Comparison of Fixed- and Mixed-Effects Approaches to Taper Modeling for Scots Pine in West Poland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Taper Function
2.2. Volume Prediction
3. Results
Volume Prediction
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kidombo, S.D.; Dean, T.J. Growth of tree diameter and stem taper as affected by reduced leaf area on selected branch whorls. Can. J. For. Res. 2018, 48, 317–323. [Google Scholar] [CrossRef]
- Brooks, J.R.; Jiang, L.; Clark, A. Compatible Stem Taper, Volume, and Weight Equations for Young Longleaf Pine Plantations in Southwest Georgia. South. J. Appl. For. 2007, 31, 187–191. [Google Scholar] [CrossRef] [Green Version]
- Dudzińska, M. Model of the percentage share of the stem sections in the total stem volume for the mountain and lowland beech. Sylwan 2003, 147, 28–37. (In Polish) [Google Scholar]
- Socha, J. A taper model for Norway spruce (Picea abies (L.) Karst.). Forestry 2002, 5, 3. [Google Scholar]
- Socha, J.; Kubik, I. A taper model for mountain spruce stands in medium age classes. Sylwan 2005, 149, 42–52. (In Polish) [Google Scholar]
- Bruchwald, A. The use of research on stem fullness for Scots pine taper model development. Folia For. Pol. For. 1980, 24, 101–109. (In Polish) [Google Scholar]
- Kozak, A. Effects of multicollinearity and autocorrelation on the variable-exponent taper functions. Can. J. For. Res. 1997, 27, 619–629. [Google Scholar] [CrossRef]
- Kozak, A.; Munro, D.D.; Smith, J.H.G. Taper Functions and their Application in Forest Inventory. For. Chron. 1969, 45, 278–283. [Google Scholar] [CrossRef]
- Demaerschalk, J.P. Converting Volume Equations to Compatible Taper Equations. For. Sci. 1972, 18, 241–245. [Google Scholar] [CrossRef]
- Biging, G.S. Taper Equations for Second-Growth Mixed Conifers of Northern California. For. Sci. 1984, 30, 1103–1117. [Google Scholar]
- Arias-Rodil, M.; Castedo-Dorado, F.; Cámara-Obregón, A.; Diéguez-Aranda, U. Fitting and Calibrating a Multilevel Mixed-Effects Stem Taper Model for Maritime Pine in NW Spain. PLoS ONE 2015, 10, e0143521. [Google Scholar] [CrossRef]
- Bruchwald, A. Dendrometry, 3rd ed.; SGGW Press: Warsaw, Poland, 1999; p. 262. (In Polish) [Google Scholar]
- Lee, W.-K.; Seo, J.-H.; Son, Y.-M.; Lee, K.-H.; von Gadow, K. Modeling stem profiles for Pinus. densiflora. in Korea. For. Ecol. Manag. 2003, 172, 69–77. [Google Scholar] [CrossRef]
- Kershaw, J.A.; Ducey, M.J.; Beers, T.W.; Husch, B. Forest Mensuration, 5th ed.; Wiley-Blackwell: Oxford, UK, 2016; p. 630. [Google Scholar]
- Max, T.A.; Burkhart, H.E. Segmented Polynomial Regression Applied to Taper Equations. For. Sci. 1976, 22, 283–289. [Google Scholar]
- Kublin, E.; Breidenbach, J.; Kändler, G. A flexible stem taper and volume prediction method based on mixed-effects B-spline regression. Eur. J. For. Res. 2013, 132, 983–997. [Google Scholar] [CrossRef]
- Burkhart, H.E.; Avery, T.E.; Bullock, B.P. Forest Measurements, 6th ed.; Waveland Press Inc.: Long Grove, IL, USA, 2018; p. 434. [Google Scholar]
- Pinheiro, J.; Bates, D. Mixed-Effects Models in S and S-PLUS, 1st ed.; Springer: New York, NY, USA, 2000; p. 537. [Google Scholar]
- Mehtätalo, L.; Lappi, J. Biometrics for forestry and environmental data with examples in R. 2019; Unpublished work. [Google Scholar]
- Trincado, G.; Burkhart, H.E. A generalized approach for modeling and localizing stem profile curves. For. Sci. 2006, 52, 670–682. [Google Scholar]
- Lappi, J. Mixed linear models for analyzing and predicting stem form variation of Scots pine. Comm. Inst. For. Fenn. 1986, 134, 1–69. [Google Scholar]
- Lappi, J. A multivariate, nonparametric stem-curve prediction method. Can. J. For. Res. 2006, 36, 1017–1027. [Google Scholar] [CrossRef]
- Özçelik, R.; Brooks, J.R.; Jiang, L. Modeling stem profile of Lebanon cedar, Brutian pine, and Cilicica fir in Southern Turkey using nonlinear mixed-effects models. Eur. J. For. Res. 2011, 130, 613–621. [Google Scholar] [CrossRef]
- Diéguez-Aranda, U.; Castedo-Dorado, F.; Álvarez-González, J.G.; Rojo, A. Compatible taper function for Scots pine plantations in northwestern Spain. Can. J. For. Res. 2006, 36, 1269–1279. [Google Scholar] [CrossRef]
- Mehtätalo, L.; de-Miguel, S.; Gregoire, T.G. Modelling height-diameter curves for prediction. Can. J. For. Res. 2015, 45, 826–837. [Google Scholar] [CrossRef]
- De-Miguel, S.; Mehtätalo, L.; Shater, Z.; Kraid, B.; Pukkala, T. Evaluating marginal and conditional predictions of taper models in the absence of calibration data. Can. J. For. Res. 2012, 42, 1383–1394. [Google Scholar] [CrossRef]
- Yang, Y.; Huang, S.; Trincado, G.; Meng, S.X. Nonlinear mixed-effects modelling of variable-exponent taper equations for lodgepole pine in Alberta, Canada. Eur. J. For. Res. 2009, 128, 415–429. [Google Scholar] [CrossRef]
- Bańkowski, J.; Cieśla, A.; Czerepko, J.; Czępińska-Kamińska, D.; Kliczkowska, A.; Kowalkowski, A.; Krzyżanowski, A.; Mąkosa, K.; Sikorska, E.; Zielony, R. Siedliskowe Podstawy Hodowli Lasu; Soil Science Society of Poland: Warsaw, Poland, 2003. (In Polish) [Google Scholar]
- Bureau for Forest Management and Geodesy. The National Forest Inventory Results for 2014–2018; Bureau for Forest Management and Geodesy: Sękocin Stary, Poland, 2019. (In Polish) [Google Scholar]
- Bruchwald, A.; Rymer-Dudzińska, T. Empirical equations for determining timber volume of stem on stump for pine. Ann. Wars. Agric. Univ. For. Wood Technol. 1988, 36, 51–55. [Google Scholar]
- Bruchwald, A. New Empirical Formulae for Determination of Volume of Scots Pine Stands. Folia For. Pol. For. 1996, 38, 5–10. [Google Scholar]
- Bruchwald, A.; Rymer-Dudzińska, T.; Dudek, A.; Michalak, K.; Wróblewski, L.; Zasada, M.; Tomusiak, R. Merchantable volume tables based on the stump diameter. Sylwan 2002, 146, 5–16. (In Polish) [Google Scholar]
- Bruchwald, A. An indirect method of building a taper model construction for pine stem inside bark. Sylwan 2004, 148, 3–7. (In Polish) [Google Scholar]
- Siekierski, K. Taper model for Scots pine. Sylwan 1992, 136, 43–51. (In Polish) [Google Scholar]
- Socha, J.; Grabczyński, S.; Ochał, W. Relationship between the accuracy of a taper model and a taken sample size. Acta Agrar. Silvestria 2012, 50, 83–92. [Google Scholar]
- Özçelik, R.; Wiant, H.V.; Brooks, J.R. Accuracy using xylometry of log volume estimates for two tree species in Turkey. Scand. J. For. Res. 2008, 23, 272–277. [Google Scholar] [CrossRef]
- Tiurin, A.W. Forest Mensuration; Goslestexizdat: Moscow, Russia, 1945. (In Russian) [Google Scholar]
- Gieruszyński, T. Dendrometry; Forest Research Institute: Warsaw, Poland, 1949. (In Polish) [Google Scholar]
- Grochowski, J. Dendrometry; State Agricultural and Forestry Press: Warsaw, Poland, 1973. (In Polish) [Google Scholar]
- R Core Team. R: A. Language and Environment. for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- RStudio Team. RStudio: Integrated Development for R; RStudio Inc.: Boston, MA, USA, 2015. [Google Scholar]
- Pinheiro, J.; Bates, D.; Saikat, D.; Deepayan, S. nlme: Linear and Nonlinear Mixed Effects Models. 2019, p. 325. Available online: https://cran.r-project.org/web/packages/nlme/nlme.pdf (accessed on 30 September 2019).
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016; p. 260. [Google Scholar]
- Höjer, A. Tallens och granens tillväxt. In Om Vara Barrskogar; Lovén, F., Ed.; Uddeholms Aktiebolag: Stockolm, Swedish, 1903; pp. 87–120. (In Swedish) [Google Scholar]
- Kozak, A. A variable-exponent taper equation. Can. J. For. Res. 1988, 18, 1363–1368. [Google Scholar] [CrossRef]
- Kozak, A. My last words on taper equations. For. Chron. 2004, 80, 507–515. [Google Scholar] [CrossRef] [Green Version]
- Riemer, T.; von Gadow, K.; Sloboda, B. Ein Modell zur Beschreibung von Baumschäften. Allg. For. Jagdztg. 1995, 166, 144–147. (In German) [Google Scholar]
- Arias-Rodil, M.; Diéguez-Aranda, U.; Rodríguez Puerta, F.; López-Sánchez, C.A.; Canga Líbano, E.; Cámara Obregón, A.; Castedo-Dorado, F. Modelling and localizing a stem taper function for Pinus radiata in Spain. Can. J. For. Res. 2015, 45, 647–658. [Google Scholar] [CrossRef]
- Westfall, J.A.; Scott, C.T. Taper models for commercial tree species in the northeastern United States. For. Sci. 2010, 56, 515–528. [Google Scholar]
- Cao, Q.V.; Wang, J. Calibrating fixed- and mixed-effects taper equations. For. Ecol. Manag. 2011, 262, 671–673. [Google Scholar] [CrossRef]
- Zheng, C.; Wang, Y.; Jia, L.; Mason, E.G.; We, S.; Sun, C.; Duan, J. Compatible taper-volume models of Quercus variabilis Blume forests in north China. iForest-Biogeosci. For. 2017, 10, 567. [Google Scholar] [CrossRef]
- Fang, Z.; Borders, E.; Bailey, L. Compatible Volume-Taper Models for Loblolly and Slash Pine Based on a System with Segmented-Stem Form Factors. For. Sci. 2000, 46, 1–12. [Google Scholar]
- Bi, H. Trigonometric Variable-Form Taper Equations for Australian Eucalypts. For. Sci. 2000, 46, 397–409. [Google Scholar]
- Socha, J. The use of a trigonometric taper model for the determination of the shape of spruce stems. Sylwan 2004, 148, 3–10. (In Polish) [Google Scholar]
Statistics | Modeling Data | Independent Data | ||||
---|---|---|---|---|---|---|
DBH | H | V | DBH | H | V | |
Minimum | 6.7 | 6.95 | 0.0153 | 6.85 | 9.18 | 0.0214 |
Median | 14.9 | 15.03 | 0.1272 | 21.23 | 22.37 | 0.3199 |
Mean | 15.7 | 15.51 | 0.1923 | 20.87 | 19.84 | 0.3984 |
Maximum | 31.5 | 25.65 | 0.8642 | 34.25 | 26.95 | 1.0229 |
Stand. Dev. | 6.04 | 3.93 | 0.1808 | 7.94 | 5.83 | 0.307 |
Stand. Error | 0.64 | 0.41 | 0.0191 | 1.62 | 1.19 | 0.0627 |
Model Type | R2 | RMSE | ME |
---|---|---|---|
Mixed-effects | 0.9954 | 0.4522 | −0.00006 |
Fixed-effects | 0.984 | 0.8453 | 0.00019 |
Parameter | Mixed-Effects Model | Fixed-Effects Model |
---|---|---|
b1 | 1.1484 (0.1321) | 0.8159 (0.0512) |
b2 | 0.8581 (0.0584) | 0.9516 (0.0308) |
b3 | 0.0952 (0.0493) | 0.0971 (0.0241) |
b4 | 0.2795 (0.0056) | 0.3169 (0.0069) |
b5 | −3.6430 (0.2547) | −3.6172 (0.1956) |
b6 | −2.5514 (0.4425) | −0.7535 (0.2373) |
b7 | −1.0268 (0.6595) | 1.4009 (0.4004) |
b8 | 0.1408 (0.0076) | 0.0867 (0.0056) |
sd(β1) | 0.0269 | - |
sd(β2) | 1.7571 | - |
sd(β3) | 1.8647 | - |
corr (β1, β2) | −0.594 | - |
corr (β1, β3) | −0.844 | - |
corr (β2, β3) | 0.750 | - |
0.49202 | - |
Independent Data | ||||||
---|---|---|---|---|---|---|
Error | MEM | FEM | EVM | |||
AE (m3) | RE (%) | AE (m3) | RE (%) | AE (m3) | RE (%) | |
Minimum | −0.0522 | −33.72 | −0.0473 | −19.73 | −0.0464 | −16.48 |
Maximum | 0.0666 | 23.29 | 0.0786 | 27.50 | 0.0768 | 26.87 |
Median | 0.0032 | −0.46 | 0.0103 | 2.31 | 0.0116 | 2.02 |
Mean | 0.0047 | −3.62 | 0.011 | 0.11 | 0.0121 | 1.67 |
Stand. dev. | 0.0279 | 13.68 | 0.0305 | 11.34 | 0.0287 | 9.9 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bronisz, K.; Zasada, M. Comparison of Fixed- and Mixed-Effects Approaches to Taper Modeling for Scots Pine in West Poland. Forests 2019, 10, 975. https://doi.org/10.3390/f10110975
Bronisz K, Zasada M. Comparison of Fixed- and Mixed-Effects Approaches to Taper Modeling for Scots Pine in West Poland. Forests. 2019; 10(11):975. https://doi.org/10.3390/f10110975
Chicago/Turabian StyleBronisz, Karol, and Michał Zasada. 2019. "Comparison of Fixed- and Mixed-Effects Approaches to Taper Modeling for Scots Pine in West Poland" Forests 10, no. 11: 975. https://doi.org/10.3390/f10110975
APA StyleBronisz, K., & Zasada, M. (2019). Comparison of Fixed- and Mixed-Effects Approaches to Taper Modeling for Scots Pine in West Poland. Forests, 10(11), 975. https://doi.org/10.3390/f10110975