Soil Type, Topography, and Land Use Interact to Control the Response of Soil Respiration to Climate Variation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Hillslopes
2.2. Data Collection
2.3. Data Analysis
3. Results
3.1. Differences in Environmental Variables on TG and BF Hillslopes
3.2. Spatial and Temporal Variations of Rs
3.3. Relationships between Rs and Environmental Variables
4. Discussion
4.1. Factors Influencing Rs response to ST
4.2. Factors Influencing Rs Response to Precipitation
4.3. Factors Influencing Rs Response to SWC
4.4. Relation between Land Use and Rs
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Trumbore, S. Carbon respired by terrestrial ecosystems—Recent progress and challenges. Glob. Chang. Biol. 2006, 12, 141–153. [Google Scholar] [CrossRef] [Green Version]
- Bond-Lamberty, B.; Thomson, A. A global database of soil respiration data. Biogeosciences 2010, 7, 1915–1926. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Yan, J.; Yue, X.; Wang, M. Significance of soil temperature and moisture for soil respiration in a Chinese mountain area. Agr. For. Meteorol. 2008, 148, 490–503. [Google Scholar] [CrossRef]
- Yan, Z.F.; Bond-Lamberty, B.; Todd-Brown, K.E.; Bailey, V.L.; Li, S.L.; Liu, C.Q.; Liu, C.X. A moisture function of soil heterotrophic respiration that incorporates microscale processes. Nat. Commun. 2018, 9, 10. [Google Scholar] [CrossRef] [PubMed]
- Courtois, E.A.; Stahl, C.; Van den Berge, J.; Bréchet, L.; Van Langenhove, L.; Richter, A.; Urbina, I.; Soong, J.L.; Peñuelas, J.; Janssens, I.A. Spatial Variation of Soil CO2, CH4 and N2O Fluxes Across Topographical Positions in Tropical Forests of the Guiana Shield. Ecosystems 2018, 21, 1445–1458. [Google Scholar] [CrossRef] [Green Version]
- Meyer, N.; Welp, G.; Amelung, W. The Temperature Sensitivity (Q10) of Soil Respiration: Controlling Factors and Spatial Prediction at Regional Scale Based on Environmental Soil Classes. Glob. Biogeochem. Cycles 2018, 32, 306–323. [Google Scholar] [CrossRef]
- Kang, S.Y.; Doh, S.; Lee, D.; Lee, D.; Jin, V.L.; Kimball, J.S. Topographic and climatic controls on soil respiration in six temperate mixed-hardwood forest slopes, Korea. Glob. Chang. Biol. 2003, 9, 1427–1437. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.; Zhou, X.; Shao, J.; Nie, Y.; He, Y.; Jiang, L.; Wu, Z.; Hosseini Bai, S. Interactive effects of global change factors on soil respiration and its components: A meta-analysis. Glob. Chang. Biol. 2016, 22, 3157–3169. [Google Scholar] [CrossRef]
- Hursh, A.; Ballantyne, A.; Cooper, L.; Maneta, M.; Kimball, J.; Watts, J. The sensitivity of soil respiration to soil temperature, moisture, and carbon supply at the global scale. Glob. Chang. Biol. 2017, 23, 2090–2103. [Google Scholar] [CrossRef]
- Davidson, E.A.; Belk, E.; Boone, R.D. Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Glob. Chang. Biol. 1998, 4, 217–227. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Li, J.; Jin, Y.; Zhang, Y.; Sha, L.; Grace, J.; Song, Q.; Zhou, W.; Chen, A.; Li, P.; et al. The influence of drought strength on soil respiration in a woody savanna ecosystem, southwest China. Plant Soil 2018, 428, 321–333. [Google Scholar] [CrossRef]
- Carey, J.C.; Tang, J.; Templer, P.H.; Kroeger, K.D.; Crowther, T.W.; Burton, A.J.; Dukes, J.S.; Emmett, B.; Frey, S.D.; Heskel, M.A.; et al. Temperature response of soil respiration largely unaltered with experimental warming. Proc. Natl. Acad. Sci. USA 2016, 113, 13797–13802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Z.; Xu, Y.; Zhou, X.; Tang, J.; Kuzyakov, Y.; Yu, H.; Fan, J.; Ding, W. Extreme rainfall and snowfall alter responses of soil respiration to nitrogen fertilization: A 3-year field experiment. Glob. Chang. Biol. 2017, 23, 3403–3417. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Wang, J.; Ding, L.; Yao, P.; Qiao, M.; Yao, S. Meta-analyses of the effects of major global change drivers on soil respiration across China. Atmos. Environ. 2017, 150, 181–186. [Google Scholar] [CrossRef]
- Han, C.; Yu, R.; Lu, X.; Duan, L.; Singh, V.P.; Liu, T. Interactive effects of hydrological conditions on soil respiration in China’s Horqin sandy land: An example of dune-meadow cascade ecosystem. Sci. Total Environ. 2019, 651, 3053–3063. [Google Scholar] [CrossRef]
- Castellano, M.J.; Schmidt, J.P.; Kaye, J.P.; Walker, C.; Graham, C.B.; Lin, H.; Dell, C. Hydrological controls on heterotrophic soil respiration across an agricultural landscape. Geoderma 2011, 162, 273–280. [Google Scholar] [CrossRef] [Green Version]
- Moyano, F.E.; Manzoni, S.; Chenu, C. Responses of soil heterotrophic respiration to moisture availability: An exploration of processes and models. Soil Biol. Biochem. 2013, 59, 72–85. [Google Scholar] [CrossRef]
- Davidson, E.A.; Verchot, L.V.; Cattanio, J.H.; Ackerman, I.L.; Carvalho, J.E.M. Effects of soil water content on soil respiration in forests and cattle pastures of eastern Amazonia. Biogeochemistry 2000, 48, 53–69. [Google Scholar] [CrossRef]
- Sun, Q.; Wang, R.; Hu, Y.; Yao, L.; Guo, S. Spatial variations of soil respiration and temperature sensitivity along a steep slope of the semiarid Loess Plateau. PLoS ONE 2018, 13, e0195400. [Google Scholar] [CrossRef]
- Sun, B.; Liang, Y.; Xu, R.; Peng, X.; Wang, X.; Zhou, J.; Li, Z.; Zhao, X. Long-term Research on Red Soil Degradation and Remediation Promotes Development of Ecological Recycling Agriculture in Hilly Region of Southeast China. Bull. Chin. Acad. Sci. 2018, 33, 746–757. [Google Scholar]
- Fan, L.C.; Han, W.Y. Soil respiration in Chinese tea gardens: Autotrophic and heterotrophic respiration. Eur. J. Soil Sci. 2018, 69, 675–684. [Google Scholar] [CrossRef]
- Xu, Y.; Shen, Z.H.; Ying, L.X.; Zang, R.G.; Jiang, Y.X. Effects of current climate, paleo-climate, and habitat heterogeneity in determining biogeographical patterns of evergreen broad-leaved woody plants in China. J. Geogr. Sci. 2019, 29, 1142–1158. [Google Scholar] [CrossRef] [Green Version]
- Fu, C.; Zhu, Q.; Yang, G.; Xiao, Q.; Wei, Z.; Xiao, W. Influences of Extreme Weather Conditions on the Carbon Cycles of Bamboo and Tea Ecosystems. Forests 2018, 9, 629. [Google Scholar] [CrossRef] [Green Version]
- Nie, X.F.; Li, H.P.; Jiang, J.H.; Diao, Y.Q.; Li, P.C. Spatiotemporal variation of riverine nutrients in a typical hilly watershed in southeast China using multivariate statistics tools. J. Mt. Sci. 2015, 12, 983–998. [Google Scholar] [CrossRef]
- Yan, P.; Shen, C.; Fan, L.C.; Li, X.; Zhang, L.P.; Zhang, L.; Han, W.Y. Tea planting affects soil acidification and nitrogen and phosphorus distribution in soil. Agr. Ecosyst. Environ. 2018, 254, 20–25. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, G.; Du, H.; Berninger, F.; Mao, F.; Li, X.; Chen, L.; Cui, L.; Li, Y.; Zhu, D. Soil respiration of a Moso bamboo forest significantly affected by gross ecosystem productivity and leaf area index in an extreme drought event. PeerJ 2018, 6, e5747. [Google Scholar] [CrossRef]
- Hu, S.; Li, Y.; Chang, S.X.; Li, Y.; Yang, W.; Fu, W.; Liu, J.; Jiang, P.; Lin, Z. Soil autotrophic and heterotrophic respiration respond differently to land-use change and variations in environmental factors. Agr. For. Meteorol. 2018, 250–251, 290–298. [Google Scholar] [CrossRef]
- Lai, X.; Zhu, Q.; Zhou, Z.; Liao, K. Influences of sampling size and pattern on the uncertainty of correlation estimation between soil water content and its influencing factors. J. Hydrol. 2017, 555, 41–50. [Google Scholar] [CrossRef]
- Liao, K.; Lai, X.; Zhou, Z.; Zeng, X.; Xie, W.; Castellano, M.J.; Zhu, Q. Whether the Rock Fragment Content Should Be Considered When Investigating Nitrogen Cycle in Stony Soils? J. Geophys. Res. Biogeosci. 2019, 124, 521–536. [Google Scholar] [CrossRef]
- Fan, L.C.; Yang, M.Z.; Han, W.Y. Soil Respiration under Different Land Uses in Eastern China. PLoS ONE 2015, 10, 18. [Google Scholar] [CrossRef] [Green Version]
- Zhu, R.H.; Zheng, Z.C.; Li, T.X.; Zhang, X.Z.; He, S.Q.; Wang, Y.D.; Liu, T.; Li, W. Dynamics of soil organic carbon mineralization in tea plantations converted from farmland at Western Sichuan, China. PLoS ONE 2017, 12, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, J.J.; Goldberg, S.D.; Mortimer, P.E.; Xu, J.C. Soil respiration under three different land use types in a tropical mountain region of China. J. Mt. Sci. 2016, 13, 416–423. [Google Scholar] [CrossRef]
- Hsieh, I.F.; Kume, T.; Lin, M.Y.; Cheng, C.H.; Miki, T. Characteristics of soil CO2 efflux under an invasive species, Moso bamboo, in forests of central Taiwan. Trees 2016, 30, 1749–1759. [Google Scholar] [CrossRef]
- Sheng, H.; Yang, Y.; Yang, Z.; Chen, G.; Xie, J.; Guo, J.; Zou, S. The dynamic response of soil respiration to land-use changes in subtropical China. Glob. Chang. Biol. 2010, 16, 1107–1121. [Google Scholar] [CrossRef]
- Sun, Q.; Wang, R.; Wang, Y.; Du, L.; Zhao, M.; Gao, X.; Hu, Y.; Guo, S. Temperature sensitivity of soil respiration to nitrogen and phosphorous fertilization: Does soil initial fertility matter? Geoderma 2018, 325, 172–182. [Google Scholar] [CrossRef]
- Mahal, N.K.; Osterholz, W.R.; Miguez, F.E.; Poffenbarger, H.J.; Sawyer, J.E.; Olk, D.C.; Archontoulis, S.V.; Castellano, M.J. Nitrogen Fertilizer Suppresses Mineralization of Soil Organic Matter in Maize Agroecosystems. Front. Ecol. Evol. 2019, 7, 59. [Google Scholar] [CrossRef] [Green Version]
- Flanagan, L.B.; Johnson, B.G. Interacting effects of temperature, soil moisture and plant biomass production on ecosystem respiration in a northern temperate grassland. Agric. For. Meteorol. 2005, 130, 237–253. [Google Scholar] [CrossRef]
- Zhou, W.P.; Hui, D.F.; Shen, W.J. Effects of Soil Moisture on the Temperature Sensitivity of Soil Heterotrophic Respiration: A Laboratory Incubation Study. PLoS ONE 2014, 9, 10. [Google Scholar] [CrossRef]
- Chen, H.; Zou, J.; Cui, J.; Nie, M.; Fang, C. Wetland drying increases the temperature sensitivity of soil respiration. Soil Biol. Biochem. 2018, 120, 24–27. [Google Scholar] [CrossRef]
- Fang, C.; Moncrieff, J.B. The dependence of soil CO2 efflux on temperature. Soil Biol. Biochem. 2001, 33, 155–165. [Google Scholar] [CrossRef]
- Wang, W.J.; Dalal, R.C.; Moody, P.W.; Smith, C.J. Relationships of soil respiration to microbial biomass, substrate availability and clay content. Soil Biol. Biochem. 2003, 35, 273–284. [Google Scholar] [CrossRef]
- Yu, C.Q.; Wang, J.W.; Shen, Z.X.; Fu, G. Effects of experimental warming and increased precipitation on soil respiration in an alpine meadow in the Northern Tibetan Plateau. Sci. Total Environ. 2019, 647, 1490–1497. [Google Scholar] [CrossRef] [PubMed]
- Joshi, C.; Mohanty, B.P.; Jacobs, J.M.; Ines, A.V.M. Spatiotemporal analyses of soil moisture from point to footprint scale in two different hydroclimatic regions. Water Resour. Res. 2011, 47. [Google Scholar] [CrossRef]
- Western, A.W.; Grayson, R.B.; Bloschl, G.; Willgoose, G.R.; McMahon, T.A. Observed spatial organization of soil moisture and its relation to terrain indices. Water Resour. Res. 1999, 35, 797–810. [Google Scholar] [CrossRef] [Green Version]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [Green Version]
Properties | TG Hillslope | BF Hillslope | ||||||
---|---|---|---|---|---|---|---|---|
TG-01 | TG-02 | TG-03 | TG-04 | BF-01 | BF-02 | BF-03 | BF-04 | |
Sand (%) | 10.28 | 12.27 | 8.39 | 13.3 | 19.24 | 15.85 | 5.96 | 6.26 |
Silt (%) | 75.86 | 71.22 | 71.71 | 71.99 | 68.5 | 71.26 | 81.71 | 82.02 |
Clay (%) | 13.86 | 16.51 | 19.90 | 14.71 | 12.26 | 12.89 | 12.33 | 11.72 |
DB (cm) | 41.07 | 40.32 | 41.73 | 58.12 | 28.27 | 86.12 | 59.08 | 71.12 |
SOC (%) | 1.32 | 1.43 | 0.96 | 0.76 | 1.24 | 1.35 | 1.40 | 1.47 |
TN (%) | 0.13 | 0.13 | 0.08 | 0.07 | 0.12 | 0.14 | 0.15 | 0.14 |
Elevation (m) | 86.03 | 85.14 | 83.8 | 80.71 | 81.36 | 79.14 | 77.63 | 77.5 |
Slope (%) | 9.59 | 9.28 | 12.84 | 17.92 | 15.99 | 8.31 | 5.27 | 0.22 |
PRC | −0.28 | 1.63 | 2.93 | −0.21 | −8.21 | −1.00 | −0.76 | 0.00 |
Site | Gas Emission | Leachate | Soil | ||||
---|---|---|---|---|---|---|---|
CO2 umol C m−2 s−1 | N2O g N ha−1 | NO3−-N mg N L−1 | TOC mg C L−1 | NO3−-N mg N kg−1 | ST °C | SWC m3 m−3 | |
TG-01 | 1.25 ± 0.7a | 6.3 ± 8.7bcd | 13.7 ± 6.5bc | 31.0 ± 14.3cd | 24.3 ± 14.5ab | 16.9 ± 7.3a | 0.16 ± 0.03a |
TG-02 | 1.35 ± 0.8a | 7.2 ± 9.1cd | 17.7 ± 9.0c | 36.6 ± 14.9d | 21.6 ± 16.5ab | 16.9 ± 7.2a | 0.25 ± 0.05b |
TG-03 | 1.22 ± 0.7a | 7.9 ± 9.1d | 16.0 ± 8.7c | 15.3 ± 9.7a | 29.7 ± 30.3b | 16.9 ± 7.5a | 0.35 ± 0.06d |
TG-04 | 1.35 ± 0.7a | 4.4 ± 6.6abcd | 10.8 ± 6.1b | 24.8 ± 10.9bc | 16.6 ± 25.6ab | 16.8 ± 6.2a | 0.15 ± 0.04a |
BF-01 | 2.27 ± 1.4bc | 1.1 ± 0.7a | 3.7 ± 2.6a | 19.1 ± 9.2ab | 17.9 ± 21.4ab | 16.7 ± 6.6a | 0.22 ± 0.06b |
BF-02 | 2.45 ± 1.5c | 1.9 ± 1.0ab | 4.3 ± 2.4a | 13.6 ± 6.1a | 16.9 ± 13.4ab | 16.8 ± 6.4a | 0.30 ± 0.07c |
BF-03 | 2.54 ± 1.7c | 2.8 ± 2.0abc | 3.5 ± 2.9a | 17.0 ± 7.1a | 15.8 ± 11.7ab | 17.4 ± 6.4a | 0.37 ± 0.06d |
BF-04 | 1.57 ± 1.0ab | 2.1 ± 1.5ab | 2.2 ± 1.6a | 15.1 ± 7.0a | 9.2 ± 6.0a | 16.8 ± 5.5a | 0.39 ± 0.09d |
Land use | |||||||
TG | 1.29 ± 0.7A | 6.5 ± 8.5B | 14.6 ± 8.0B | 26.9 ± 14.8B | 23.1 ± 22.9B | 16.9 ± 7.0A | 0.23 ± 0.10A |
BF | 2.21 ± 1.3B | 2.0 ± 1.5A | 3.4 ± 2.5A | 16.2 ± 7.6A | 14.9 ± 14.5A | 16.9 ± 6.2A | 0.32 ± 0.09B |
Site | N2O Flux | Leachate | Soil | GWTD | AP7 | |||
---|---|---|---|---|---|---|---|---|
NO3−−N | TOC | NO3−−N | SWC | ST | ||||
TG-01 | 0.337 | −0.493 * | −0.145 | 0.300 | 0.243 | 0.708 ** | −0.338 | 0.378 * |
TG-02 | 0.362 | −0.463 * | −0.040 | 0.384 * | 0.015 | 0.720 ** | −0.343 | 0.361 |
TG-03 | 0.444 * | −0.255 | −0.069 | 0.072 | 0.083 | 0.722 ** | −0.131 | 0.224 |
TG-04 | 0.234 | −0.438 * | 0.054 | −0.035 | 0.368 | 0.630 ** | −0.211 | 0.389 * |
BF-01 | 0.525 ** | −0.338 | 0.401 * | 0.208 | −0.225 | 0.844 ** | −0.242 | 0.516 ** |
BF-02 | 0.620 ** | −0.473 * | 0.254 | −0.029 | −0.122 | 0.877 ** | −0.227 | 0.474 * |
BF-03 | 0.453 * | −0.005 | 0.388 | −0.120 | −0.285 | 0.858 ** | 0.101 | 0.302 |
BF-04 | 0.407 * | 0.133 | 0.447 * | −0.410 * | −0.376 * | 0.817 ** | 0.022 | 0.348 |
Land use | ||||||||
TG | 0.379 * | −0.425 * | −0.081 | 0.184 | 0.218 | 0.734 ** | −0.273 | 0.357 |
BF | 0.571 ** | −0.240 | 0.399 * | −0.022 | −0.263 | 0.895 ** | −0.091 | 0.431 * |
Site | Equation (6) Rs = a + bST + cSWC | R2 | Equation (7) Rs = aSTb SWCc | R2 | Equation (8) Rs = aebST SWCc | R2 |
---|---|---|---|---|---|---|
TG-01 | Rs = −0.977 + 0.073ST + 6.427SWC | 0.57 | Rs = 0.262ST0.986 SWC0.650 | 0.60 | Rs = 1.741e0.057ST SWC0.729 | 0.55 |
TG-02 | Rs = −0.989 + 0.087ST + 3.546SWC | 0.56 | Rs = 0.125ST1.124 SWC0.559 | 0.60 | Rs = 1.051e0.065ST SWC0.652 | 0.56 |
TG-03 | Rs = −0.826 + 0.072ST + 2.333SWC | 0.56 | Rs = 0.110ST1.055 SWC0.546 | 0.59 | Rs = 0.793e0.062ST SWC0.663 | 0.56 |
TG-04 | Rs = −0.478 + 0.069ST + 4.607SWC | 0.48 | Rs = 0.235ST0.953 SWC0.484 | 0.54 | Rs = 1.468e0.055ST SWC0.550 | 0.52 |
BF-01 | Rs = −1.667 + 0.194ST + 3.165SWC | 0.72 | Rs = 0.055ST1.538 SWC0.419 | 0.76 | Rs = 0.998e0.086ST SWC0.477 | 0.72 |
BF-02 | Rs = −2.230 + 0.215ST + 3.596SWC | 0.79 | Rs = 0.048ST1.556 SWC0.404 | 0.81 | Rs = 0.899e0.087ST SWC0.454 | 0.77 |
BF-03 | Rs = −0.693 + 0.225ST − 1.840SWC | 0.74 | Rs = 0.014ST1.750 SWC−0.117 | 0.75 | Rs = 0.411e0.093ST SWC−0.042 | 0.74 |
BF-04 | Rs = −0.107 + 0.140ST − 1.760SWC | 0.69 | Rs = 0.017ST1.555 SWC−0.077 | 0.66 | Rs = 0.318e0.087ST SWC−0.033 | 0.62 |
Land use | ||||||
TG | Rs = −0.073 + 0.074ST + 0.520SWC | 0.49 | Rs = 0.121ST0.941 SWC0.176 | 0.51 | Rs = 0.676e0.053ST SWC0.196 | 0.46 |
BF | Rs = −0.667 + 0.191ST − 1.128SWC | 0.68 | Rs = 0.024ST1.616 SWC0.077 | 0.68 | Rs = 0.501e0.088ST SWC0.115 | 0.65 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Lai, X.; Zhu, Q.; Castellano, M.J.; Yang, G. Soil Type, Topography, and Land Use Interact to Control the Response of Soil Respiration to Climate Variation. Forests 2019, 10, 1116. https://doi.org/10.3390/f10121116
Wang C, Lai X, Zhu Q, Castellano MJ, Yang G. Soil Type, Topography, and Land Use Interact to Control the Response of Soil Respiration to Climate Variation. Forests. 2019; 10(12):1116. https://doi.org/10.3390/f10121116
Chicago/Turabian StyleWang, Chun, Xiaoming Lai, Qing Zhu, Michael J. Castellano, and Guishan Yang. 2019. "Soil Type, Topography, and Land Use Interact to Control the Response of Soil Respiration to Climate Variation" Forests 10, no. 12: 1116. https://doi.org/10.3390/f10121116
APA StyleWang, C., Lai, X., Zhu, Q., Castellano, M. J., & Yang, G. (2019). Soil Type, Topography, and Land Use Interact to Control the Response of Soil Respiration to Climate Variation. Forests, 10(12), 1116. https://doi.org/10.3390/f10121116