.fs.fed.us/sites/default/files/2015-Fire-Budget-Report.pdf (accessed on 10 January 2019).
- AghaKouchak, A.; Huning, L.S.; Chiang, F.; Sadegh, M.; Vahedifard, F.; Mazdiyasni, O.; Mallakpour, I. How do natural hazards cascade to cause disasters? Nature 2018, 561, 458–460. [Google Scholar] [CrossRef] [Green Version]
- Liang, S.; Hurteau, M.D.; Westerling, A.L. Large-scale restoration increases carbon stability under projected climate and wildfire regimes. Front. Ecol. Environ. 2018, 16, 207–212. [Google Scholar] [CrossRef]
- Soja, A.J.; Tchebakova, N.M.; French, N.H.F.; Flannigan, M.D.; Shugart, H.H.; Stocks, B.J.; Sukhinin, A.I.; Parfenova, E.I.; Stackhouse, P.W., Jr. Climate-induced boreal forest change: Predictions versus current observations. Glob. Planet. Change 2007, 56, 274–296. [Google Scholar] [CrossRef] [Green Version]
- Westerling, A.L.; Hidalgo, H.G.; Cayan, D.R.; Swetnam, T.W. Warming and earlier spring increase western US forest wildfire activity. Science 2006, 313, 940–943. [Google Scholar] [CrossRef] [PubMed]
- Abatzoglou, J.T.; Williams A, P. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl. Acad. Sci. USA 2016, 113, 11770–11775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Stanturf, J.; Goodrick, S. Trends in global wildfire potential in a changing climate. For. Ecol. Manag. 2010, 259, 685–697. [Google Scholar] [CrossRef]
- Bowman, D.M.J.S.; Williamson, G.J.; Abatzoglou, J.T.; Kolden, C.A.; Cochrane, M.A.; Smith, A.M. Human exposure and sensitivity to globally extreme wildfire events. Nat. Ecol. Evol. 2017, 1, 16–58. [Google Scholar] [CrossRef] [PubMed]
- Camia, A.; Libertà, G.; San-Miguel-Ayanz, J. Modeling the Impacts of Climate Change on Forest Fire Danger in Europe; EU JRC Tech. Rep.: Brussels, Belgium, 2017; pp. 1–22. [Google Scholar]
- Wildfire Simulations For California’S Fourth Climate Change Assessment: Projecting Changes In Extreme Wildfire Events With A Warming Climate. California’S Fourth Climate Change Assessment. Available online: http://www.climateassessment.ca.gov/techreports/docs/20180827 -Projections_CCCA4-CEC-2018-014.pdf (accessed on 10 January 2019).
- Mann, M.L.; Batllori, E.; Moritz, M.A.; Waller, E.K.; Berck, P.; Flint, A.L.; Flint, L.E.; Dolfi, E. Incorporating anthropogenic influences into fire probability models: Effects of human activity and climate change on fire activity in California. PLoS ONE 2016, 11, e0153589. [Google Scholar] [CrossRef] [PubMed]
- Parks, S.A.; Miller, C.; Abatzoglou, J.T.; Holsinger, L.M.; Parisien, M.A.; Dobrowski, S.Z. How will climate change affect wildland fire severity in the western US? Environ. Res. Lett. 2016, 11, 035002. [Google Scholar] [CrossRef] [Green Version]
- Kitzberger, T.; Falk, D.A.; Westerling, A.L.; Swetnam, T.W. Direct and indirect climate controls predict heterogeneous early-mid 21st century wildfire burned area across western and boreal North America. PLoS ONE 2017, 12, e0188486. [Google Scholar] [CrossRef]
- Melvin, A.M.; Murray, J.; Boehlert, B.; Martinich, J.A.; Rennels, L.; Rupp, T.S. Estimating wildfire response costs in Alaska’s changing climate. Clim. Change 2017, 141, 783–795. [Google Scholar] [CrossRef]
- Yue, X.; Mickley, L.J.; Logan, J.A.; Hudman, R.C.; Martin, M.V.; Yantosca, R.M. Impact of 2050 climate change on North American wildfire: Consequences for ozone air quality. Atmos. Chem. Phys. 2015, 15, 10033–10055. [Google Scholar] [CrossRef]
- Lozano, O.M.; Salis, M.; Ager, A.A.; Arca, B.; Alcasena, F.J.; Monteiro, A.T.; Spano, D. Assessing climate change impacts on wildfire exposure in Mediterranean areas. Risk Anal. 2017, 37, 1898–1916. [Google Scholar] [CrossRef]
- Turco, M.; Rosa-Cánovas, J.J.; Bedia, J.; Jerez, S.; Montávez, J.P.; Llasat, M.C.; Provenzale, A. Exacerbated fires in Mediterranean Europe due to anthropogenic warming projected with non-stationary climate-fire models. Nat. Commun. 2018, 9, 3821. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.Q.; Hu, H.Q. Climatic Change and Its Impact on Forest Fire in Daxing’ anling Mountains. J. North. For. Univ. 2008, 36, 29–31. [Google Scholar]
- Zhao, F.J.; Shu, L.F.; Di, X.; Tian, X.R.; Wang, M.Y. Changes in the Occurring Date of Forest Fires in the Inner Mongolia Daxing’anling Forest Region Under Global Warming. Sci. Silvae Sinicae 2009, 45, 166–172. [Google Scholar]
- Yang, G.; Di, X.Y.; Zeng, T.; Shu, Z.; Wang, C.; Yu, H.Z. Prediction of area burned under climatic change scenarios: A case study in the Great Xing’an Mountains boreal forest. J. For. Res. 2010, 21, 213–218. [Google Scholar] [CrossRef]
- Liu, Z.H.; Yang, J.; Chang, Y.; Weisberg, P.J.; He, H.S. Spatial patterns and drivers of fire occurrence and its future trend under climate change in a boreal forest of Northeast China. Glob. Change Biol. 2012, 18, 2041–2056. [Google Scholar] [CrossRef]
- Li, S.; Wu, Z.; Liang, Y.; He, H. Drivers of human-caused fire occurrence and its variation trend under climate change in the Great Xing’an Mountains, Northeast China. Chin. J. Appl. Ecol. 2017, 28, 210–218. [Google Scholar] [CrossRef]
- Stephens, S.L.; Moghaddas, J.J. Experimental fuel treatment impacts on forest structure, potential fire behavior, and predicted tree mortality in a California mixed conifer forest. For. Ecol. Manag. 2005, 215, 21–36. [Google Scholar] [CrossRef]
- Perera, A.H.; Ouellette, M.R.; Cui, W.; Drescher, M.; Boychuk, D. BFOLDS 1.0: A Spatial Simulation Model for Exploring Large Scale Fire Regimes and succession in Boreal Forest Landscapes; Forest Research Report-Ontario Forest Research Institute: Sault Ste. Marie, ON, Canada, 2008. [Google Scholar]
- Dillon, G.; Menakis, J.; Fay, F. Wildland fire potential: A tool for assessing wildfire risk and fuels management needs. In Proceedings of the Large Wildland Fires Conference, Missoula, MT, USA, 19–23 May 2014; Proc. RMRS-P-73. Keane, R.E., Jolly, M., Parsons, R., Riley, K., Eds.; US Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2015; pp. 60–76. [Google Scholar]
- Wang, X.; Parisien, M.; Taylor, S.W.; Perrakis, D.; Little, J.; Flannigan, M. Future burn probability in south-central British Columbia. Int. J. Wildl. Fire 2016, 25. [Google Scholar] [CrossRef]
- Miao, Q.; Tian, X. Assessment of Burn Probability Assessment in Daxing’anling under Multi-Climatic Scenarios. Sci. Silvae Sinicae 2016, 52, 109–116. [Google Scholar] [CrossRef]
- Xu, H. Forests in Daxing’anling; Science Press: Beijing, China, 1998. [Google Scholar]
- Todd, B. User Documentation for the Wildland Fire Growth Model and the Wildfire Display Program; Canadian Forest Service, Fire Research Network Report 37; Canadian Forest Service: Edmonton, AL, Canada, 1999; Unpublished. [Google Scholar]
- Van Wagner, C.E.; Forest, P. Development and Structure of the Canadian Forest Fire Weather Index System; Forestry Technical Report; Canadian Forestry Service: Ottawa, ON, Canada, 1987. [Google Scholar]
- Hay, L.E.; Wilby, R.L.; Leavesley, G.H. A comparison of Delta change and downscaled GCM scenarios for three mountainous basins in the United States. J. Am. Water Resour. Assoc. 2000, 36, 387–397. [Google Scholar] [CrossRef]
- Xu, X.; Yu, J.; Li, H.; Yang, L. Comparative study on calculation methods of dew-point temperature. J. Meteorol. Environ. 2016, 32, 107–111. [Google Scholar] [CrossRef]
- Van Wagner, C.E.; Stocks, B.J.; Lawson, B.D.; Alexander, M.E.; Lynham, T.J.; McAlpine, R.S. Development and Structure of the Canadian Forest Fire Behavior Prediction System. Forestry Canada Fire Danger Group Information Report ST-X-3; Ottawa, ON, Canada, 1992. Available online: https://www.frames.gov/documents/catalog/forestry_canada_fire_danger_group_1992.pdf (accessed on 23 July 2019).
- De Groot, W.J. Examples of Fuel Types in the Canadian Forest Fire Behavior Prediction (FBP) System; Forestry Canada, Northwest Region, Northern Forestry Centre: Edmonton, AB, Canada, 1993. [Google Scholar]
- Tian, X.; McRae, D.J.; Jin, J.; Shu, L.; Zhao, F.; Wang, M. Wildfires and the Canadian Forest Fire Weather Index system for the Daxing’anling region of China. Int. J. Wildl. Fire 2011, 20, 963–973. [Google Scholar] [CrossRef]
- Yang, G.; Shu, L.F.; Di, X.Y. Prediction on the changes of forest fire danger rating in Great Xing’an Mountain region of Northeast China in the 21st century under effects of climate change. Chin. J. Appl. Ecol. 2012, 23, 3236–3242. [Google Scholar]
- Cumming, S.G. Effective fire suppression in boreal forests. Can. J. For. Res. 2005, 35, 772–786. [Google Scholar] [CrossRef]
- Brotons, L.; Duane, A. Correspondence: Uncertainty in climate-vegetation feedbacks on fire regimes challenges reliable long-term projections of burnt area from correlative models. Fire 2019, 2, 8. [Google Scholar] [CrossRef]
- Ruffault, J.; Mouillot, F. How a new fire-suppression policy can abruptly reshape the fire-weather relationship. Ecosphere 2015, 6, 1–19. [Google Scholar] [CrossRef]
- Loehman, R.A.; Keane, R.E.; Holsinger, L.M.; Wu, Z. Interactions of landscape disturbances and climate change dictate ecological pattern and process: Spatial modeling of wildfire, insect, and disease dynamics under future climates. Landsc. Ecol. 2017, 32, 1447–1459. [Google Scholar] [CrossRef]
- Duane, A.; Aquilué, N.; Canelles, Q.; Morán-Ordoñez, A.; De Cáceres, M.; Brotons, L. Adapting prescribed burns to future climate change in Mediterranean landscapes. Sci. Total Environ. 2019, 677, 68–83. [Google Scholar] [CrossRef]
- Aquilué, N.; Fortin, M.J.; Messier, C.; Brotons, L. The potential of agricultural conversion to shape forest fire regimes in Mediterranean landscapes. Ecosystems 2019, 1–18. [Google Scholar] [CrossRef]
- Pausas, J.G.; Paula, S. Fuel shapes the fire-climate relationship: Evidence from Mediterranean ecosystems. Glob. Ecol. Biogeogr. 2012, 21, 1074–1082. [Google Scholar] [CrossRef]
- Brotons, L.; Aquilué, N.; De Cáceres, M.; Fortin, M.J.; Fall, A. How fire history, fire suppression practices and climate change affect wildfire regimes in Mediterranean landscapes. PLoS ONE 2013, 8, e62392. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Wang, Y.; Zhang, J. Simulating the effects of climate change and fire disturbance on aboveground biomass of boreal forests in the Great Xing’an Mountains, Northeast China. Chin. J. Appl. Ecol. 2018, 29, 713–724. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, X.; Cui, W.; Shu, L.; Zong, X. Effects of Climate Change on Burn Probability of Forests in Daxing’anling. Forests 2019, 10, 611. https://doi.org/10.3390/f10080611
Tian X, Cui W, Shu L, Zong X. Effects of Climate Change on Burn Probability of Forests in Daxing’anling. Forests. 2019; 10(8):611. https://doi.org/10.3390/f10080611
Chicago/Turabian StyleTian, Xiaorui, Wenbin Cui, Lifu Shu, and Xuezheng Zong. 2019. "Effects of Climate Change on Burn Probability of Forests in Daxing’anling" Forests 10, no. 8: 611. https://doi.org/10.3390/f10080611
APA StyleTian, X., Cui, W., Shu, L., & Zong, X. (2019). Effects of Climate Change on Burn Probability of Forests in Daxing’anling. Forests, 10(8), 611. https://doi.org/10.3390/f10080611