Adjusted Net Savings of CEE and Baltic Nations in the Context of Sustainable Economic Growth: A Panel Data Analysis
Abstract
:1. Introduction
2. Literature Review
3. Method, Model and Data
4. Results
4.1. Descriptive Statistics
4.2. Analysis of the Correlations between Variables
4.3. Unit Root Test and Hadri Test
4.4. Pooled OLS, Fixed Effect, Random Effect, Hausman Test and Fully Modified Least Squares (FMOLS)
4.5. Vector Autoregression Estimates and VAR
4.6. The Wald Test
5. Discussion
- Generally, there seems to be a direct link between economic growth and environmental damage, but not for all countries;
- Economic growth can be achieved without environmental damage when Adjusted Net Savings are sufficient in order to compensate for the consumption of natural resources;
- Not every increase in environmental damage leads to economic growth;
- The relationship between economic growth and environmental damage is less obvious.
6. Conclusions and Policy Implications
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Abbasi, Faiza, and Khalid Riaz. 2016. CO2 emissions and financial development in an emerging economy: An augmented VAR approach. Energy Policy 90: 102–14. [Google Scholar] [CrossRef]
- Antonakakis, Nikolaos, Ioannis Chatziantoniou, and George Filis. 2017. Energy consumption, CO2 emissions, and economic growth: An ethical dilemma. Renewable and Sustainable Energy Reviews 68: 808–24. [Google Scholar] [CrossRef] [Green Version]
- Apergis, Nicholas, and James E. Payne. 2014. Renewable energy, output, CO2 emissions, and fossil fuel prices in Central America: Evidence from a nonlinear panel smooth transmission vector error correction model. Energy Economics 42: 226–32. [Google Scholar] [CrossRef]
- Aşıcı, Ahmet Atıl. 2011. Economic growth and its impact on environment: A panel data analysis. Ecological Indicators 24: 324–33. [Google Scholar] [CrossRef] [Green Version]
- Aye, Goodness C., and Prosper Ebruvwiyo Edoja. 2017. Effect of economic growth on CO2 emission countries: Evidence from a dynamic panel threshold model. Cogent Economics & Finance 5. [Google Scholar] [CrossRef]
- Batrancea, Larissa-Margareta, Ramona-Anca Nichita, and Ioan Batrancea. 2012. Understanding the determinants of tax compliance behavior as a prerequisite for increasing public levies. The USV Annals of Economics and Public Administration 12: 201–10. [Google Scholar]
- Batrancea, Larissa, Anca Nichita, Ioan Batrancea, and Lucian Gaban. 2018. The strength of the relationship between shadow economy and corruption: Evidence from a worldwide country-sample. Social Indicators Research 138: 1119–43. [Google Scholar] [CrossRef]
- Batrancea, Larissa, Anca Nichita, Jerome Olsen, Christoph Kogler, Erich Kirchler, Erik Hoelzl, Avi Weiss, Benno Torgler, Jonas Fooken, Joanne Fuller, and et al. 2019. Trust and power as determinants of tax compliance across 44 nations. Journal of Economic Psychology 74: 102191. [Google Scholar] [CrossRef]
- Batrancea, Ioan, Malar Mozi Rathnaswamy, Lucian Gaban, Gheorghe Fatacean, Horia Tulai, Ioan Bircea, and Mircea-Iosif Rus. 2020a. An empirical investigation on determinants of sustainable economic growth. Lessons from Central and Eastern European Countries. Journal of Risk and Financial Management 13: 146. [Google Scholar] [CrossRef]
- Batrancea, Ioan, Malar Kumaran Rathnaswamy, Larissa Batrancea, Anca Nichita, Lucian Gaban, Gheorghe Fatacean, Horia Tulai, Ioan Bircea, and Mircea-Iosif Rus. 2020b. A panel data analysis on sustainable economic growth in India, Brazil, and Romania. Journal of Risk and Financial Management 13: 170. [Google Scholar] [CrossRef]
- Blanchet, Didier, Jacques Le Cacheux, and Vincent Marcus. 2009. Adjusted net Savings and other Approaches to Sustainability: Some Theoretical Background. Série des documents de travail de la Direction des Études et Synthèses Économiques G 2009/10; Paris: Institut National de la Statistique et des Études Économiques. [Google Scholar]
- Boos, Adrian. 2015. Genuine savings as an indicator for “weak” sustainability: Critical survey and possible ways forward in practical measuring. Sustainability 7: 4146–82. [Google Scholar] [CrossRef] [Green Version]
- Boutabba, Mohamed Amine. 2014. The impact of financial development, income, energy and trade on carbon emissions: Evidence from the Indian economy. Economic Modelling 40: 33–41. [Google Scholar] [CrossRef] [Green Version]
- Chang, Young-Ho. 2011. A path towards strong sustainability. In Status Review and Foundation Stakeholders Interviews: A Report. Brisbane: University of Queensland and Michigan Institute of Technology, June. [Google Scholar]
- Crabtree, Andrew. 2020. Sustainability indicators, ethics and legitimate freedoms. In Sustainability, Capabilities and Human Security. Edited by Andrew Crabtree. Cham: Palgrave Macmillan, pp. 51–74. [Google Scholar]
- Dean, Judith M. 1992. Trade and the Environment: A Survey of the Literature. Working Paper for the World Development Report WPS 966. Berlin: Springer. [Google Scholar]
- Dean, Judith M. 2002. Does trade liberalization harm the environment? A new test. Canadian Journal of Economics 35: 819–42. [Google Scholar] [CrossRef]
- Dickey, Alan David. 1976. Estimation and Hypothesis Testing in Nonstationary Time Series. Ph.D. dissertation, Iowa State University, Ames, Iowa. [Google Scholar]
- Dickey, Alan David, and Wayne A. Fuller. 1979. Distribution of the estimates for autoregressive time series with a unit root. Journal of the American Statistical Association 74: 427–31. [Google Scholar] [CrossRef]
- Dickey, Alan David, and Wayne A. Fuller. 1981. Likelihood ratio statistics for autoregressive time series with a unit root. Econometrica 49: 1057–72. [Google Scholar] [CrossRef]
- Dimitriou, Harry T., and Alison H. S. Cook, eds. 2018. Land-Use/Transport Planning in Hong Kong: The End of an Era. A Review of Principles and Practices. Oxon: Routledge. [Google Scholar]
- Dogan, Eyup, and Ilhan Ozturk. 2017. The influence of renewable and non-renewable energy consumption and real income on CO2 emissions in the USA: Evidence from structural break tests. Environmental Science and Pollution Research 24: 10846–54. [Google Scholar] [CrossRef]
- Eisenmenger, Nina, Melanie Pichler, Nora Krenmayr, Dominik Noll, Barbara Plank, Ekaterina Schalmann, Marie-Theres Wandl, and Simone Gingrich. 2020. The Sustainable Development Goals prioritize economic growth over sustainable resource use: A critical reflection on the SDGs from a socio-ecological perspective. Sustainability Science 15: 1101–10. [Google Scholar] [CrossRef]
- Everett, Glyn, and Alex Wilks. 1999. The World Bank’s genuine savings indicator: A useful measure of sustainability? The Bretton Woods Project, 1–10. [Google Scholar]
- Everett, Tim, Mallika Iswaran, Gian Paolo Ansaloni, and Alex Rubi. 2010. Economic Growth and the Environment. Munich Personal RePEc Archive No. 23585. Available online: https://mpra.ub.uni-muenchen.de/23585/ (accessed on 20 September 2020).
- Fankhauser, Samuel. 1995. Valuing Climate Change: The Economics of Greenhouse. New York: Earthscan. [Google Scholar]
- Fountis, G. Nicolaos, and Alan David Dickey. 1989. Testing for a unit root nonstationary in multivariate autoregressive time series. Annals of Statistics 17: 419–28. [Google Scholar] [CrossRef]
- Gnegne, Yacouba. 2009. Adjusted net saving and welfare change. Ecological Economics 68: 1127–39. [Google Scholar] [CrossRef]
- Greasley, David, Nick Hanley, Jan Kunnas, Eoin McLaughlin, Les Oxley, and Paul Warde. 2014. Testing genuine savings as a forward-looking indicator of future well-being over the (very) long-run. Journal of Environmental Economics and Management 67: 171–88. [Google Scholar] [CrossRef] [Green Version]
- Hartwick, John. 1977. Intergenerational equity and investing of rents from exhaustible resources. American Economic Review 66: 972–74. [Google Scholar] [CrossRef]
- Hartwick, John. 1990. Natural resources, national accounting and economic depreciation. Journal of Public Economics 43: 291–304. [Google Scholar] [CrossRef] [Green Version]
- Im, Kyung So, M. Hashem Pesaran, and Yongcheol Shin. 2003. Testing for unit roots in heterogeneous panels. Journal of Econometrics 115: 53–74. [Google Scholar] [CrossRef]
- Jha, Shikha, Sonia Chand Sandhu, and Radtasiri Wachirapunyanont. 2018. Inclusive Green Growth Index: A New Benchmark for Quality of Growth. Manila: Asian Development Bank. [Google Scholar]
- Kao, Chihwa, and Min-Hsien Chiang. 2001. On the estimation and inference of a cointegrated regression in panel data. In Nonstationary Panels, Panel Cointegration, and Dynamic Panels (Advances in Econometrics). Edited by In Badi H. Baltagi, Thomas B. Fomby and R. Carter Hill. Bingley: Emerald, pp. 179–222. [Google Scholar]
- Kasman, Adnan, and Selman Duman Yavuz. 2015. CO2 emissions, economic growth, energy consumption, trade and urbanization in new EU member and candidate countries: A panel data analysis. Economic Modelling 44: 97–103. [Google Scholar] [CrossRef]
- Khan, Hayat, Itbar Khan, and Truong Tien Binh. 2020. The heterogeneity of renewable energy consumption, carbon emission and financial development in the globe: A panel quantile regression approach. Energy Reports 6: 859–67. [Google Scholar] [CrossRef]
- Kogler, Christoph, Larissa Batrancea, Anca Nichita, Jozsef Pantya, Alexis Belianin, and Erich Kirchler. 2013. Trust and power as determinants of tax compliance: Testing the assumptions of the slippery slope framework in Austria, Hungary, Romanian and Russia. Journal of Economic Psychology 34: 169–80. [Google Scholar] [CrossRef]
- Koirala, Bishwa S., and Gyan Pradhan. 2019. Determinants of sustainable development: Evidence from 12 Asian countries. Sustainable Development 28: 39–45. [Google Scholar] [CrossRef]
- Levin, Andrew, and Chien-Fu Lin. 1993. Unit Root Tests in Panel Data: New Results. Discussion Paper No. 93–56. San Diego: Department of Economics, University of California. [Google Scholar]
- MacKinnon, James G. 1991. Critical values for cointegration tests, Chapter 13. In Long-Run Economic Relationships: Readings in Cointegration. Edited by Robert F. Engle and C. W. J. Chapter. Oxford: Oxford University Press. [Google Scholar]
- MacKinnon, James G. 1996. Numerical distribution functions for unit-root and cointegration tests. Journal of Applied Econometrics 11: 601–18. [Google Scholar] [CrossRef] [Green Version]
- Maddala, G. S., and In-Moo Kim. 1998. Unit Roots, Cointegration and Structural Change. Cambridge: Cambridge University Press. [Google Scholar]
- Maddala, G. S., and Shaowen Wu. 1999. A comparative study of unit root tests with panel data and new simple test. Oxford Bulletin of Economics and Statistics 61: 631–52. [Google Scholar] [CrossRef]
- Managi, Shunsuke, and Pushpam Kumar. 2018. Inclusive Wealth Report 2018: Measuring Progress towards Sustainability. Oxon: Routledge. [Google Scholar]
- McGrath, Luke, Stephen Hynes, and John McHale. 2020. Linking sustainable development assessment in Ireland and the European Union with economic theory. The Economic and Social Review 52: 327–55. [Google Scholar]
- Merko, Flora, Esmeraldo Xhakolli, Henrieta Themelko, and Florjon Merko. 2019. The importance of calculating green GDP in economic growth of a country-case study Albania. International Journal of Ecosystems and Ecology Science 9: 469–74. [Google Scholar] [CrossRef]
- Mota, Rui Pedro, and Maria A. Cunha-e-Sá. 2019. The role of technological progress in testing adjusted net savings: Evidence from OECD countries. Ecological Economics 164: 106382. [Google Scholar] [CrossRef]
- Neumayer, Eric. 2003. What factors determine the allocation of aid by Arab countries and multilateral agencies? Journal of Development Studies 39: 134–47. [Google Scholar] [CrossRef]
- Nichita, Anca, Larissa Batrancea, Ciprian Marcel Pop, Ioan Batrancea, Ioan Dan Morar, Ema Masca, Ana Maria Roux-Cesar, Denis Forte, Henrique Formigoni, and Adilson Aderito da Silva. 2019. We learn not for school but for life: Empirical evidence of the impact of tax literacy on tax compliance. Eastern European Economics 57: 397–429. [Google Scholar] [CrossRef]
- Ntarmah, Albert Henry, Yusheng Kong, and Michael Kobina Gyan. 2019. Banking system stability and economic sustainability: A panel data analysis of the effect of banking system stability on sustainability of some selected developing countries. Quantitative Finance and Economics 3: 709–38. [Google Scholar] [CrossRef]
- OECD. 2007. Policy Roundtables: Public Procurement. In Competition Law & Policy. Paris: OECD. [Google Scholar]
- OECD. 2015. Monitoring the Transition to a Low Carbon Economy. Paris: OECD. [Google Scholar]
- Pardi, Faridah, Arifin Md. Salleh, and Abdol Samad Nawi. 2015. Determinants of sustainable development in Malaysia: A VECM approach of short-run and long-run relationships. American Journal of Economics 5: 269–77. [Google Scholar] [CrossRef]
- Pearce, David W., and Giles D. Atkinson. 1993. Capital theory and the measurement of sustainable development: An indicator of “weak” sustainability. Ecological Economics 8: 103–108. [Google Scholar] [CrossRef]
- Pearson, Sonja. 2003. The EU emission Trading Scheme and its Competitiveness Effects for European Business: Results from the CGE Model DART. Kiel: Kiel Institute for World Economics. [Google Scholar]
- Pesaran, M. Hashem, Yongcheol Shin, and Ron P. Smith. 1999. Pooled mean group estimation of dynamic heterogeneous panels. Journal of the American Statistical Association 94: 621–34. [Google Scholar] [CrossRef]
- Philips, Peter C. B., and Zhijie Xiao. 1998. A primer on unit root testing. Journal of Economic Surveys 12: 423–70. [Google Scholar] [CrossRef]
- Qasim, Mubashir, and Arthur Grimes. 2018. Sustainable economic policy and well-being: The relationship between adjusted net savings and subjective well-being. Motu Economic and Public Policy Research Working Paper 18-06. [Google Scholar]
- Roux Valentini Coelho Cesar, Ana Maria, Gilberto Perez, Larissa Batrancea, Anca Nichita, and Ioan Batrancea. 2019. Brazilian and Romanian decision-makers: Is their decision behaviour different? Evidence from an empirical study. Current Science 116: 445–56. [Google Scholar] [CrossRef]
- Rudenko-Sudarieva, Larysa V., and Yuliia A. Shevchenko. 2019. Factors of the formation of adjusted net savings in the People’s Republic of China. Journal of Advanced Research in Law and Economics 10: 2497–506. [Google Scholar] [CrossRef]
- Saikkonen, Pentti. 1991. Asymptotically efficient estimation of cointegrating regressions. Econometric Theory 7: 1–21. [Google Scholar] [CrossRef]
- Schepelmann, Philipp, Yanne Goossenes, Artuu Makipaa, Martin Herrndorf, Verena Klees, Michael Kuhndt, and Esabel Sand, eds. 2010. Towards Sustainable Development: Alternatives to GDP for Measuring Progress. Wuppertal: Wuppertal Institute for Climate, Environment and Energy. [Google Scholar]
- Solow, Robert. 1974. Intergenerational equity and exhaustible resources. The Review of Economics Studies 41: 29–46. [Google Scholar] [CrossRef] [Green Version]
- Stiglitz, Joseph E., Amartya Sen, and Jean-Paul Fitoussi. 2008. Report by the Commission on the Measurement of Economic Performance and Social Progress. Paris: OECD Publishing. [Google Scholar]
- Stock, James H. 1994. Unit root, structural breaks and trends. In Handbook of Econometrics. Edited by Robert F. Engle and Dan L. McFadden. Amsterdam: Elsevier, vol. 4, pp. 2740–2843. [Google Scholar]
- Stock, James H., and Mark W. Watson. 1993. A simple estimator of cointegrating vectors in higher order integrated systems. Econometrica 61: 783–820. [Google Scholar] [CrossRef]
- UNEP. 2011. Towards a Green Economy: Pathways to Sustainable Development and Poverty Eradication. Nairobi: UNEP. [Google Scholar]
- World Bank. 2007. At Loggerheads? Agricultural Expansion, Poverty Reduction and Environment in the Tropical Forests. Washington: World Bank. [Google Scholar]
- World Bank. 2011. The Changing Wealth of Nations: Measuring Sustainable Development in the New Millennium. Washington: World Bank. [Google Scholar]
- World Bank. 2013. A More Accurate Pulse on Sustainability. Washington: World Bank. [Google Scholar]
- World Bank. 2018. Estimating the World Bank’s Adjusted Net Saving: Methods and Data. Washington: World Bank. [Google Scholar]
- World Bank. 2020. The Global Economic Outlook during the COVID-19 Pandemic: A Changed World. Washington: World Bank. [Google Scholar]
- Zugravu, Natalia, Kartin Millock, and Gerard Duchene. 2008. The factors behind CO2 emission reduction in transition economies. Foundations Eni Enrico Mattei. Available online: https://databank.worldbank.org/source/world-development-indicators (accessed on 4 February 2020).
GDP | ASCDD | ASED | ASGS | ASMD | ASNFD | GNI | |
---|---|---|---|---|---|---|---|
Mean | 2.595000 | 1.330000 | 0.260000 | 22.30583 | 0.100833 | 0.002500 | 2.760833 |
Median | 2.800000 | 1.100000 | 0.100000 | 22.55000 | 0.000000 | 0.000000 | 3.050000 |
Maximum | 11.90000 | 3.000000 | 1.600000 | 29.50000 | 1.100000 | 0.100000 | 11.90000 |
Minimum | −14.80000 | 0.500000 | 0.000000 | 10.50000 | 0.000000 | 0.000000 | −12.60000 |
Std. Dev. | 4.641552 | 0.597417 | 0.364011 | 3.862191 | 0.245119 | 0.015678 | 4.192236 |
Skewness | −1.228007 | 0.893172 | 2.011951 | −0.293320 | 2.599680 | 6.084870 | −0.864457 |
Kurtosis | 6.178526 | 2.849856 | 6.479751 | 2.706432 | 8.748946 | 38.02564 | 4.906976 |
Jarque–Bera | 80.67516 | 16.06783 | 141.5023 | 2.151642 | 300.4186 | 6874.490 | 33.12850 |
Probability | 0.000000 | 0.000324 | 0.000000 | 0.341018 | 0.000000 | 0.000000 | 0.000000 |
Sum | 311.4000 | 159.6000 | 31.20000 | 2676.700 | 12.10000 | 0.300000 | 331.3000 |
Sum Sq. Dev. | 2563.737 | 42.47200 | 15.76800 | 1775.066 | 7.149917 | 0.029250 | 2091.406 |
Observations | 120 | 120 | 120 | 120 | 120 | 120 | 120 |
GDP | ASCDD | ASED | ASGS | ASMD | ASNFD | GNI | |
---|---|---|---|---|---|---|---|
GDP | 1 | ||||||
ASCDD | 0.1448 | 1 | |||||
ASED | −0.0472 | 0.2312 | 1 | ||||
ASGS | −0.0365 | −0.0022 | 0.0064 | 1 | |||
ASMD | 0.0548 | 0.6149 | −0.0702 | −0.2870 | 1 | ||
ASNFD | 0.0255 | 0.1354 | −0.0706 | −0.1057 | 0.0650 | 1 | |
GNI | 0.9181 | 0.1086 | 0.0387 | 0.0167 | 0.0181 | 0.0091 | 1 |
Panel Unit Root Test: Summary Series: GDP | Panel Unit Root Test: Summary Series: D(GDP) | |||||||
Method | Statistic | Prob. ** | Cross-Sections | Obs. | Statistic | Prob. ** | Cross-sections | Obs. |
Null: Unit root (assumes common unit root process) | ||||||||
Levin, Lin and Chu t * | −7.53233 | 0.0000 | 10 | 107 | −11.4727 | 0.0000 | 10 | 94 |
Null: Unit root (assumes individual unit root process) | ||||||||
Im, Pesaran and Shin W test | −3.63088 | 0.0001 | 10 | 107 | −6.28179 | 0.0000 | 10 | 94 |
ADF-Fisher chi-square | 45.3809 | 0.0010 | 10 | 107 | 75.8515 | 0.0000 | 10 | 94 |
PP-Fisher chi-square | 36.4986 | 0.0134 | 10 | 110 | 102.528 | 0.0000 | 10 | 100 |
Null Hypothesis: Stationarity Series: GDP | Null Hypothesis: Stationarity Series: D(GDP) | |||||||
Method | Statistic | Prob. ** | Statistic | Prob. ** | ||||
Hadri Z-stat | 0.63450 | 0.2629 | 5.23213 | 0.0000 | ||||
Heteroscedastic consistent Z-stat | 1.39141 | 0.0821 | 5.86540 | 0.0000 | ||||
Intermediate results on GDP | Intermediate results on D(GDP) | |||||||
Cross section | LM | Variance HAC | Bandwidth | Obs. | LM | Variance HAC | Bandwidth | Obs. |
Romania | 0.3087 | 22.78972 | 1.0 | 12 | 0.3518 | 4.168208 | 7.0 | 11 |
Bulgaria | 0.2641 | 14.76539 | 1.0 | 12 | 0.5000 | 3.042975 | 10.0 | 11 |
Hungary | 0.1459 | 10.29513 | 1.0 | 12 | 0.5000 | 2.648760 | 10.0 | 11 |
Poland | 0.4487 | 2.531875 | 0.0 | 12 | 0.4545 | 0.562562 | 9.0 | 11 |
Czech Republic | 0.2014 | 14.26224 | 1.0 | 12 | 0.5000 | 2.721938 | 10.0 | 11 |
Slovenia | 0.1729 | 15.47963 | 1.0 | 12 | 0.3582 | 4.775224 | 7.0 | 11 |
Slovak | 0.3100 | 15.92076 | 0.0 | 12 | 0.4545 | 2.880975 | 9.0 | 11 |
Estonia | 0.1146 | 50.01160 | 2.0 | 12 | 0.5000 | 10.80234 | 10.0 | 11 |
Latvia | 0.1969 | 49.32521 | 0.0 | 12 | 0.3126 | 19.56847 | 6.0 | 11 |
Lithuania | 0.1594 | 29.40377 | 3.0 | 12 | 0.5000 | 7.879279 | 10.0 | 11 |
Pooled OLS Model Dependent Variable: GDP | Fixed Effect Model Dependent Variable: GDP | |||||||
Variable | Coefficient | Std. Error | t-Statistic | Prob. | Coefficient | Std. Error | T-statistic | Prob. |
C | 0.986365 | 1.052900 | 0.936808 | 0.3509 | −1.042355 | 2.205499 | −0.472616 | 0.6375 |
ASCDD | 0.810979 | 0.394260 | 2.056964 | 0.0420 | 2.132852 | 0.879952 | 2.423828 | 0.0171 |
ASED | −1.409720 | 0.490239 | −2.875578 | 0.0048 | 0.310946 | 0.899573 | 0.345659 | 0.7303 |
ASGS | −0.080192 | 0.046380 | −1.729024 | 0.0865 | −0.100486 | 0.066597 | −1.508862 | 0.1344 |
ASMD | −0.990257 | 0.962121 | −1.029243 | 0.3056 | 1.718782 | 2.544392 | 0.675518 | 0.5008 |
ASNFD | −2.488708 | 10.76673 | −0.231148 | 0.8176 | 3.104594 | 12.14008 | 0.255731 | 0.7987 |
GNI | 1.011067 | 0.039546 | 25.56678 | 0.0000 | 1.006999 | 0.041692 | 24.15353 | 0.0000 |
R-squared | 0.858105 | F-statistic | 113.8943 | R-squared | 0.872506 | F-statistic | 47.44831 | |
Adjusted R-squared | 0.850571 | Prob. (F-statistic) | 0.000000 | Adjusted R-squared | 0.854117 | Prob. (F-statistic) | 0.000000 | |
Random Effect Model Dependent Variable: GDP | Correlated Random Effects–Hausman Test | |||||||
Variable | Coefficient | Std. error | t-statistic | Prob. | Test Summary | Chi-Sq. Statistic | Chi-Sq. d.f. | Prob. |
Cross-section random | 11.486496 | 6 | 0.0745 | |||||
Cross-section random effects test equation. Dependent variable: GDP; Method: Panel Least Squares Sample: 2005–2016; Periods included: 12 Cross-sections included: 10 Total panel (balanced) observations: 120 | ||||||||
C | 0.986365 | 1.040331 | 0.948127 | 0.3451 | −1.042355 | 2.205499 | −0.472616 | 0.6375 |
ASCDD | 0.810979 | 0.389554 | 2.081815 | 0.0396 | 2.132852 | 0.879952 | 2.423828 | 0.0171 |
ASED | −1.409720 | 0.484387 | −2.910320 | 0.0043 | 0.310946 | 0.899573 | 0.345659 | 0.7303 |
ASGS | −0.080192 | 0.045826 | −1.749914 | 0.0828 | −0.100486 | 0.066597 | −1.508862 | 0.1344 |
ASMD | −0.990257 | 0.950636 | −1.041678 | 0.2998 | 1.718782 | 2.544392 | 0.675518 | 0.5008 |
ASNFD | −2.488708 | 10.63820 | −0.233941 | 0.8155 | 3.104594 | 12.14008 | 0.255731 | 0.7987 |
GNI | 1.011067 | 0.039074 | 25.87567 | 0.0000 | 1.006999 | 0.041692 | 24.15353 | 0.0000 |
R-squared | 0.858105 | F-statistic | 113.8943 | |||||
Adjusted R-squared | 0.850571 | Prob. (F-statistic) | 0.000000 | |||||
Dependent variable: GDP Method: Panel Fully Modified Least Squares (FMOLS) | ||||||||
Variable | Coefficient | Std. error | t-statistic | Prob. | R-squared | −86.850699 | ||
ASCDD | 80.91177 | 21.39724 | 3.781412 | 0.0129 | Adjusted R-squared | −174.701397 | ||
ASED | 436.7762 | 59.23867 | 7.373160 | 0.0007 | ||||
ASGS | −9.870857 | 1.813296 | −5.443599 | 0.0028 | ||||
ASMD | −379.9181 | 75.26561 | −5.047699 | 0.0039 | ||||
ASNFD | 467.9440 | 93.47772 | 5.005941 | 0.0041 | ||||
GNI | 11.90856 | 2.650747 | 4.492529 | 0.0064 |
GDP | ASCDD | ASED | ASGS | ASMD | ASNFD | GNI | |
---|---|---|---|---|---|---|---|
GDP (−1) | 0.330601 | −0.024555 | 0.026471 | 0.029958 | 0.001406 | −0.000233 | 0.530035 |
(0.25889) | (0.01065) | (0.01049) | (0.13083) | (0.00367) | (0.00072) | (0.22102) | |
[1.27700] | [−2.30629] | [2.52368] | [0.22899] | [0.38282] | [−0.32425] | [2.39816] | |
GDP (−2) | −0.753851 | −0.001868 | 0.002335 | 0.110105 | −0.005562 | −7.01 | −0.490022 |
(0.24527) | (0.01009) | (0.00994) | (0.12395) | (0.00348) | (0.00068) | (0.20939) | |
[−3.07351] | [−0.18523] | [0.23494] | [0.88832] | [−1.59804] | [−0.10278] | [−2.34019] | |
C | 3.838509 | −0.254549 | 0.132283 | 4.656892 | −0.001241 | 0.008681 | 4.047393 |
(2.58679) | (0.10638) | (0.10480) | (1.30721) | (0.03671) | (0.00719) | (2.20838) | |
[1.48389] | [−2.39277] | [1.26219] | [3.56248] | [−0.03382] | [1.20661] | [1.83274] | |
R-squared | 0.389363 | 0.936236 | 0.845015 | 0.756915 | 0.956780 | 0.673096 | 0.435960 |
Adj. R-squared | 0.288787 | 0.925734 | 0.819488 | 0.716877 | 0.949661 | 0.619253 | 0.343059 |
Estimation Method: Least Squares Sample: 2007–2016; Included Observations: 100; Total System (Balanced) Observations: 700 | ||||
---|---|---|---|---|
Coefficient | Std. Error | t-Statistic | Prob. | |
C (1) * ASCDD | 0.330601 | 0.258889 | 1.277002 | 0.2021 |
C (2) * ASED | −0.753851 | 0.245274 | −3.073506 | 0.0022 |
C (3) * ASMD | 1.813993 | 2.730482 | 0.664349 | 0.5067 |
C (4) * ASNFD | 0.816012 | 2.902347 | 0.281156 | 0.7787 |
C (5) * GNI | −8.752199 | 2.775356 | −3.153541 | 0.0017 |
R-squared | 0.389363 | |||
Adjusted R-squared | 0.288787 |
Wald Test I: GDP | |||
Test Statistic | Value | d.f. | Probability |
Chi-square | 15.75434 | 6 | 0.0151 |
Null Hypothesis: C (3) = C (5) = C (7) = C (9) = C (11) = C (13) = 0 | |||
Wald Test II: ASCDD | |||
Chi-square | 2.071322 | 6 | 0.9130 |
Null Hypothesis: C (19) = C (21) = C (23) = C (25) = C (27) = C (29) = 0 | |||
Wald Test III: ASED | |||
Chi-square | 77.50685 | 6 | 0.0000 |
Null Hypothesis: C (33) = C (35) = C (37) = C (39) = C (41) = C (43) = 0 | |||
Wald Test IV: ASGS | |||
Chi-square | 8.558206 | 6 | 0.2000 |
Null Hypothesis: C (49) = C (51) = C (53) = C (55) = C (57) = C (59) = 0 | |||
Wald Test V: ASMD | |||
Chi-square | 118.1690 | 6 | 0.0000 |
Null Hypothesis: C (63) = C (65) = C (67) = C (69) = C (71) = C (73) = 0 | |||
Wald Test VI: ASNFD | |||
Chi-square | 81.82548 | 6 | 0.0000 |
Null Hypothesis: C (78) = C (80) = C (82) = C (84) = C (86) = C (88) = 0 | |||
Wald Test VII: GNI | |||
Chi-square | 19.43980 | 6 | 0.0035 |
Null Hypothesis: C (93) = C (95) = C (97) = C (99) = C (101) = C (103) =0 |
GDP | Sox | NOx | Particulates | CO | VOC | CO2 | |
---|---|---|---|---|---|---|---|
France | 132 | 35 | 66 | 67 | 50 | 52 | 98 |
Germany | 123 | 10 | 50 | 10 | 33 | 35 | 82 |
Ireland | 258 | 38 | 95 | 106 | 55 | 58 | 126 |
Japan | 120 | 76 | 94 | 67 | 88 | 107 | |
Portugal | 135 | 69 | 104 | 133 | 70 | 94 | 143 |
Turkey | 173 | 128 | 166 | 92 | 184 | ||
UK | 143 | 19 | 55 | 53 | 29 | 41 | 85 |
USA | 155 | 63 | 74 | 81 | 62 | 69 | 116 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Larissa, B.; Maran, R.M.; Ioan, B.; Anca, N.; Mircea-Iosif, R.; Horia, T.; Gheorghe, F.; Ema Speranta, M.; Dan, M.I. Adjusted Net Savings of CEE and Baltic Nations in the Context of Sustainable Economic Growth: A Panel Data Analysis. J. Risk Financial Manag. 2020, 13, 234. https://doi.org/10.3390/jrfm13100234
Larissa B, Maran RM, Ioan B, Anca N, Mircea-Iosif R, Horia T, Gheorghe F, Ema Speranta M, Dan MI. Adjusted Net Savings of CEE and Baltic Nations in the Context of Sustainable Economic Growth: A Panel Data Analysis. Journal of Risk and Financial Management. 2020; 13(10):234. https://doi.org/10.3390/jrfm13100234
Chicago/Turabian StyleLarissa, Batrancea, Rathnaswamy Malar Maran, Batrancea Ioan, Nichita Anca, Rus Mircea-Iosif, Tulai Horia, Fatacean Gheorghe, Masca Ema Speranta, and Morar Ioan Dan. 2020. "Adjusted Net Savings of CEE and Baltic Nations in the Context of Sustainable Economic Growth: A Panel Data Analysis" Journal of Risk and Financial Management 13, no. 10: 234. https://doi.org/10.3390/jrfm13100234
APA StyleLarissa, B., Maran, R. M., Ioan, B., Anca, N., Mircea-Iosif, R., Horia, T., Gheorghe, F., Ema Speranta, M., & Dan, M. I. (2020). Adjusted Net Savings of CEE and Baltic Nations in the Context of Sustainable Economic Growth: A Panel Data Analysis. Journal of Risk and Financial Management, 13(10), 234. https://doi.org/10.3390/jrfm13100234