Comparative Assessment of Nutraceuticals for Supporting Skin Health
Abstract
:1. Introduction
1.1. Nutraceuticals
Source | Nutraceuticals Are… |
---|---|
DeFelice, 1995 [19] |
|
Zeisel, 1999; DSHEA [22] |
|
Brower, 1998 [23] |
|
Merriam-Webster Dictionary, 2015 [24] |
|
European Nutraceutical Association (ENA), 2016 [25] |
|
1.2. Target Audience and Market
1.3. Skin Physiology
1.4. Skin Health
- Skin hydration;
- Transepidermal water loss (TEWL);
- Skin elasticity/firmness;
- Wrinkle depth/wrinkle reduction;
- Collagen synthesis/collagen content;
- Skin roughness/surface smoothness;
- Skin density/dermal thickness;
- Skin appearance/subjective skin quality;
- Reduction in UVB-induced damage/photoprotection;
- Inflammatory markers/anti-inflammatory effects;
- Skin lipid composition/ceramide levels;
- Skin pigmentation/melanin content;
- Healing and regeneration from skin diseases;
- Oxidative stress markers;
- Sebum secretion/skin surface lipid levels.
2. Materials and Methods
2.1. Search Strategy and Criteria for the Assessment of Nutraceuticals Affecting Skin Health
2.2. Classification of Evidence
3. Results
3.1. Group 1: Active Ingredients with Clinically Proven Efficacy
3.1.1. Vitamins
- Vitamin A
- Biotin (Vitamin B7 or Vitamin H)
- Vitamin C
- Vitamin E
3.1.2. Fatty Acids, Lipids
- Omega-3 Fatty Acids (PUFA)
- Ceramides
3.1.3. Collagen
- Collagen Peptides
3.1.4. Secondary Metabolites
- Carotenoids: Β-Carotene, Lutein, Zeaxanthin, Astaxanthin, Lycopene
3.1.5. Plant and Animal Substances/Extracts
- Polyphenols: Pine Extract (Maritime Pine Bark Extract), Flavonoids, Resveratrol
- Aloe Vera Gel
- Sea Buckthorn Oil
- Hyaluronic Acid
3.2. Group 2: Active Ingredients with Less Well-Documented Effectiveness
3.2.1. Minerals and Trace Elements
- Zinc
- Manganese
3.2.2. Amino Acids
- L-Arginine, L-Glutamine, L-Leucine, etc.
3.2.3. Secondary Natural Substances
- Polyphenols: Catechins from Green Tea Extract, Grape Seed/Skin Extract
3.2.4. Plant and Animal Substances/Extracts
- Citrus/Rosemary Extracts
- Acerola Extract
3.2.5. Probiotics and Prebiotics
- Probiotics (Lactobacillus, Bifidobacterium)
- Galacto-Oligosaccharides
3.2.6. Others
- Coenzyme Q10
3.3. Group 3: Ingredients with Insufficiently Documented Effects
3.3.1. Vitamins
- Vitamins B1, B2, B3, B5, B6, Vitamin D
3.3.2. Minerals and Trace Elements
- Copper
- Selenium
3.3.3. Secondary Natural Substances
- Curcumin
3.3.4. Plant and Animal Substances/Extracts
- Phytosterols (excluding Aloe Sterols)
- Bioactive Polysaccharides
- Serenoa Repens
3.3.5. Probiotics and Prebiotics
- Other Prebiotics
3.3.6. Others
- N-Acetylcysteine (NAC)
3.4. Combinations of Individual Substances
3.5. Digestion and Absorption of Nutraceuticals
- (a)
- Modes of intake: Hydrophilic micronutrients (e.g., vitamin C, B vitamins, zinc) and peptides (e.g., collagen peptides) are typically taken in liquid, powder, or capsule form. Lipophilic substances (e.g., carotenoids, coenzyme Q10, omega-3 fatty acids) require fat-based formulations to support solubility and micelle formation. Polysaccharide-rich ingredients (e.g., aloe vera, hyaluronic acid) are commonly consumed as gels or liquid extracts. Formulation strongly affects dissolution and absorption.
- (b)
- Breakdown (digestion) processes: Proteins and polysaccharides undergo enzymatic digestion before absorption. Collagen peptides, though pre-hydrolyzed, are further degraded by pepsin and pancreatic enzymes into oligopeptides and amino acids. Polysaccharides like fiber or hyaluronic acid are largely indigestible and reach the colon, where gut microbiota may ferment them. Most micronutrients do not require digestive processing.
- (c)
- Transport and absorption mechanisms: Hydrophilic compounds use specific transporters: sodium–vitamin C co-transporters (SVCT), sodium-dependent multivitamin transporter (SMVT, e.g., for biotin and pantothenic acid), proton-coupled oligopeptide transporter 1 (PEPT1, for di- and tripeptides), and Zrt- and Irt-like protein 4 (ZIP4, for zinc). Lipophilic molecules are absorbed via passive diffusion from bile salt micelles, sometimes facilitated by transporters such as fatty acid translocase (FAT/CD36). Peptides such as collagen fragments are absorbed primarily via PEPT1.
- (d)
- Site of absorption: Most nutrients are absorbed in the duodenum and jejunum. Some, like vitamin B12, are absorbed in the ileum via receptor-mediated endocytosis. Microbially activated compounds (e.g., polyphenols) and polysaccharides primarily exert their physiological effects in the colon after undergoing microbial transformation.
- (e)
- Transport routes: Hydrophilic nutrients and small peptides enter the liver via the portal vein for further metabolism or distribution. Lipophilic compounds are incorporated into chylomicrons and reach systemic circulation via the lymphatic system. Non-absorbable components (e.g., fibers, probiotics) remain in the gastrointestinal tract and interact locally with gut cells or microbiota.
- (f)
- First-pass effect: Hydrophilic micronutrients, amino acids, and peptides may undergo partial first-pass metabolism in the liver. In contrast, lipophilic substances initially bypass hepatic metabolism via lymphatic transport but are eventually processed after chylomicron remnants are taken up by the liver.
3.6. Adverse Effects and Tolerability
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gupta, S.; Chauhan, D.; Mehla, K.; Sood, P.; Nair, A. An Overview of Nutraceuticals: Current Scenario. J. Basic Clin. Pharm. 2010, 1, 55–62. [Google Scholar] [PubMed]
- Chaudhari, S.; Powar, P.V.; Pratapwar, M.N. Nutraceuticals: A Review. World J. Pharm. Pharm. Sci. 2017, 6, 681–739. [Google Scholar] [CrossRef]
- Souyoul, S.A.; Saussy, K.P.; Lupo, M.P. Nutraceuticals: A Review. Dermatol. Ther. 2018, 8, 5–16. [Google Scholar] [CrossRef] [PubMed]
- Puri, V.; Nagpal, M.; Singh, I.; Singh, M.; Dhingra, G.A.; Huanbutta, K.; Dheer, D.; Sharma, A.; Sangnim, T. A Comprehensive Review on Nutraceuticals: Therapy Support and Formulation Challenges. Nutrients 2022, 14, 4637. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Sánchez, A.; Barrajón-Catalán, E.; Herranz-López, M.; Micol, V. Nutraceuticals for Skin Care: A Comprehensive Review of Human Clinical Studies. Nutrients 2018, 10, 403. [Google Scholar] [CrossRef]
- Vollmer, D.L.; West, V.A.; Lephart, E.D. Enhancing Skin Health: By Oral Administration of Natural Compounds and Minerals with Implications to the Dermal Microbiome. Int. J. Mol. Sci. 2018, 19, 3059. [Google Scholar] [CrossRef]
- Nwanodi, O. Skin Protective Nutraceuticals: The Current Evidence in Brief. Healthcare 2018, 6, 40. [Google Scholar] [CrossRef]
- Reeves, R.; Luks, E.L. Oral Supplements and Dermatology: A Review. Dermatol. Rev. 2024, 5, e239. [Google Scholar] [CrossRef]
- Morifuji, M. The Beneficial Role of Functional Food Components in Mitigating Ultraviolet-Induced Skin Damage. Exp. Dermatol. 2019, 28 (Suppl. 1), 28–31. [Google Scholar] [CrossRef]
- Shamloul, N.; Hashim, P.W.; Nia, J.J.; Farberg, A.S.; Goldenberg, G. The Role of Vitamins and Supplements on Skin Appearance. Cutis 2019, 104, 220–224. [Google Scholar]
- Dini, I.; Laneri, S. The New Challenge of Green Cosmetics: Natural Food Ingredients for Cosmetic Formulations. Molecules 2021, 26, 3921. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Wu, J.; Qian, G.; Cheng, H. Effectiveness of Dietary Supplement for Skin Moisturizing in Healthy Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Front. Nutr. 2022, 9, 895192. [Google Scholar] [CrossRef]
- Januszewski, J.; Forma, A.; Zembala, J.; Flieger, M.; Tyczyńska, M.; Dring, J.C.; Dudek, I.; Świątek, K.; Baj, J. Nutritional Supplements for Skin Health—A Review of What Should Be Chosen and Why. Medicina 2023, 60, 68. [Google Scholar] [CrossRef] [PubMed]
- Birnbaum, J.; Buchner, L.; Le Moigne, A.; Dispensa, L. A Review of Clinical Trials Conducted With Oral, Multicomponent Dietary Supplements for Improving Photoaged Skin. J. Drugs. Dermatol. 2015, 14, 1453–1461. [Google Scholar]
- Mourelle, M.L.; Gómez, C.P.; Legido, J.L.; Pereira, L. Role of Nutribiotics in Skin Care. Appl. Sci. 2024, 14, 3505. [Google Scholar] [CrossRef]
- Assaf, S.; Kelly, O. Nutritional Dermatology: Optimizing Dietary Choices for Skin Health. Nutrients 2025, 17, 60. [Google Scholar] [CrossRef]
- Commission Regulation (EU) No 432/2012 of 16 May 2012 establishing a list of permitted health claims made on foods, other than those referring to the reduction of disease risk and to children’s development and health. Off. J. Eur. Union. 2012, L136, 1–40. Available online: https://eur-lex.europa.eu/eli/reg/2012/432/oj (accessed on 20 February 2025).
- Dau, A. Beauty Claims. Recht. Z. Eur. Leb. 2016, 4, 176–179. [Google Scholar]
- DeFelice, S.L. The Nutraceutical Revolution: Its Impact on Food Industry R&D. Trends. Food. Sci. Technol. 1995, 6, 59–61. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration (FDA). Dietary Supplement Health and Education Act (DSHEA). U.S. Department of Health and Human Services. Public Law 2017. pp. 103–417. Available online: https://ods.od.nih.gov/About/DSHEA_Wording.aspx (accessed on 20 February 2025).
- Santini, A.; Cammarata, S.M.; Capone, G.; Ianaro, A.; Tenore, G.C.; Pani, L.; Novellino, E. Nutraceuticals: Opening the Debate for a Regulatory Framework. Br. J. Clin. Pharmacol. 2018, 84, 659–672. [Google Scholar] [CrossRef]
- Zeisel, S.H. Regulation of ‘Nutraceuticals.’ U.S. FDA, Dietary Supplement Health and Education Act of 1994 (DSHEA). Science 1999, 285, 1853–1855. [Google Scholar] [CrossRef] [PubMed]
- Brower, V. Nutraceuticals: Poised for a Healthy Slice of the Healthcare Market? Nat. Biotechnol. 1998, 16, 728–731. [Google Scholar] [CrossRef] [PubMed]
- Merriam-Webster Online Dictionary; Merriam-Webster Inc.: Springfield, MA, USA, 2015.
- European Nutraceutical Association (ENA). Science Behind Nutraceuticals; Association, E.N., Ed.; European Nutraceutical Association: Basel, Switzerland, 2016; p. 594. [Google Scholar]
- Krutmann, J.; Bouloc, A.; Sore, G.; Bernard, B.A.; Passeron, T. The Skin Aging Exposome. J. Dermatol. Sci. 2017, 85, 152–161. [Google Scholar] [CrossRef] [PubMed]
- Mohd Ariffin, N.H.; Hasham, R. Assessment of Non-invasive Techniques and Herbal-Based Products on Dermatological Physiology and Intercellular Lipid Properties. Heliyon 2020, 6, e03955. [Google Scholar] [CrossRef]
- Abadie, S.; Bedos, P.; Rouquette, J. A Human Skin Model to Evaluate the Protective Effect of Compounds Against UVA Damage. Int. J. Cosmet. Sci. 2019, 41, 594–603. [Google Scholar] [CrossRef]
- Fink, B.; Matts, P.J.; Röder, S.; Johnson, R.; Burquest, M. Differences in Visual Perception of Age and Attractiveness of Female Facial and Body Skin. Int. J. Cosmet. Sci. 2011, 33, 126–131. [Google Scholar] [CrossRef]
- Goldie, K.; Kerscher, M.; Fabi, S.G.; Hirano, C.; Landau, M.; Lim, T.S.; Woolery-Lloyd, H.; Mariwalla, K.; Park, J.Y.; Yutskovskaya, Y. Skin Quality—A Holistic 360° View: Consensus Results. Clin. Cosmet. Investig. Dermatol. 2021, 14, 643–654. [Google Scholar] [CrossRef]
- Makrantonaki, E.; Vogel, M.; Scharffetter-Kochanek, K.; Zouboulis, C.C. Skin aging: Molecular understanding of extrinsic and intrinsic processes. Hautarzt 2015, 66, 730–737. (In German) [Google Scholar] [CrossRef]
- Cao, C.; Xiao, Z.; Wu, Y.; Ge, C. Diet and Skin Aging—From the Perspective of Food Nutrition. Nutrients 2020, 12, 870. [Google Scholar] [CrossRef]
- Petruk, G.; Del Giudice, R.; Rigano, M.M.; Monti, D.M. Antioxidants from Plants Protect Against Skin Photoaging. Oxidative Med. Cell. Longev. 2018, 2018, 1454936. [Google Scholar] [CrossRef]
- Kalra, E.K. Nutraceutical—Definition and introduction. AAPS Pharm. Sci. 2003, 5, E25. [Google Scholar] [CrossRef] [PubMed]
- Clair, J.S. A New Model of Tracheostomy Care: Closing the Research–Practice Gap. In Advances in Patient Safety: From Research to Implementation; Henriksen, K., Battles, J.B., Marks, E.S., Lewin, D.I., Eds.; Agency for Healthcare Research and Quality (US): Rockville, MD, USA, 2005; Volume 3. Available online: https://www.ncbi.nlm.nih.gov/books/NBK20542/ (accessed on 20 February 2025).
- Schölmerich, J. Medizinische Therapie, Sektion I Prinzipien der Therapie, Evidenzbasierte Medizin. In Medizinische Therapie; Schölmerich, J., Ed.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 1–19. [Google Scholar]
- Oxford Centre for Evidence-Based Medicine. Levels of Evidence; Centre for Evidence-Based Medicine: Oxford, UK, 2009. [Google Scholar]
- GD Society for Dermopharmacy. Dermocosmetics Against Skin Aging: Guideline. Available online: https://www.gd-online.de/german/veranstalt/images2017/GD_LL_Dermokosmetika_gegen_Hautalterung_13.03.2017.pdf (accessed on 20 February 2025).
- Deutsche Gesellschaft für Ernährung e. V. (DGE). Referenzwerte für die Nährstoffzufuhr. 2019. Available online: http://www.dge.de/wissenschaft/referenzwerte/ (accessed on 20 February 2025).
- Genovese, L.; Sibilla, S. Innovative nutraceutical approaches to counteract the signs of aging. In Textbook of Aging Skin; Farage, M., Miller, K., Maibach, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 1–25. [Google Scholar] [CrossRef]
- Institute of Medicine. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, Zinc; National Academy Press: Washington, DC, USA, 2001. [Google Scholar]
- Chauhan, B.; Kumar, G.; Kalam, N.; Ansari, S.H. Current concepts and prospects of herbal nutraceutical: A review. J. Adv. Pharm. Technol. Res. 2013, 4, 4–8. [Google Scholar] [PubMed]
- Bagchi, D. (Ed.) Nutraceutical and Functional Food Regulations in the United States and Around the World, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar] [CrossRef]
- Weißenborn, A.; Bakhiya, N.; Demuth, I.; Ehlers, A.; Ewald, M.; Niemann, B.; Richter, K.; Trefflich, I.; Ziegenhagen, R.; Hirsch-Ernst, K.I.; et al. Höchstmengen für Vitamine und Mineralstoffe in Nahrungsergänzungsmitteln. J. Consum. Prot. Food. Saf. 2018, 13, 25–39. [Google Scholar] [CrossRef]
- Anderson, J.J. Oversupplementation of vitamin A and osteoporotic fractures in the elderly: To supplement or not to supplement with vitamin A. J. Bone Miner. Res. 2002, 17, 1359–1362. [Google Scholar] [CrossRef]
- Wintergerst, E.S.; Maggini, S.; Hornig, D.H. Contribution of selected vitamins and trace elements to immune function. Ann. Nutr. Metab. 2007, 51, 301–323. [Google Scholar] [CrossRef]
- Antille, C.; Tran, C.; Sorg, O.; Carraux, P.; Didierjean, L.; Saurat, J.H. Vitamin A exerts a photoprotective action in skin by absorbing ultraviolet B radiation. J. Investig. Dermatol. 2003, 121, 1163–1167. [Google Scholar] [CrossRef]
- Qu, Y.; Wang, Y.; Zhang, Y.; Han, C.; Gao, D.; Jin, W.; Liang, J.; Xia, X. The comparison of skin rejuvenation effects of vitamin A, fractional laser, their combination on rat. J. Cosmet. Laser Ther. 2019, 21, 19–27. [Google Scholar] [CrossRef]
- Kafi, R.; Kwak, H.S.; Schumacher, W.E.; Cho, S.; Hanft, V.N.; Hamilton, T.A.; King, A.L.; Neal, J.D.; Varani, J.; Fisher, G.J.; et al. Improvement of naturally aged skin with vitamin A (retinol). Arch. Dermatol. 2007, 143, 606–612. [Google Scholar] [CrossRef]
- Kikuchi, K.; Suetake, T.; Kumasaka, N.; Tagami, H. Improvement of photoaged facial skin in middle-aged Japanese females by topical retinol (vitamin A alcohol), A vehicle-controlled, double-blind study. J. Dermatol. Treat. 2009, 20, 276–281. [Google Scholar] [CrossRef]
- Gannon, B.; Kaliwile, C.; Arscott, S.A.; Schmaelzle, S.; Chileshe, J.; Kalungwana, N.; Mosonda, M.; Pixley, K.; Masi, C.; Tanumihardjo, S.A. Biofortified orange maize is as efficacious as a vitamin A supplement in Zambian children even in the presence of high liver reserves of vitamin A: A community-based, randomized placebo-controlled trial. Am. J. Clin. Nutr. 2014, 100, 1541–1545. [Google Scholar] [CrossRef]
- Ogawa, Y.; Kinoshita, M.; Sato, T.; Shimada, S.; Kawamura, T. Biotin is required for zinc homeostasis in the skin. Nutrients 2019, 11, 919. [Google Scholar] [CrossRef] [PubMed]
- Mock, D.M. Skin manifestations of biotin deficiency. Semin. Dermatol. 1991, 10, 296–302. [Google Scholar]
- Fernandez-Mejia, C.; Lazo-de-la-Vega-Monroy, M.-L. Biological effects of pharmacological concentrations of biotin. J. Evid. Based Complement. Altern. Med. 2011, 16, 40–48. [Google Scholar] [CrossRef]
- Thompson, K.G.; Kim, N. Dietary supplements in dermatology: A review of the evidence for zinc, biotin, vitamin D, nicotinamide, Polypodium. J. Am. Acad. Dermatol. 2021, 84, 1042–1050. [Google Scholar] [CrossRef]
- Frigg, M.; Schulze, J.; Völker, L. Clinical study on the effect of biotin on skin conditions in dogs. Schweiz. Arch. Tierheilkd. 1989, 131, 621–625. [Google Scholar] [PubMed]
- Boccaletti, V.; Zendri, E.; Giordano, G.; Gnetti, L.; De Panfilis, G. Familial uncombable hair syndrome: Ultrastructural hair study and response to biotin. Pediatr. Dermatol. 2007, 24, E14–E16. [Google Scholar] [CrossRef]
- Kalman, D.; Hewlings, S. A randomized double-blind evaluation of a novel biotin and silicon ingredient complex on the hair and skin of healthy women. J. Clin. Exp. Dermatol. Res. 2021, 12, 551. [Google Scholar]
- Institute of Medicine (US) Panel on Dietary Antioxidants and Related Compounds. Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, Carotenoids; National Academy Press (US): Washington, DC, USA, 2000. [Google Scholar]
- NIH Office of Dietary Supplements. Vitamin C Fact Sheet for Health Professionals. Updated: 26 March 2021. Available online: https://ods.od.nih.gov/factsheets/VitaminC-HealthProfessional/ (accessed on 20 February 2025).
- Wang, K.; Jiang, H.; Li, W.; Qiang, M.; Dong, T.; Li, H. Role of vitamin C in skin diseases. Front. Physiol. 2018, 9, 819. [Google Scholar] [CrossRef]
- Tebbe, B.; Wu, S.; Geilen, C.C.; Eberle, J.; Kodelja, V.; Orfanos, C.E. L-ascorbic acid inhibits UVA-induced lipid peroxidation and secretion of IL-1α and IL-6 in cultured human keratinocytes. J. Investig. Dermatol. 1997, 108, 302–306. [Google Scholar] [CrossRef]
- Mireles-Rocha, H.; Galindo, I.; Huerta, M.; Trujillo-Hernández, B.; Elizalde, A.; Cortés-Franco, R. UVB photoprotection with antioxidants: Effects of oral therapy with d-α-tocopherol and ascorbic acid on the minimal erythema dose. Acta Derm. Venereol. 2002, 82, 21–24. [Google Scholar] [CrossRef] [PubMed]
- Bertuccelli, G.; Zerbinati, N.; Marcellino, M.; Nanda Kumar, N.S.; He, F.; Tsepakolenko, V.; Cervi, J.; Lorenzetti, A.; Marotta, F. Effect of a quality-controlled fermented nutraceutical on skin aging markers: An antioxidant-control, double-blind study. Exp. Ther. Med. 2016, 11, 909–916. [Google Scholar] [CrossRef]
- Lauer, A.C.; Groth, N.; Haag, S.F.; Darvin, M.E.; Lademann, J.; Meinke, M.C. Dose-dependent vitamin C uptake and radical scavenging activity in human skin measured with in vivo electron paramagnetic resonance spectroscopy. Ski. Pharmacol. Physiol. 2013, 26, 147–154. [Google Scholar] [CrossRef] [PubMed]
- McArdle, F.; Rhodes, L.E.; Parslew, R.; Jack, C.I.A.; Friedmann, P.S.; Jackson, M.J. UVR-induced oxidative stress in human skin in vivo: Effects of oral vitamin C supplementation. Free. Radic. Biol. Med. 2002, 33, 1355–1362. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, J.; Kern, H. Modulation of UV-light-induced skin inflammation by D-alpha-tocopherol and L-ascorbic acid: A clinical study using solar simulated radiation. Free. Radic. Biol. Med. 1998, 25, 1006–1012. [Google Scholar] [CrossRef]
- Eberlein-König, B.; Placzek, M.; Przybilla, B. Protective effect against sunburn of combined systemic ascorbic acid (vitamin C) and d-alpha-tocopherol (vitamin E). J. Am. Acad. Dermatol. 1998, 38, 45–48. [Google Scholar] [CrossRef]
- Evans, J.A.; Johnson, E.J. The role of phytonutrients in skin health. Nutrients 2010, 2, 903–928. [Google Scholar] [CrossRef]
- NIH Office of Dietary Supplements. Vitamin E Fact Sheet for Health Professionals 2017. Available online: https://ods.od.nih.gov/factsheets/VitaminE-HealthProfessional/ (accessed on 20 February 2025).
- Maalouf, S.; El-Sabban, M.; Darwiche, N.; Gali-Muhtasib, H. Protective effect of vitamin E on ultraviolet B light-induced damage in keratinocytes. Mol. Carcinog. 2002, 34, 121–130. [Google Scholar] [CrossRef]
- Institute of Medicine. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, Amino Acids; The National Academy Press: Washington, DC, USA, 2005. [Google Scholar] [CrossRef]
- Aung, T.; Halsey, J.; Kromhout, J.; Gerstein, L.R.; Marchioli, M.; Tavazzi, R.; Rauch, L.; Ness, B.; Bosch, A.; Collins, S. Associations of omega-3 fatty acid supplement use with cardiovascular disease risks. JAMA Cardiol. 2018, 3, 225–233. [Google Scholar] [CrossRef]
- Wang, P.; Sun, M.; Ren, J.; Djuric, Z.; Fisher, G.J.; Wang, X.; Li, Y. Gas chromatography-mass spectrometry analysis of effects of dietary fish oil on total fatty acid composition in mouse skin. Sci. Rep. 2017, 7, 42641. [Google Scholar] [CrossRef]
- Kendall, A.C.; Kiezel-Tsugunova, M.; Brownbridge, L.C.; Harwood, J.L.; Nicolaou, A. Lipid functions in skin: Differential effects of n-3 polyunsaturated fatty acids on cutaneous ceramides, in a human skin organ culture model. Biochim. Biophys. Acta 2017, 1859, 1679–1689. [Google Scholar] [CrossRef]
- Yoshida, S.; Yasutomo, K.; Watanabe, T. Treatment with DHA/EPA ameliorates atopic dermatitis-like skin disease by blocking LTB4 production. J. Med. Investig. 2016, 63, 187–191. [Google Scholar] [CrossRef]
- Yao, Q.; Jia, T.; Qiao, W.; Gu, H.; Kaku, K. Unsaturated fatty acid-enriched extract from Hippophae rhamnoides seed reduces skin dryness through up-regulating aquaporins 3 and hyaluronan synthetases 2 expressions. J. Cosmet. Dermatol. 2021, 20, 321–329. [Google Scholar] [CrossRef] [PubMed]
- Jackson, M.J.; McArdle, F.; Storey, A.; Jones, S.A.; McArdle, A.; Rhodes, L.E. Effects of micronutrient supplements on UV-induced skin damage. Proc. Nutr. Soc. 2002, 61, 187–189. [Google Scholar] [CrossRef] [PubMed]
- Orengo, I.F.; Black, H.S.; Wolf, J.E., Jr. Influence of fish oil supplementation on the minimal erythema dose in humans. Arch. Dermatol. Res. 1992, 284, 219–221. [Google Scholar] [CrossRef] [PubMed]
- Lassus, A.; Dahlgren, M.; Halpern, T.; Santalahti, J.; Happonen, H.P. Effects of dietary supplementation with polyunsaturated ethyl ester lipids (Angiosan) in patients with psoriasis and psoriatic arthritis. J. Int. Med. Res. 1990, 18, 68–73. [Google Scholar] [CrossRef]
- The ASCEND Study Collaborative Group. Effects of Aspirin for Primary Prevention in Persons with Diabetes Mellitus. N. Engl. J. Med. 2018, 37, 1529–1539. [Google Scholar] [CrossRef]
- Rhodes, L.E.; Shahbakhti, H.; Azurdia, R.M.; Moison, R.M.W.; Steenwinkel, M.-J.S.T.; Homburg, M.I.; Dean, M.P.; McArdle, F.; Beijersbergen van Henegouwen, G.M.J.; Epe, B. Effect of eicosapentaenoic acid, an omega-3 polyunsaturated fatty acid, on UVR-related cancer risk in humans: An assessment of early genotoxic markers. Carcinogenesis 2003, 24, 919–925. [Google Scholar] [CrossRef]
- Wright, S.; Burton, J.L. Oral evening primrose seed oil improves atopic eczema. Lancet 1982, 320, 1120–1122. [Google Scholar] [CrossRef]
- Rabionet, M.; Gorgas, K.; Sandhoff, R. Ceramide synthesis in the epidermis. Biochim. Biophys. Acta 2014, 1841, 422–434. [Google Scholar] [CrossRef]
- Tessema, E.N.; Gebre-Mariam, T.; Neubert, R.H.H.; Wohlrab, J. Potential applications of phyto-derived ceramides in improving epidermal barrier function. Skin. Pharmacol. Physiol. 2017, 30, 115–138. [Google Scholar] [CrossRef] [PubMed]
- Uchida, Y.; Park, K. Ceramides in skin health and disease: An update. Am. J. Clin. Dermatol. 2021, 22, 853–866. [Google Scholar] [CrossRef] [PubMed]
- Bedja, D.; Yan, M.; Ge, S.E.; Zhao, S.Z.; Dawson, J.M.; Gabrielson, D.A. Inhibition of glycosphingolipid synthesis reverses skin inflammation and hair loss in ApoE−/− mice fed a western diet. Sci. Rep. 2018, 8, 11463. [Google Scholar] [CrossRef]
- Kimata, H. Improvement of atopic dermatitis and reduction of skin allergic responses by oral intake of konjac ceramide. Pediatr. Dermatol. 2006, 23, 386–389. [Google Scholar] [CrossRef] [PubMed]
- Miyanishi, K.; Shiono, N.; Shirai, H.; Dombo, M.; Kimata, H. Reduction of transepidermal water loss by oral intake of glucosylceramides in patients with atopic eczema. Allergy 2005, 60, 1454–1455. [Google Scholar] [CrossRef]
- Uchiyama, T.; Nakano, Y.; Ueda, O.; Mori, H.; Nakashima, M.; Noda, A.; Ishizaki, C.; Mizoguchi, M. Oral intake of glucosylceramide improves relatively higher levels of transepidermal water loss in mice and healthy human subjects. J. Health. Sci. 2008, 54, 559–566. [Google Scholar] [CrossRef]
- Guillou, S.; Ghabri, S.; Jannot, C.; Gaillard, E.; Lamour, I.; Boisnic, S. The moisturizing effect of a wheat extract food supplement on women’s skin: A randomized, double-blind placebo-controlled trial. Int. J. Cosmet. Sci. 2011, 33, 138–143. [Google Scholar] [CrossRef] [PubMed]
- Bizot, V.; Cestone, E.; Michelotti, A.; Nobile, V. Improving skin hydration and age-related symptoms by oral administration of wheat glucosylceramides and digalactosyl diglycerides: A human clinical study. Cosmetics 2017, 4, 37. [Google Scholar] [CrossRef]
- Choi, F.D.; Sung, C.T.; Juhasz, M.L.W.; Mesinkovsk, N.A. Oral collagen supplementation: A systematic review of dermatological applications. J. Drugs. Dermatol. 2019, 18, 9–16. [Google Scholar]
- Bella, J. Collagen structure: New tricks from a very old dog. Biochem. J. 2016, 473, 1001–1025. [Google Scholar] [CrossRef]
- Bella, J.; Hulmes, D.J. Fibrillar collagens. Subcell. Biochem. 2017, 82, 457–490. [Google Scholar] [CrossRef] [PubMed]
- Sibilla, S.; Godfrey, M.; Brewer, S.; Budh-Raja, A.; Genovese, L. An overview of the beneficial effects of hydrolyzed collagen as a nutraceutical on skin properties: Scientific background and clinical studies. Open Nutraceuticals J. 2015, 8, 29–42. [Google Scholar] [CrossRef]
- Zague, V. A new view concerning the effects of collagen hydrolysate intake on skin properties. Arch. Dermatol. Res. 2008, 300, 479–483. [Google Scholar] [CrossRef]
- Genovese, L.; Corbo, A.; Sibilla, S. An insight into the changes in skin texture and properties following dietary intervention with a nutricosmeceutical containing a blend of collagen bioactive peptides and antioxidants. Ski. Pharmacol. Physiol. 2017, 30, 146–158. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, X.; Liu, D. Collagen peptides and the related synthetic peptides: A review on improving skin health. J. Funct. Foods 2021, 86, 104680. [Google Scholar] [CrossRef]
- De Miranda, R.B.; Weimer, P.; Rossi, R.C. Effects of hydrolyzed collagen supplementation on skin aging: A systematic review and meta-analysis. Int. J. Dermatol. 2021, 60, 1449–1461. [Google Scholar] [CrossRef] [PubMed]
- Al-Atif, H. Collagen supplements for aging and wrinkles: A paradigm shift in the fields of dermatology and cosmetics. Dermatol. Pract. Concept. 2022, 12, e2022018. [Google Scholar] [CrossRef]
- Shenoy, M.; Abdul, N.S.; Qamar, Z.; Bahri, B.M.A.; Al Ghalayini, K.Z.K.; Kakti, A. Collagen structure, synthesis, its applications: A systematic review. Cureus 2022, 14, e24856. [Google Scholar] [CrossRef]
- Pu, S.Y.; Huang, Y.L.; Pu, C.M. Efficacy of collagen peptide supplementation in improving skin elasticity and reducing wrinkles: A review of clinical trials. J. Cosmet. Dermatol. 2021, 20, 1012–1020. [Google Scholar] [CrossRef]
- Dewi, D.A.R.; Arimuko, A.; Norawati, L.; Yenny, S.W.; Setiasih, N.L.; Perdiyana, A.; Arkania, N.; Nadhira, F.; Wiliantari, N. Exploring the Impact of Hydrolyzed Collagen Oral Supplementation on Skin Rejuvenation: A Systematic Review and Meta-Analysis. Cureus 2023, 15, e50231. [Google Scholar] [CrossRef]
- Liu, H.; Dong, J.; Du, R.; Gao, Y.; Zhao, P. Collagen study advances for photoaging skin. Photodermatol. Photoimmunol. Photomed. 2024, 40, e12931. [Google Scholar] [CrossRef]
- Buckley, M. Species Identification of Bovine, Ovine and Porcine Type 1 Collagen; Comparing Peptide Mass Fingerprinting and LC-Based Proteomics Methods. Int. J. Mol. Sci. 2016, 17, 445. [Google Scholar] [CrossRef] [PubMed]
- Hong, H.; Fan, H.; Chalamaiah, M.; Wu, J. Preparation of low-molecular-weight, collagen hydrolysates (peptides), Current progress, challenges, future perspectives. Food. Chem. 2019, 301, 125222. [Google Scholar] [CrossRef] [PubMed]
- León-López, A.; Morales-Peñaloza, A.; Martínez-Juárez, V.M.; Vargas-Torres, A.; Zeugolis, D.I.; Aguirre-Álvarez, G. Hydrolyzed Collagen—Sources and Applications. Molecules 2019, 24, 4031. [Google Scholar] [CrossRef] [PubMed]
- López-Morales, C.A.; Vázquez-Leyva, S.; Vallejo-Castillo, L.; Carballo-Uicab, G.; Muñoz-García, L.; Herbert-Pucheta, J.E.; Zepeda-Vallejo, L.G.; Velasco-Velázquez, M.; Pavón, L.; Pérez-Tapia, S.M.; et al. Determination of Peptide Profile Consistency and Safety of Collagen Hydrolysates as Quality Attributes. J. Food. Sci. 2019, 84, 430–439. [Google Scholar] [CrossRef]
- Feng, M.; Betti, M. Transepithelial transport efficiency of bovine collagen hydrolysates in a human Caco-2 cell line model. Food. Chem. 2017, 224, 242–250. [Google Scholar] [CrossRef]
- Pentzien, A.-K.; Zellchemische Untersuchungen der Wirkung von Peptiden und Proteinhydrolysaten auf Humanzellen. Institut für Chemie und Technologie der Milch der Bundesanstalt für Ernährung und Lebensmittel 2005. Available online: https://macau.uni-kiel.de/servlets/MCRFileNodeServlet/dissertation_derivate_00001669/d1669.pdf (accessed on 20 February 2025).
- Zague, V.; do Amaral, J.B.; Rezende Teixeira, P.; de Oliveira Niero, E.L.; Lauand, C.; Machado-Santelli, G.M. Collagen peptides modulate the metabolism of extracellular matrix by human dermal fibroblasts derived from sun-protected and sun-exposed body sites. Cell Biol. Int. 2018, 42, 95–104. [Google Scholar] [CrossRef]
- Oba, C.; Ohara, H.; Morifuji, M.; Ito, K.; Ichikawa, S.; Kawahata, K.; Koga, J. Collagen hydrolysate intake improves the loss of epidermal barrier function and skin elasticity induced by UVB irradiation in hairless mice. Photodermatol. Photoimmunol. Photomed. 2013, 29, 204–211. [Google Scholar] [CrossRef]
- Haratake, N.; Watase, D.; Fujita, T.; Setoguchi, S.; Matsunaga, K.; Takata, J. Effects of oral administration of collagen peptides on skin collagen content and its underlying mechanism using a newly developed low collagen skin mice model. J. Funct. Foods 2015, 16, 174–182. [Google Scholar] [CrossRef]
- Watanabe-Kamiyama, M.; Shimizu, M.; Kamiyama, S.; Taguchi, Y.; Sone, H.; Morimatsu, F.; Shirakawa, H.; Furukawa, Y.; Komai, M. Absorption and effectiveness of orally administered low molecular weight collagen in rats. J. Agric. Food Chem. 2010, 58, 835–841. [Google Scholar] [CrossRef]
- Hakuta, A.; Yamaguchi, Y.; Okawa, T.; Yamamoto, S.; Sakai, Y.; Aihara, M. Anti-inflammatory effect of collagen tripeptide in atopic dermatitis. J. Dermatol. Sci. 2017, 87, 201–203. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.J.; Jang, H.-L.; Ahn, D.-K.; Kim, H.-J.; Jeon, H.Y.; Seo, D.B.; Lee, J.-H.; Choi, J.K.; Kang, S.-S. Orally administered collagen peptide protects against UVB-induced skin aging through the absorption of dipeptide forms, Gly-Pro and Pro-Hyp. Biosci. Biotechnol. Biochem. 2019, 83, 1146–1156. [Google Scholar] [CrossRef]
- Kerscher, M.; Streker, M.; Eiben-Nielson, C.; Thill, M.S. Influence of oral collagen peptide intake on relevant skin parameters such as skin hydration, elasticity, roughness. In Proceedings of the IMCAS World Congress 2018, Paris, France, 1–3 February 2018. [Google Scholar]
- Bolke, L.; Kattenstroth, J.C. Influence of oral collagen-peptide intake on skin hydration and density. 6.2: Topic and Oral Supplements. In Proceedings of the 9th International Conference on Skin Ageing & Challenges, Track 2018, Porto, Potugal, 26–27 February 2018. [Google Scholar]
- Streker, M.; Thill, M.S.; Kerscher, M. Impact of oral collagen-peptides on skin quality. Akt. Dermatol. 2020, 46, 87–93. [Google Scholar] [CrossRef]
- Addor, F.A.S.A.; Vieira, J.C.; Melo, C.S.A. Improvement of dermal parameters in aged skin after oral use of a nutrient supplement. Clin. Cosmet. Investig. Dermatol. 2018, 11, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Schlippe, G.; Bolke, L.; Voss, W. Einfluss oraler Einnahme von Kollagenpeptiden auf relevante Parameter der Hautalterung: Hautfeuchtigkeit, Hautelastizität und Hautrauigkeit. Akt. Dermatol. 2015, 41, 529–534. [Google Scholar]
- Dähnhardt, D.; Dähnhardt-Pfeiffer, S.; Segger, D.; Poeggeler, B.; Lemmnitz, G. Restoration of the ultrastructural integrity of the dermal collagen network by 12-week ingestion of special collagen peptides. Dermatol. Ther. 2024, 14, 2509–2521. [Google Scholar] [CrossRef]
- Borumand, M.; Sibilla, S. Daily consumption of the collagen supplement Pure Gold Collagen® reduces visible signs of aging. Clin. Interv. Aging 2014, 9, 1747–1758. [Google Scholar] [CrossRef]
- Campos, P.M.; Melo, M.O.; Calixto, M.M.; Fossa, L.S. An oral supplementation based on hydrolyzed collagen and vitamins improves skin elasticity and dermis echogenicity: A clinical placebo-controlled study. Clin. Pharmacol. Biopharm. 2015, 4, 1–6. [Google Scholar] [CrossRef]
- Nomoto, T.; Iizaka, S. Effect of an oral nutrition supplement containing collagen peptides on stratum corneum hydration and skin elasticity in hospitalized older adults: A multicenter open-label randomized controlled study. Adv. Ski. Wound Care 2020, 33, 186–191. [Google Scholar] [CrossRef]
- Samadi, A.; Movafaghi, M.; Kazemi, F.; Yazdanparast, T.; Ahmad Nasrollahi, S.; Firooz, A. Tolerability and efficacy assessment of an oral collagen supplement for the improvement of biophysical and ultrasonographic parameters of skin in Middle Eastern consumers. J. Cosmet. Dermatol. 2023, 22, 2252–2258. [Google Scholar] [CrossRef]
- Bianchi, F.M.; Angelinetta, C.; Rizzi, G.; Praticò, A.; Villa, R. Evaluation of the efficacy of a hydrolyzed collagen supplement for improving skin moisturization, smoothness, wrinkles. J. Clin. Aesthet. Dermatol. 2022, 15, 48–52. [Google Scholar] [PubMed]
- Skov, K.; Oxfeldt, M.; Thogersen, R.; Hansen, M.; Bertram, H.C. Enzymatic hydrolysis of a collagen hydrolysate enhances postprandial absorption rate: A randomized controlled trial. Nutrients 2019, 11, 1064. [Google Scholar] [CrossRef] [PubMed]
- Proksch, E.; Segger, D.; Degwert, J.; Schunck, M.; Zague, V.; Oesser, S. Oral supplementation of specific collagen peptides has beneficial effects on human skin physiology: A double-blind, placebo-controlled study. Ski. Pharmacol. Physiol. 2014, 27, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Proksch, E.; Schunck, M.; Zague, V.; Segger, D.; Degwert, J.; Oesser, S. Oral intake of specific bioactive collagen peptides reduces skin wrinkles and increases dermal matrix synthesis. Ski. Pharmacol. Physiol. 2014, 27, 113–119. [Google Scholar] [CrossRef]
- Schunck, M.; Zague, V.; Oesser, S.; Proksch, E. Dietary supplementation with specific collagen peptides has a body mass index-dependent beneficial effect on cellulite morphology. J. Med. Food 2015, 18, 1340–1348. [Google Scholar] [CrossRef]
- Asserin, J.; Lati, E.; Shioya, T.; Prawitt, J. The effect of oral collagen peptide supplementation on skin moisture and the dermal collagen network: Evidence from an ex vivo model and randomized, placebo-controlled clinical trials. J. Cosmet. Dermatol. 2015, 14, 291–301. [Google Scholar] [CrossRef] [PubMed]
- Jung, K.; Kim, S.H.; Joo, K.M.; Lim, S.H.; Shin, J.H.; Roh, J.; Kim, E.; Park, C.W.; Kim, W. Oral intake of enzymatically decomposed AP collagen peptides improves skin moisture and ceramide and natural moisturizing factor contents in the stratum corneum. Nutrients 2021, 13, 4372. [Google Scholar] [CrossRef]
- Choi, S.Y.; Ko, E.J.; Lee, Y.H.; Kim, B.G.; Shin, H.J.; Seo, D.B.; Lee, S.J.; Kim, B.J.; Kim, M.N. Effects of collagen tripeptide supplement on skin properties: A prospective, randomized, controlled study. J. Cosmet. Laser Ther. 2014, 16, 132–137. [Google Scholar] [CrossRef]
- Miyanaga, M.; Uchiyama, T.; Motoyama, A.; Ochiai, N.; Ueda, O.; Ogo, M. Oral supplementation of collagen peptides improves skin hydration by increasing the natural moisturizing factor content in the stratum corneum: A randomized, double-blind, placebo-controlled clinical trial. Ski. Pharmacol. Physiol. 2021, 34, 115–127. [Google Scholar] [CrossRef]
- Kim, J.; Lee, S.G.; Lee, J.; Choi, S.; Suk, J.; Lee, J.H.; Yang, J.H.; Yang, J.S.; Kim, J. Oral supplementation of low-molecular-weight collagen peptides reduces skin wrinkles and improves biophysical properties of skin: A randomized, double-blinded, placebo-controlled study. J. Med. Food. 2022, 25, 1146–1154. [Google Scholar] [CrossRef]
- Inoue, N.; Sugihara, F.; Wang, X. Ingestion of bioactive collagen hydrolysates enhances facial skin moisture and elasticity and reduces facial aging signs in a randomized double-blind placebo-controlled clinical study. J. Sci. Food Agric. 2016, 96, 4417–4425. [Google Scholar] [CrossRef] [PubMed]
- Sibilla, S.; Borumand, M. Effects of a nutritional supplement containing collagen peptides on skin elasticity, hydration, wrinkles. J. Med. Nutr. Nutraceuticals 2015, 4, 47–53. [Google Scholar] [CrossRef]
- Czajka, A.; Kania, E.M.; Genovese, L.; Corbo, A.; Merone, G.; Luci, C.; Sibilla, S. Daily oral supplementation with collagen peptides combined with vitamins and other bioactive compounds improves skin elasticity and has a beneficial effect on joint and general wellbeing. Nutr. Res. 2018, 57, 97–108. [Google Scholar] [CrossRef] [PubMed]
- Laing, S.; Bielfeldt, S.; Ehrenberg, C.; Wilhelm, K. A dermonutrient containing special collagen-peptides improves skin structure and function: A randomized, placebo-controlled, triple-blind trial using confocal laser scanning microscopy on the cosmetic effects and tolerance of a drinkable collagen supplement. J. Med. Food 2020, 23, 147–152. [Google Scholar] [CrossRef]
- Bolke, L.; Schlippe, G.; Gerß, J.; Voss, W. A collagen supplement improves skin hydration, elasticity, roughness, density: Results of a randomized, placebo-controlled, blind study. Nutrients 2019, 11, 2494. [Google Scholar] [CrossRef]
- Lee, K.S.; Posthauer, M.E.; Dorner, B.; Redovian, V.; Maloney, M.J. Pressure ulcer healing with a concentrated, fortified, collagen protein hydrolysate supplement: A randomized controlled trial. Adv. Ski. Wound. Care 2006, 19, 92–96. [Google Scholar] [CrossRef]
- Mödinger, Y.; Schön, C.; Vogel, K.; Brandt, M.; Bielfeldt, S.; Wilhelm, K.-P. Evaluation of a food supplement with collagen hydrolysate and micronutrients on skin appearance and beauty effects: A randomized, double-blind, placebo-controlled clinical study with healthy subjects. J. Clin. Cosmet. Dermatol. 2021, 4, 1–5. [Google Scholar] [CrossRef]
- Ito, N.; Seki, S.; Ueda, F. Effects of composite supplement containing collagen peptide and ornithine on skin conditions and plasma IGF-1 levels—A randomized, double-blind, placebo-controlled trial. Mar. Drugs 2018, 16, 482. [Google Scholar] [CrossRef]
- Gibson, R.; Krug, L.; Ramsey, D.L.; Safaei, A.; Aspley, S. Beneficial effects of multi-micronutrient supplementation with collagen peptides on global wrinkles, skin elasticity, appearance in healthy female subjects. Dermatol. Ther. 2024, 14, 1599–1614. [Google Scholar] [CrossRef]
- Vleminckx, S.; Virgilio, N.; Asserin, J.; Prawitt, J.; Silva, C.I.F. Influence of collagen peptide supplementation on visible signs of skin and nail health and aging in an East Asian population: A double-blind, randomized, placebo-controlled trial. J. Cosmet. Dermatol. 2024, 23, 3645–3653. [Google Scholar] [CrossRef]
- Yoon, H.-S.; Cho, H.H.; Cho, S.; Lee, S.-R.; Shin, M.-H.; Chung, J.H. Supplementing with dietary astaxanthin combined with collagen hydrolysate improves facial elasticity and decreases matrix metalloproteinase-1 and -12 expression: A comparative study with placebo. J. Med. Food 2017, 17, 810–816. [Google Scholar] [CrossRef]
- Geahchan, S.; Baharlouei, P.; Rahman, A. Marine Collagen: A Promising Biomaterial for Wound Healing, Skin Anti-Aging, Bone Regeneration. Mar. Drugs 2022, 20, 61. [Google Scholar] [CrossRef] [PubMed]
- Cruz, M.A.; Araujo, T.A.; Avanzi, I.R.; Parisi, J.R.; de Andrade, A.L.M.; Rennó, A.C.M. Collagen from Marine Sources and Skin Wound Healing in Animal Experimental Studies: A Systematic Review. Mar. Biotechnol. 2021, 23, 1–11. [Google Scholar] [CrossRef]
- Cadar, E.; Pesterau, A.M.; Prasacu, I.; Ionescu, A.M.; Pascale, C.; Dragan, A.L.; Sirbu, R.; Tomescu, C.L. Marine Antioxidants from Marine Collagen and Collagen Peptides with Nutraceuticals Applications: A Review. Antioxidants 2024, 13, 919. [Google Scholar] [CrossRef] [PubMed]
- Yao, W.; Zhang, Y.; Zhang, G. Marine peptides as potential anti-aging agents: Preparation, characterization, mechanisms of action, future perspectives. Food. Chem. 2024, 460 Pt 1, 140413. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Harnedy, P.A.; Zhang, L.; Li, B.; Zhang, Z.; Hou, H.; Zhao, X.; FitzGerald, R.J. In vitro assessment of the multifunctional bioactive potential of Alaska pollock skin collagen following simulated gastrointestinal digestion. J. Sci. Food Agric. 2015, 95, 1514–1520. [Google Scholar] [CrossRef]
- Evans, M.; Lewis, E.D.; Zakaria, N.; Pelipyagina, T.; Guthrie, N. A randomized, triple-blind, Plazebo-controlled, parallel study to evaluate the efficacy of a freshwater marine collagen on skin wrinkles and elasticity. J. Cosmet. Dermatol. 2021, 20, 825–834. [Google Scholar] [CrossRef]
- Maia Campos, P.M.B.G.; Franco, R.S.B.; Kakuda, L.; Cadioli, G.F.; Costa, G.M.D.; Bouvret, E. Oral Supplementation with Hydrolyzed Fish Cartilage Improves the Morphological and Structural Characteristics of the Skin: A Double-Blind, Plazebo-Controlled Clinical Study. Molecules 2021, 26, 4880. [Google Scholar] [CrossRef]
- Lee, M.; Kim, E.; Ahn, H.; Son, S.; Lee, H. Oral intake of collagen peptide NS improves hydration, elasticity, desquamation, wrinkling in human skin: A randomized, double-blinded, placebo-controlled study. Food Funct. 2023, 14, 3196–3207. [Google Scholar] [CrossRef]
- Seong, S.H.; Lee, Y.I.; Lee, J.; Choi, S.; Kim, I.A.; Suk, J.; Jung, I.; Baeg, C.; Kim, J.; Oh, D.; et al. Low-molecular-weight collagen peptides supplement promotes a healthy skin: A randomized, double-blinded, Placebo-controlled study. J. Cosmet. Dermatol. 2024, 23, 554–562. [Google Scholar] [CrossRef]
- De Luca, C.; Mikhal’chik, E.V.; Suprun, M.V.; Papacharalambous, M.; Truhanov, A.I.; Korkina, L.G. Skin antiageing and systemic redox effects of supplementation with marine collagen peptides and plant-derived antioxidants: A single-blind case-control clinical study. Oxidative Med. Cell. Longev. 2016, 2016, 4389410. [Google Scholar] [CrossRef] [PubMed]
- Bhadra, B.; Sakpal, A.; Patil, S.; Patil, S.; Date, A.; Prasad, V.; Dasgupta, S. A Guide to Collagen Sources, Applications and Current Advancements. Syst. Biosci. Eng. 2021, 1, 67–68. [Google Scholar] [CrossRef]
- Cao, C.; Xiao, Z.; Tong, H.; Liu, Y.; Wu, Y.; Ge, C. Oral Intake of Chicken Bone Collagen Peptides Anti-Skin Aging in Mice by Regulating Collagen Degradation and Synthesis, Inhibiting Inflammation and Activating Lysosomes. Nutrients 2022, 14, 1622. [Google Scholar] [CrossRef]
- Gojkovic, Z.; Marova, I.; Matouskova, P.; Obruca, S.; Miloslav, P. Use of ultrasonic spectroscopy and viscosimetry for the characterization of chicken skin collagen in comparison with collagens from other animal tissues. Prep. Biochem. Biotechnol. 2014, 44, 761–771. [Google Scholar] [CrossRef]
- Kalman, D.S.; Hewlings, S. The effect of oral hydrolyzed eggshell membrane on the appearance of hair, skin, nails in healthy middle-aged adults: A randomized double-blind Plazebo-controlled clinical trial. J. Cosmet. Dermatol. 2020, 19, 1463–1472. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, S.R.; Hammon, K.A.; Gafner, A.; Dahl, A.; Guttman, N.; Fong, M.; Schauss, A.G. Novel Hydrolyzed Chicken Sternal Cartilage Extract Improves Facial Epidermis and Connective Tissue in Healthy Adult Females: A Randomized, Double-Blind, Plazebo-Controlled Trial. Altern. Ther. Health. Med. 2019, 25, 12–29. [Google Scholar] [PubMed]
- Mohammed, A.; He, S. A Double-Blind, Randomized, Placebo-Controlled Trial to Evaluate the Efficacy of a Hydrolyzed Chicken Collagen Type II Supplement in Alleviating Joint Discomfort. Nutrients 2021, 13, 2454. [Google Scholar] [CrossRef]
- Hewlings, S.; Kalman, D.; Schneider, L.V. A Randomized, Double-Blind, Placebo-Controlled, Prospective Clinical Trial Evaluating Water-Soluble Chicken Eggshell Membrane for Improvement in Joint Health in Adults with Knee Osteoarthritis. J. Med. Food 2019, 22, 875–884. [Google Scholar] [CrossRef]
- Lin, Y.-K.; Liang, C.-H.; Lin, Y.-H.; Lin, T.-W.; Jiménez Vázquez, J.; van Campen, A.; Chiang, C.-F. Oral Supplementation of Vegan Collagen Biomimetic Has Beneficial Effects on Human Skin Physiology: A Double-Blind, Placebo-Controlled Study. J. Funct. Foods 2024, 112, 105955. [Google Scholar] [CrossRef]
- Fiedor, J.; Burda, K. Potential Role of Carotenoids as Antioxidants in Human Health and Disease. Nutrients 2014, 6, 466–488. [Google Scholar] [CrossRef]
- Stahl, W.; Sies, H. β-Carotene and Other Carotenoids in Protection from Sunlight. Am. J. Clin. Nutr. 2012, 96, 1179S–1184S. [Google Scholar] [CrossRef] [PubMed]
- Saini, R.K.; Prasad, P.; Lokesh, V.; Shang, X.; Shin, J.; Keum, Y.-S.; Lee, J.-H. Carotenoids: Dietary Sources, Extraction, Encapsulation, Bioavailability, Health Benefits—A Review of Recent Advancements. Antioxidants 2022, 11, 795. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Jiang, S.; Levine, N.; Watson, R.R. Carotenoid Supplementation Reduces Erythema in Human Skin After Simulated Solar Radiation Exposure. Proc. Soc. Exp. Biol. Med. 2000, 223, 170–174. [Google Scholar]
- Stahl, W.; Heinrich, U.; Jungmann, H.; Sies, H.; Tronnier, H. Carotenoids and Carotenoids Plus Vitamin E Protect Against Ultraviolet Light-Induced Erythema in Humans. Am. J. Clin. Nutr. 2000, 71, 795–798. [Google Scholar] [CrossRef] [PubMed]
- Heinrich, U.; Gartner, C.; Wiebusch, M.; Eichler, O.; Sies, H.; Tronnier, H.; Stahl, W. Supplementation with Beta-Carotene or a Similar Amount of Mixed Carotenoids Protects Humans from UV-Induced Erythema. J. Nutr. 2003, 133, 98–101. [Google Scholar] [CrossRef]
- Gollnick, H.P.M.; Hopfenmüller, W.; Hemmes, C.; Chun, S.C.; Schmid, C.; Sundermeier, K.; Biesalski, H. Systemic Beta Carotene Plus Topical UV-Sunscreen Are an Optimal Protection Against Harmful Effects of Natural UV-Sunlight: Results of the Berlin-Eilat Study. Eur. J. Dermatol. 1996, 6, 200–205. [Google Scholar]
- Marini, A.; Jaenicke, T.; Grether-Beck, S.; Le Floch, C.; Cheniti, A.; Piccardi, N.; Krutmann, J. Prevention of Polymorphic Light Eruption by Oral Administration of a Nutritional Supplement Containing Lycopene, ß-Carotene, Lactobacillus johnsonii: Results from a Randomized, Placebo-Controlled, Double-Blinded Study. Photodermatol. Photoimmunol. Photomed. 2014, 30, 189–194. [Google Scholar] [CrossRef]
- Davinelli, S.; Nielsen, M.E.; Scapagnini, G. Astaxanthin in Skin Health, Repair, Disease: A Comprehensive Review. Nutrients 2018, 10, 522. [Google Scholar] [CrossRef]
- Ng, Q.X.; De Deyn, M.L.Z.Q.; Loke, W.; Foo, N.X.; Chan, H.W.; Yeo, W.S. Effects of Astaxanthin Supplementation on Skin Health: A Systematic Review of Clinical Studies. J. Diet. Suppl. 2021, 18, 169–182. [Google Scholar] [CrossRef]
- Roberts, R.L.; Green, J.; Lewis, B. Lutein and Zeaxanthin in Eye and Skin Health. Clin. Dermatol. 2009, 27, 195–201. [Google Scholar] [CrossRef]
- Zhou, X.; Cao, Q.; Orfila, C.; Zhao, J.; Zhang, L. Systematic Review and Meta-Analysis on the Effects of Astaxanthin on Human Skin Ageing. Nutrients 2021, 13, 2917. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, S.; Frank, E.; Gierhart, D.; Simpson, P.; Frumento, R. Zeaxanthin-Based Dietary Supplement and Topical Serum Improve Hydration and Reduce Wrinkle Count in Female Subjects. J. Cosmet. Dermatol. 2016, 15, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Juturu, V.; Bowman, J.P.; Deshpande, J. Overall Skin Tone and Skin-Lightening-Improving Effects with Oral Supplementation of Lutein and Zeaxanthin Isomers: A Double-Blind, Placebo-Controlled Clinical Trial. Clin. Cosmet. Investig. Dermatol. 2016, 9, 325–332. [Google Scholar] [CrossRef]
- Ito, N.; Seki, S.; Ueda, F. The Protective Role of Astaxanthin for UV-Induced Skin Deterioration in Healthy People—A Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients 2018, 10, 817. [Google Scholar] [CrossRef]
- Chalyk, N.E.; Klochkov, V.A.; Bandaletova, T.Y.; Kyle, N.H.; Petyaev, I.M. Continuous Astaxanthin Intake Reduces Oxidative Stress and Reverses Age-Related Morphological Changes of Residual Skin Surface Components in Middle-Aged Volunteers. Nutr. Res. 2017, 48, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Grether-Beck, S.; Marini, A.; Jaenicke, T.; Stahl, W.; Krutmann, J. Molecular Evidence that Oral Supplementation with Lycopene or Lutein Protects Human Skin Against Ultraviolet Radiation: Results from a Double-Blinded, Placebo-Controlled, Crossover Study. Br. J. Dermatol. 2017, 176, 1231–1240. [Google Scholar] [CrossRef]
- Phetcharat, L.; Wongsuphasawat, K.; Winther, K. The Effectiveness of a Standardized Rose Hip Powder, Containing Seeds and Shells of Rosa canina, on Cell Longevity, Skin Wrinkles, Moisture, Elasticity. Clin. Interv. Aging 2015, 10, 1849–1856. [Google Scholar] [PubMed]
- Darvin, M.; Patzelt, A.; Gehse, S.; Schanzer, S.; Benderoth, C.; Sterry, W.; Lademann, J. Cutaneous Concentration of Lycopene Correlates Significantly with the Roughness of the Skin. Eur. J. Pharm. Biopharm. 2008, 69, 943–947. [Google Scholar] [CrossRef]
- Iravani, S.; Zolfaghari, B. Pharmaceutical and Nutraceutical Effects of Pinus pinaster Bark Extract. Res. Pharm. Sci. 2011, 6, 1–11. [Google Scholar]
- Rohdewald, P. A Review of the French Maritime Pine Bark Extract (Pycnogenol), a Herbal Medication with a Diverse Clinical Pharmacology. Int. J. Clin. Pharmacol. Ther. 2002, 40, 158–168. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, W.K.; Arbee, S.; Debnath, S.; Khan, T.A.A.; Afnan, K.; Mahadi, A.S.; Mohib, M.M.; Tisha, A.; Sagor, M.A.T.; Mohiuddin, S. Pycnogenol: A Miracle Component in Reducing Ageing and Skin Disorders. J. Clin. Exp. Dermatol. Res. 2017, 8, 1000395. [Google Scholar] [CrossRef]
- Maimoona, A.; Naeem, I.; Saddiqe, Z.; Jameel, K. A Review on Biological, Nutraceutical, Clinical Aspects of French Maritime Pine Bark Extract. J. Ethnopharmacol. 2011, 133, 261–277. [Google Scholar] [CrossRef] [PubMed]
- Saliou, C.; Rimbach, G.; Moini, H.; McLaughlin, L.; Hosseini, S.; Lee, J.; Watson, R.R.; Packer, L. Solar Ultraviolet-Induced Erythema in Human Skin and Nuclear Factor-Kappa-B-Dependent Gene Expression in Keratinocytes Are Modulated by a French Maritime Pine Bark Extract. Free Radic. Biol. Med. 2001, 30, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Saric, S.; Sivamani, R.K. Polyphenols and Sunburn. Int. J. Mol. Sci. 2016, 17, 1521. [Google Scholar] [CrossRef] [PubMed]
- Grether-Beck, S.; Marini, A.; Jaenicke, T.; Krutman, J. French Maritime Pine Bark Extract (Pycnogenol®) Effects on Human Skin: Clinical and Molecular Evidence. Ski. Pharmacol. Physiol. 2016, 29, 13–17. [Google Scholar] [CrossRef]
- Michalak, M. Plant-Derived Antioxidants: Significance in Skin Health and the Ageing Process. Int. J. Mol. Sci. 2022, 23, 585. [Google Scholar] [CrossRef]
- Păcularu-Burada, B.; Cîrîc, A.I.; Begea, M. Anti-Aging Effects of Flavonoids from Plant Extracts. Foods 2024, 13, 2441. [Google Scholar] [CrossRef]
- Jung, H.-Y.; Shin, J.-C.; Park, S.-M.; Kim, N.-R.; Kwak, W.; Choi, B.-H. Pinus densiflora Extract Protects Human Skin Fibroblasts Against UVB-Induced Photoaging by Inhibiting the Expression of MMPs and Increasing Type I Procollagen Expression. Toxicol. Rep. 2014, 1, 658–666. [Google Scholar] [CrossRef]
- Blazso, G.; Gabor, M.; Schonlau, F.; Rohdewald, P. Pycnogenol Accelerates Wound Healing and Reduces Scar Formation. Phytother. Res. 2004, 18, 579–581. [Google Scholar] [CrossRef]
- Pointner, A.; Magnet, U.; Tomeva, E.; Dum, E.; Bruckmueller, C.; Mayer, C.; Aumueller, E.; Haslberger, A. EGCG Containing Combined Dietary Supplement Affects Telomeres and Epigenetic Regulation. J. Nutr. Food Sci. 2017, 7, 1000577. [Google Scholar] [CrossRef]
- Heinrich, U.; Neukam, K.; Tronnier, H.; Sies, H.; Stahl, W. Long-Term Ingestion of High Flavanol Cocoa Provides Photoprotection Against UV-Induced Erythema and Improves Skin Condition in Women. J. Nutr. 2006, 136, 1565–1569. [Google Scholar] [CrossRef] [PubMed]
- Marini, A.; Grether-Beck, S.; Jaenicke, T.; Weber, M.; Burki, C.; Formann, P.; Brenden, H.; Schonlau, F.; Krutmann, J. Pycnogenol® Effects on Skin Elasticity and Hydration Coincide with Increased Gene Expressions of Collagen Type I and Hyaluronic Acid Synthase in Women. Ski. Pharmacol. Physiol. 2012, 25, 86–92. [Google Scholar] [CrossRef]
- Furumura, M.; Sato, N.; Kusaba, N.; Takagaki, K.; Nakayama, J. Oral Administration of French Maritime Pine Bark Extract (Flavangenol®) Improves Clinical Symptoms in Photoaged Facial Skin. Clin. Interv. Aging 2012, 7, 275–286. [Google Scholar] [CrossRef] [PubMed]
- Segger, D.; Schönlau, F. Supplementation with Evelle Improves Skin Smoothness and Elasticity in a Double-Blind, Placebo-Controlled Study with 62 Women. J. Dermatol. Treat. 2004, 15, 222–226. [Google Scholar] [CrossRef]
- Buonocore, D.; Lazzeretti, A.; Tocabens, P.; Nobile, V.; Cestone, E.; Santin, G.; Bottone, M.G.; Marzatico, F. Resveratrol-Procyanidin Blend: Nutraceutical and Antiaging Efficacy Evaluated in a Placebo-Controlled, Double-Blind Study. Clin. Cosmet. Investig. Dermatol. 2012, 5, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Lopresti, A.L.; Smith, S.J.; Riggs, M.L.; Major, R.A.; Gibb, T.G.; Wood, S.M.; Hester, S.N.; Knaggs, H.E. An Examination into the Effects of a Nutraceutical Supplement on Cognition, Stress, Eye Health, Skin Satisfaction in Adults with Self-Reported Cognitive Complaints: A Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients 2024, 16, 1770. [Google Scholar] [CrossRef]
- S3-Leitlinie Komplementärmedizin. Empfehlungen der Fachgesellschaft zur Diagnostik und Therapie Hämatologischer und Onkologischer Erkrankungen—Komplementäre und Alternative Therapieverfahren: Aloe Vera. DGHO 2024. Available online: https://redaktion.onkopedia.com/onkopedia/de/onkopedia/archive/guidelines/aloe-vera/version-21032024T103127/@@pdf-latest?filename=aloe-vera-stand-juli-2015.pdf (accessed on 20 February 2025).
- Hekmatpou, D.; Mehrabi, F.; Rahzani, K.; Aminiyan, A. The Effect of Aloe Vera Clinical Trials on Prevention and Healing of Skin Wound: A Systematic Review. Iran. J. Med. Sci. 2019, 44, 1–9. [Google Scholar]
- Misawa, E.; Tanaka, M.; Saito, M.; Nabeshima, K.; Yao, R.; Yamauchi, K.; Furukawa, F. Protective Effects of Aloe Sterols Against UVB-Induced Photoaging in Hairless Mice. Photodermatol. Photoimmunol. Photomed. 2017, 33, 101–111. [Google Scholar] [CrossRef]
- Saito, M.; Tanaka, M.; Misawa, E.; Yao, R.; Nabeshima, K.; Yamauchi, K.; Abe, F.; Yamamoto, Y.; Furukawa, F. Oral Administration of Aloe vera Gel Powder Prevents UVB-Induced Decrease in Skin Elasticity via Suppression of Overexpression of MMPs in Hairless Mice. Biosci. Biotechnol. Biochem. 2016, 80, 1416–1424. [Google Scholar] [CrossRef]
- Bałan, B.J.; Niemcewicz, M.; Kocik, J.; Jung, L.; Skopińska-Różewska, E.; Skopiński, P. Oral Administration of Aloe vera Gel, Anti-Microbial and Anti-Inflammatory Herbal Remedy, Stimulates Cell-Mediated Immunity and Antibody Production in a Mouse Model. Cent. Eur. J. Immunol. 2014, 39, 125–130. [Google Scholar] [CrossRef]
- Atiba, A.; Nishimura, M.; Kakinuma, S.; Hiraoka, T.; Goryo, M.; Shimada, Y.; Ueno, H.; Uzuka, Y. Aloe vera Oral Administration Accelerates Acute Radiation-Delayed Wound Healing by Stimulating Transforming Growth Factor-β and Fibroblast Growth Factor Production. Am. J. Surg. 2011, 201, 809–818. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.; Lee, S.; Lee, M.-J.; Lee, D.H.; Won, C.-H.; Kim, S.M.; Chung, J.H. Dietary Aloe Vera Supplementation Improves Facial Wrinkles and Elasticity and It Increases the Type I Procollagen Gene Expression in Human Skin in vivo. Ann. Dermatol. 2009, 21, 6–11. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, M.; Misawa, E.; Yamauchi, K.; Abe, F.; Ishizaki, C. Effects of Plant Sterols Derived from Aloe vera Gel on Human Dermal Fibroblasts in vitro and on Skin Condition in Japanese Women. Clin. Cosmet. Investig. Dermatol. 2015, 8, 95–104. [Google Scholar] [CrossRef]
- Kaminaka, C.; Yamamoto, Y.; Sakata, M.; Hamamoto, C.; Misawa, E.; Nabeshima, K.; Saito, M.; Tanaka, M.; Abe, F.; Jinnin, M. Effects of Low-Dose Aloe Sterol Supplementation on Skin Moisture, Collagen Score and Objective or Subjective Symptoms: 12-Week, Double-Blind, Randomized Controlled Trial. J. Dermatol. 2020, 47, 998–1006. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, M.; Yamamoto, Y.; Misawa, E.; Nabeshima, K.; Saito, M.; Yamauchi, K.; Abe, F.; Furukawa, F. Effects of Aloe Sterol Supplementation on Skin Elasticity, Hydration, Collagen Score: A 12-Week Double-Blind, Randomized, Controlled Trial. Ski. Pharmacol. Physiol. 2016, 29, 309–317. [Google Scholar] [CrossRef]
- Zielińska, A.; Nowak, I. Abundance of Active Ingredients in Sea-Buckthorn Oil. Lipids Health Dis. 2017, 16, 95. [Google Scholar] [CrossRef]
- Olas, B. The Beneficial Health Aspects of Sea Buckthorn (Elaeagnus rhamnoides (L.) A. Nelson) Oil. J. Ethnopharmacol. 2018, 213, 183–190. [Google Scholar] [CrossRef]
- Wang, K.; Xu, Z.; Liao, X. Bioactive Compounds, Health Benefits and Functional Food Products of Sea Buckthorn: A Review. Crit. Rev. Food Sci. Nutr. 2022, 62, 6761–6782. [Google Scholar] [CrossRef]
- Wang, X.; Li, S.; Liu, D.; Kong, J.; Han, X.; Lei, P.; Xu, M.; Guan, H.; Hou, D. Ameliorative Effects of Sea Buckthorn Oil on DNCB Induced Atopic Dermatitis Model Mice via Regulation the Balance of Th1/Th2. BMC Complement. Med. Ther. 2020, 20, 263. [Google Scholar] [CrossRef]
- Solà Marsiñach, M.; Cuenca, A.P. The Impact of Sea Buckthorn Oil Fatty Acids on Human Health. Lipids Health Dis. 2019, 18, 145. [Google Scholar] [CrossRef]
- Yang, B.; Bonfigli, A.; Pagani, V.; Isohanni, T.; von-Knorring, Å.; Jutila, A.; Judin, V.-P. Effects of Oral Supplementation and Topical Application of Supercritical CO2 Extracted Sea Buckthorn Oil on Skin Aging of Female Subjects. J. Appl. Cosmetol. 2009, 27, 1–13. [Google Scholar]
- Chan, L.-P.; Yen, T.-W.; Tseng, Y.-P.; Yuen, T.; Yuen, M.; Yuen, H.; Liang, C.-H. The Impact of Oral Sea-Buckthorn Oil on Skin, Blood Markers, Ocular, Vaginal Health: A Randomized Control Trial. J. Funct. Foods 2024, 112, 105973. [Google Scholar] [CrossRef]
- Choudhry, S.Z.; Bhatia, N.; Ceilley, R.; Hougeir, F.; Lieberman, R.; Hamzavi, I.; Lim, H.W. Role of Oral Polypodium leucotomos Extract in Dermatologic Diseases: A Review of the Literature. J. Drugs Dermatol. 2014, 13, 148–153. [Google Scholar] [PubMed]
- Rodríguez-Luna, A.; Zamarrón, A.; Juarranz, Á.; González, S. Clinical Applications of Polypodium leucotomos (Fernblock®), An Update. Life 2023, 13, 1513. [Google Scholar] [CrossRef]
- Dimitrijevic, J.; Tomovic, M.; Bradic, J.; Petrovic, A.; Jakovljevic, V.; Andjic, M.; Živković, J.; Milošević, S.Đ.; Simanic, I.; Dragicevic, N. Punica granatum L. (Pomegranate) Extracts and Their Effects on Healthy and Diseased Skin. Pharmaceutics 2024, 16, 458. [Google Scholar] [CrossRef]
- Wahab, S.; Annadurai, S.; Abullais, S.S.; Das, G.; Ahmad, W.; Ahmad, M.F.; Kandasamy, G.; Vasudevan, R.; Ali, M.S.; Amir, M. Glycyrrhiza glabra (Licorice), A Comprehensive Review on Its Phytochemistry, Biological Activities, Clinical Evidence, Toxicology. Plants 2021, 10, 2751. [Google Scholar] [CrossRef]
- El-Saber Batiha, G.; Magdy Beshbishy, A.; El-Mleeh, A.; Abdel-Daim, M.M.; Prasad Devkota, H. Traditional Uses, Bioactive Chemical Constituents, Pharmacological and Toxicological Activities of Glycyrrhiza glabra L. (Fabaceae). Biomolecules 2020, 10, 352. [Google Scholar] [CrossRef]
- Nestor, M.S.; Berman, B.; Swenson, N. Safety and Efficacy of Oral Polypodium leucotomos Extract in Healthy Adult Subjects. J. Clin. Aesthetic Dermatol. 2015, 8, 19–23. [Google Scholar]
- Chan, L.P.; Tseng, Y.P.; Liu, C.; Liang, C.H. Fermented Pomegranate Extracts Protect Against Oxidative Stress and Aging of Skin. J. Cosmet. Dermatol. 2022, 21, 2236–2245. [Google Scholar] [CrossRef]
- Henning, S.M.; Yang, J.; Lee, R.P.; Huang, J.; Hsu, M.; Thames, G.; Gilbuena, I.; Long, J.; Xu, Y.; Park, E.H.; et al. Pomegranate Juice and Extract Consumption Increases the Resistance to UVB-Induced Erythema and Changes the Skin Microbiome in Healthy Women: A Randomized Controlled Trial. Sci. Rep. 2019, 9, 14528. [Google Scholar] [CrossRef]
- Emanuele, E.; Bertona, M.; Biagi, M. Comparative Effects of a Fixed Polypodium leucotomos/Pomegranate Combination Versus Polypodium leucotomos Alone on Skin Biophysical Parameters. Neuro Endocrinol. Lett. 2017, 38, 38–42. [Google Scholar] [PubMed]
- Nobile, V.; Dudonné, S.; Kern, C.; Roveda, G.; Garcia, C. Antiaging, Brightening, Antioxidant Efficacy of Fermented Bilberry Extract (Vaccinium myrtillus), A Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients 2024, 16, 2203. [Google Scholar] [CrossRef]
- Zabihi, M.; Hatefi, B.; Ardakani, M.E.; Ranjbar, A.M.; Mohammadi, F. Impact of Licorice Root on the Burn Healing Process: A Double-Blinded Randomized Controlled Clinical Trial. Complement. Ther. Med. 2023, 73, 102941. [Google Scholar] [CrossRef] [PubMed]
- Makino, E.T.; Mehta, R.C.; Banga, A.; Jain, P.; Sigler, M.L.L.; Sonti, S. Evaluation of a Hydroquinone-Free Skin Brightening Product Using in Vitro Inhibition of Melanogenesis and Clinical Reduction of Ultraviolet-Induced Hyperpigmentation. J. Drugs Dermatol. 2013, 12, 16–20. [Google Scholar]
- Pouchieu, C.; Pourtau, L.; Gaudout, D.; Gille, I.; Chalothorn, K.; Perin, F. Effect of an Oral Formulation on Skin Lightening: Results from in Vitro Tyrosinase Inhibition to a Double-Blind Randomized Placebo-Controlled Clinical Study in Healthy Asian Participants. Cosmetics 2023, 10, 143. [Google Scholar] [CrossRef]
- Krasiński, R.; Tchórzewski, H. Hyaluronan-Mediated Regulation of Inflammation. Postepy Hig. Med. Dosw. 2007, 61, 683–689. [Google Scholar] [PubMed]
- Balogh, L.; Polyak, A.; Mathe, D.; Kiraly, R.; Thuroczy, J.; Terez, M.; Janoki, G.; Ting, Y.; Bucci, L.R.; Schauss, A.G. Absorption, Uptake and Tissue Affinity of High-Molecular-Weight Hyaluronan After Oral Administration in Rats and Dogs. J. Agric. Food Chem. 2008, 56, 10582–10593. [Google Scholar] [CrossRef]
- Göllner, I.; Voss, W.; von Hehn, U.; Kammerer, S. Ingestion of an Oral Hyaluronan Solution Improves Skin Hydration, Wrinkle Reduction, Elasticity, Skin Roughness: Results of a Clinical Study. J. Evid.-Based Complement. Altern. Med. 2017, 22, 816–823. [Google Scholar] [CrossRef]
- Kawada, C.; Yoshida, T.; Yoshida, H.; Sakamoto, W.; Odanaka, W.; Sato, T.; Yamasaki, T.; Kanemitsu, T.; Masuda, Y.; Urushibata, O. Ingestion of Hyaluronans (Molecular Weights 800 k and 300 k) Improves Dry Skin Conditions: A Randomized, Double-blind, Controlled Study. J. Clin. Biochem. Nutr. 2015, 56, 66–73. [Google Scholar] [CrossRef]
- Michelotti, A.; Cestone, E.; De Ponti, I.; Pisati, M.; Sparta, E.; Tursi, F. Oral Intake of a New Full-Spectrum Hyaluronan Improves Skin Profilometry and Aging: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Eur. J. Dermatol. 2021, 31, 798–805. [Google Scholar] [CrossRef]
- Hsu, T.F.; Su, Z.R.; Hsieh, Y.H.; Wang, M.-F.; Oe, M.; Matsuoka, R.; Masuda, Y. Oral Hyaluronan Relieves Wrinkles and Improves Dry Skin: A 12-Week Double-Blinded, Placebo-Controlled Study. Nutrients 2021, 13, 2220. [Google Scholar] [CrossRef] [PubMed]
- Oe, M.; Sakai, S.; Yoshida, H.; Okado, N.; Kaneda, H.; Masuda, Y.; Urushibata, O. Oral Hyaluronan Relieves Wrinkles: A Double-Blinded, Placebo-Controlled Study Over a 12-Week Period. Clin. Cosmet. Investig. Dermatol. 2017, 10, 267–273. [Google Scholar] [CrossRef]
- Guaitolini, E.; Cavezzi, A.; Cocchi, S.; Colucci, R.; Urso, S.U.; Quinzi, V. Randomized, Placebo-Controlled Study of a Nutraceutical Based on Hyaluronic Acid, L-Carnosine, Methylsulfonylmethane in Facial Skin Aesthetics and Well-Being. J. Clin. Aesthetic Dermatol. 2019, 12, 40–45. [Google Scholar]
- Pinnell, S.R. Cutaneous photodamage, oxidative stress, topical antioxidant protection. J. Am. Acad. Dermatol. 2003, 48, 1–19. [Google Scholar] [CrossRef]
- Ogawa, Y.; Kawamura, T.; Shimada, S. Zinc and skin biology. Arch. Biochem. Biophys. 2016, 611, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Tyszka-Czochara, M.; Słoczyńska, A.; Marciniak, A.; Roszkowski, E.; Bąk, W.; Grodzik, K.; Chojnacka, A.; Król, J.; Pomastowski, P. Zinc and Propolis Reduces Cytotoxicity and Proliferation in Skin Fibroblast Cell Culture: Total Polyphenol Content and Antioxidant Capacity of Propolis. Biol. Trace Elem. Res. 2014, 160, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Weismann, K.; Wanscher, B.; Krakauer, R. Oral zinc therapy in geriatric patients with selected skin manifestations and a low plasma zinc level. Acta Derm.-Venereol. 1978, 58, 157–161. [Google Scholar] [CrossRef]
- Parat, M.O.; Richard, M.J.; Leccia, M.T.; Amblard, P.; Favier, A.; Beani, J.C. Does manganese protect cultured human skin fibroblasts against oxidative injury by UVA, dithranol and hydrogen peroxide? Free. Radic. Res. 1995, 23, 339–351. [Google Scholar] [CrossRef]
- Goluch, Z.; Haraf, G. Goose Meat as a Source of Dietary Manganese—A Systematic Review. Animals 2023, 13, 840. [Google Scholar] [CrossRef]
- Egoumenides, L.; Gauthier, A.; Barial, S.; Saby, M.; Orechenkoff, C.; Simoneau, G.; Carillon, J. A Specific Melon Concentrate Exhibits Photoprotective Effects from Antioxidant Activity in Healthy Adults. Nutrients 2018, 10, 437. [Google Scholar] [CrossRef]
- Gad, M. Anti-aging effects of L-arginine. J. Adv. Res. 2010, 1, 169–177. [Google Scholar] [CrossRef]
- OyetakinWhite, P.; Tribout, H.; Baron, E. Protective mechanisms of green tea polyphenols in skin. Oxidative Med. Cell. Longev. 2012, 2012, 560682. [Google Scholar] [CrossRef] [PubMed]
- Sekhar, R.V.; Patel, S.G.; Guthikonda, A.P.; Reid, M.; Balasubramanyam, A.; Taffet, G.E.; Jahoor, F. Deficient synthesis of glutathione underlies oxidative stress in aging and can be corrected by dietary cysteine and glycine supplementation. Am. J. Clin. Nutr. 2011, 94, 847–853. [Google Scholar] [CrossRef]
- Takaoka, M.; Okumura, S.; Seki, T.; Ohtani, M. Effect of amino acid intake on physical conditions and skin state: A randomized, double-blind, placebo-controlled, crossover trial. J. Clin. Biochem. Nutr. 2019, 65, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Farrar, M.D.; Nicolaou, A.; Clarke, K.A.; Mason, S.; Massey, K.A.; Dew, T.P.; Watson, R.E.B.; Williamson, G.; Rhodes, L.E. A randomized controlled trial of green tea catechins in protection against ultraviolet radiation–induced cutaneous inflammation. Am. J. Clin. Nutr. 2015, 102, 608–615. [Google Scholar] [CrossRef]
- Costa, A.; Pereira, E.S.P.; Assumpcao, E.C.; Calixto Dos Santos, F.B.; Ota, F.S.; de Oliveira Pereira, M.; Fidelis, M.C.; Favaro, R.; Barros Langen, S.S.; Favaro de Arruda, L.H. Assessment of clinical effects and safety of an oral supplement based on marine protein, vitamin C, grape seed extract, zinc, tomato extract in the improvement of visible signs of skin ageing in men. Clin. Cosmet. Investig. Dermatol. 2015, 8, 319–328. [Google Scholar] [CrossRef]
- Costa, A.; Lindmark, L.; Arruda, L.H.F.; Assumpção, E.C.; Ota, F.S.; de Oliveira Pereira, M.; Langen, S.S.B. Clinical, biometric and ultrasound assessment of the effects of daily use of a nutraceutical composed of lycopene, acerola extract, grape seed extract, Biomarine Complex in photoaged human skin. An. Bras. Dermatol. 2012, 87, 52–61. [Google Scholar] [CrossRef]
- Costa, A.; Pereira, E.S.P.; Fávaro, R.; de Oliveira Pereira, M.; Stocco, P.L.; Assumpção, E.C.; Ota, F.S.; Langen, S.S.B. Treating cutaneous photoaging in women with an oral supplement based on marine protein, concentrated acerola, grape seed extract, tomato extract, for 360 days. Surg. Cosmet. Dermatol. 2011, 3, 302–311. [Google Scholar]
- Dumoulin, M.; Gaudout, D.; Lemaire, B. Clinical effects of an oral supplement rich in antioxidants on skin radiance in women. Clin. Cosmet. Investig. Dermatol. 2016, 9, 315–324. [Google Scholar] [CrossRef]
- Grether-Beck, S.; Marini, A.; Jaenicke, T.; Krutmann, J. Effective photoprotection of human skin against infrared A radiation by topically applied antioxidants: Results from a vehicle-controlled, double-blind, randomized study. Photochem. Photobiol. 2015, 91, 248–250. [Google Scholar] [CrossRef]
- Pérez-Sanchez, A.; Barrajon-Catalan, E.; Caturla, N.; Castillo, J.; Benavente-Garcia, O.; Alcaraz, M.; Micol, V. Protective effects of citrus and rosemary extracts on UV-induced damage in skin cell model and human volunteers. J. Photochem. Photobiol. B. 2014, 136, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Nobile, V.; Michelotti, A.; Cestone, E.; Caturla, N.; Castillo, J.; Benavente-Garcia, O.; Pérez-Sanchez, A.; Micol, V. Skin photoprotective and anti-aging effects of a combination of rosemary (Rosmarinus officinalis) and grapefruit (Citrus paradisi) polyphenols. Food. Nutr. Res. 2016, 60, 31871. [Google Scholar] [CrossRef] [PubMed]
- Puglia, C.; Offerta, A.; Saija, A.; Trombetta, D.; Venera, C. Protective effect of red orange extract supplementation against UV-induced skin damages: Photoaging and solar lentigines. J. Cosmet. Dermatol. 2014, 13, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Belwal, T.; Devkota, H.P.; Hassan, H.A.; Ahluwalia, S.; Ramadan, M.F.; Mocan, A.; Atanasov, A.G. Phytopharmacology of Acerola (Malpighia spp.) and its potential as functional food. Trends Food Sci. Technol. 2018, 74, 99–106. [Google Scholar] [CrossRef]
- Sato, Y.; Uchida, E.; Aoki, H.; Hanamura, T.; Nagamine, K.; Kato, H.; Koizumi, T.; Ishigami, A. Acerola (Malpighia emarginata DC.) Juice Intake Suppresses UVB-Induced Skin Pigmentation in SMP30/GNL Knockout Hairless Mice. PLoS ONE 2017, 12, e0170438. [Google Scholar] [CrossRef]
- Uchida, E.; Sato, Y.; Kondo, N.; Aoki, H.; Yonei, T.; Yoshikawa, A.; Takahara, S.; Iwama, Y.; Ishigami, T.; Kondo, K. Absorption and Excretion of Ascorbic Acid Alone and in Acerola (Malpighia emarginata) Juice: Comparison in Healthy Japanese Subjects. Biol. Pharm. Bull. 2011, 34, 1744–1747. [Google Scholar] [CrossRef]
- Guéniche, A.; Bastien, P.; Ovigne, J.M.; Kermici, M.; Courchay, G.; Chevalier, V.; Breton, L.; Castiel-Higounenc, I. Bifidobacterium longum lysate, a New Ingredient for Reactive Skin. Exp. Dermatol. 2010, 19, e1–e8. [Google Scholar] [CrossRef]
- Da Costa Baptista, I.P.; Accioly, E.; de Carvalho Padilha, P. Effect of the Use of Probiotics in the Treatment of Children with Atopic Dermatitis: A Literature Review. Nutr. Hosp. 2013, 28, 16–26. [Google Scholar]
- Smith-Norowitz, T.A.; Bluth, M.H. Probiotics and Diseases of Altered IgE Regulation: A Short Review. J. Immunotoxicol. 2016, 13, 136–140. [Google Scholar] [CrossRef]
- Chang, Y.-S.; Trivedi, M.K.; Jha, A.; Lin, Y.-F.; Dimaano, L.; García-Romero, M.T. Synbiotics for Prevention and Treatment of Atopic Dermatitis: A Meta-Analysis of Randomized Controlled Clinical Trials. JAMA Pediatr. 2016, 170, 236–242. [Google Scholar] [CrossRef]
- Probiotika: Doch Nicht Nützlich? Cell Press. 07.09. 218—DAL. 2018. Available online: https://www.scinexx.de/news/medizin/probiotika-doch-nicht-nuetzlich/ (accessed on 20 February 2025).
- Gao, T.; Wang, X.; Li, Y.; Ren, F. The Role of Probiotics in Skin Health and Related Gut-Skin Axis: A Review. Nutrients 2023, 15, 3123. [Google Scholar] [CrossRef] [PubMed]
- Im, A.R.; Lee, B.; Kang, D.J.; Chae, S. Skin Moisturizing and Antiphotodamage Effects of Tyndallized Lactobacillus acidophilus IDCC 3302. J. Med. Food 2018, 21, 1016–1023. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Kim, H.R.; Jeong, B.J.; Lee, S.S.; Kim, T.R.; Jeong, J.H.; Lee, M.; Lee, S.; Lee, J.S.; Chung, D.K. Effects of Oral Intake of Kimchi-Derived Lactobacillus plantarum K8 Lysates on Skin Moisturizing. J. Microbiol. Biotechnol. 2015, 25, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Braegger, C.P. Prebiotika. Paediatrica 2004, 15, 20–21. [Google Scholar]
- Hong, Y.H.; Chang, U.J.; Kim, Y.S.; Jung, E.Y.; Suh, H.J. Dietary Galacto-Oligosaccharides Improve Skin Health: A Randomized Double-blind Clinical Trial. Asia Pac. J. Clin. Nutr. 2017, 26, 613–618. [Google Scholar]
- Miyazaki, K.; Masuoka, N.; Kano, M.; Iizuka, R. Bifidobacterium Fermented Milk and Galacto-Oligosaccharides Lead to Improved Skin Health by Decreasing Phenols Production by Gut Microbiota. Benef. Microbes 2014, 5, 121–128. [Google Scholar] [CrossRef]
- Kano, M.; Masuoka, N.; Kaga, C.; Sugimoto, S.; Iizuka, R.; Manabe, K.; Sone, T.; Oeda, K.; Nonaka, C.; Miyazaki, K.; et al. Consecutive Intake of Fermented Milk Containing Bifidobacterium breve Strain Yakult and Galactooligosaccharides Benefits Skin Condition in Healthy Adult Women. Biosci. Microbiota Food Health 2013, 32, 33–39. [Google Scholar] [CrossRef]
- Marcheggiani, F.; Cirilli, I.; Orlando, P.; Silvestri, S.; Vogelsang, A.; Knott, A.; Blatt, T.; Weise, J.M.; Tiano, L. Modulation of Coenzyme Q10 content and oxidative status in human dermal fibroblasts using HMG-CoA reductase inhibitor over a broad range of concentrations. From mitohormesis to mitochondrial dysfunction and accelerated aging. Aging 2019, 11, 2565–2582. [Google Scholar] [CrossRef]
- Prahl, S.; Kueper, A.; Buesing, K.; Rudolf, G.; Schroeder, P. Aging skin is functionally anaerobic: Importance of coenzyme Q10 for anti-aging skin care. Biofactors 2008, 32, 245–255. [Google Scholar] [CrossRef]
- Zmitek, K.; Pogacnik, T.; Mervic, L.; Zmitek, J.; Pravst, I. The effect of dietary intake of coenzyme Q10 on skin parameters and condition: Results of a randomized, placebo-controlled, double-blind study. Biofactors 2017, 43, 132–140. [Google Scholar] [CrossRef]
- Smit, N.; Vicanova, J.; Pavel, S. The Hunt for Natural Skin Whitening Agents. Int. J. Mol. Sci. 2009, 10, 5326–5349. [Google Scholar] [CrossRef] [PubMed]
- EFSA. Scientific Opinion on the substantiation of health claims related to niacin and reduction of tiredness and fatigue (ID 47), contribution to normal energy-yielding metabolism (ID 51), contribution to normal psychological functions (ID 55), maintenance of normal blood flow (ID 211), maintenance of normal skin and mucous membranes (ID 4700) pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA J. 2006, 8, 1757. [Google Scholar] [CrossRef]
- Hanna, M.; Jaqua, E.; Nguyen, V.; Clay, J. B Vitamins: Functions and Uses in Medicine. Perm. J. 2022, 26, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Niren, N.M. Pharmacologic doses of nicotinamide in the treatment of inflammatory skin conditions: A review. Cutis 2006, 77, 11–16. [Google Scholar]
- Morrow, J.D.; Hanson, K.E.; Isakson, P.C.; Razack, R.A.; Roberts, F.J. Identification of Skin as a Major Site of Prostaglandin D2 Release Following Oral Administration of Niacin in Humans. J. Investig. Dermatol. 1992, 98, 812–815. [Google Scholar] [CrossRef]
- Hoffmann, M.R.; Senior, P.A.; Mager, D.R. Vitamin D supplementation and health-related quality of life: A systematic review of the literature. J. Acad. Nutr. Diet. 2015, 115, 406–418. [Google Scholar] [CrossRef]
- Navarro-Triviño, F.J.; Arias-Santiago, S.; Gilaberte-Calzada, Y. Vitamin D and the Skin: A Review for Dermatologists. Actas Dermo-Sifiliográficas 2019, 110, 262–272. [Google Scholar] [CrossRef]
- Bocheva, G.; Slominski, R.M.; Slominski, A.T. The Impact of Vitamin D on Skin Aging. Int. J. Mol. Sci. 2021, 22, 9097. [Google Scholar] [CrossRef]
- Bouillon, R.; Manousaki, D.; Rosen, C.; Trajanoska, K.; Rivadeneira, F.; Richards, J.B. The health effects of vitamin D supplementation: Evidence from human studies. Nat. Rev. Endocrinol. 2022, 18, 96–110. [Google Scholar] [CrossRef]
- Mohamed, A.A.; Hussein, M.S.; Salah, E.M.; Eldemery, A.; Darwish, M.M.; Ghaith, D.M.; Attala, R.A.; El Borolossy, R. Efficacy and safety of active vitamin D supplementation in chronic spontaneous urticaria patients. J. Dermatol. Treat. 2022, 33, 427–432. [Google Scholar] [CrossRef]
- Yeowell, H.N.; Marshall, M.K.; Walker, L.C.; Ha, V.; Pinnell, S.R. Regulation of lysyl oxidase mRNA in dermal fibroblasts from normal donors and patients with inherited connective tissue disorders. Arch. Biochem. Biophys. 1994, 308, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Kanteev, M.; Goldfeder, M.; Fishman, A. Structure-function correlations in tyrosinases. Protein Sci. 2015, 24, 1360–1369. [Google Scholar] [CrossRef] [PubMed]
- Driscoll, M.S.; Kwon, E.K.; Skupsky, H.; Kwon, S.Y.; Grant-Kels, J.M. Nutrition and the deleterious side effects of nutritional supplements. Clin. Dermatol. 2010, 28, 371–379. [Google Scholar] [CrossRef]
- Borkow, G. Using Copper to Improve the Well-Being of the Skin. Curr. Chem. Biol. 2014, 8, 89–102. [Google Scholar] [CrossRef]
- Pickart, L.; Margolina, A. Skin Regenerative and Anti-Cancer Actions of Copper Peptides. Cosmetics 2018, 5, 29. [Google Scholar] [CrossRef]
- Rayman, M.P. Selenium and human health. Lancet 2012, 379, 1256–1268. [Google Scholar] [CrossRef] [PubMed]
- Hazane-Puch, F.; Champelovier, P.; Arnaud, J.; Trocmé, C.; Garrel, C.; Faure, P.; Laporte, F. Six-day selenium supplementation led to either UVA-photoprotection or toxic effects in human fibroblasts depending on the chemical form and dose of Se. Metallomics 2014, 6, 1683–1692. [Google Scholar] [CrossRef]
- Krausz, A.; Gunn, H.; Friedman, A. The basic science of natural ingredients. J. Drugs. Dermatol. 2014, 13, 937–943. [Google Scholar]
- Perrone, D.; Ardito, A.; Pucci, F.; Aiello, A.; Russo, M.; Trapasso, N.; Garufi, C.; Buongiorno-Nardelli, S. Biological and therapeutic activities, anticancer properties of curcumin (Review). Exp. Ther. Med. 2015, 10, 1615–1623. [Google Scholar] [CrossRef]
- Nguyen, T.A.; Friedman, A.J. Curcumin: A novel treatment for skin-related disorders. J. Drugs. Dermatol. 2013, 12, 1131–1137. [Google Scholar]
- Gustav Parmentier GmbH. Phytosterols and Phytosterol Esters in Nutrition and Cosmetics. Phytosterols Brochure. 2014. Available online: http://www.parmentier.de/gpfneu/Sterol_Esters.pdf (accessed on 20 February 2025).
- Bundesinstitut für Risikobewertung. Lebensmittel mit Pflanzensterol- und Pflanzenstanol-Zusatz: Bewertung einer Neuen Studie aus den Niederlanden. Statement 2013, 006/2012 from the BfR on December 01 2011, Supplemented on January 21, 2013. Available online: https://mobil.bfr.bund.de/cm/343/lebensmittel-mit-pflanzensterol-und-pflanzenstanol-zusatz-bewertung-einer-neuen-studie-aus-den-niederlanden.pdf (accessed on 20 February 2025).
- Bundesinstitut für Risikobewertung. Menschen mit Normalen Cholesterinwerten Sollten auf den Verzehr von Lebensmitteln mit Zugesetzten Pflanzensterinen Verzichten. Statement 2008, 042/2008 from the BfR on September 03 2008. Available online: https://mobil.bfr.bund.de/cm/343/menschen_mit_normalen_cholesterinwerten.pdf (accessed on 20 February 2025).
- Lolou, V.; Panayiotidis, M.I. Functional Role of Probiotics and Prebiotics on Skin Health and Disease. Fermentation 2019, 5, 41. [Google Scholar] [CrossRef]
- Maguire, M.; Maguire, G. The role of microbiota, probiotics and prebiotics in skin health. Arch. Dermatol. Res. 2017, 309, 411–421. [Google Scholar] [CrossRef]
- Al-Ghazzewi, F.H.; Tester, R.F. Impact of prebiotics and probiotics on skin health. Benef. Microbes 2014, 5, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Agbabiaka, T.B.; Pittler, M.H.; Wider, B.; Ernst, E. Serenoa repens (saw palmetto), a systematic review of adverse events. Drug Saf. 2009, 32, 637–647. [Google Scholar] [CrossRef]
- Rossi, A.; Mari, E.; Scarno, M.; Garelli, V.; Maxia, C.; Scali, E.; Iorio, A.; Carlesimo, M. Comparative effectiveness of finasteride vs serenoa repens in male androgenetic alopecia: A two-year study. Int. J. Immunopathol. Pharmacol. 2012, 25, 1167–1173. [Google Scholar] [CrossRef]
- Kang, S.; Chung, J.H.; Lee, J.H.; Fisher, G.J.; Wan, Y.S.; Duell, E.A.; Voorhees, J.J. Topical N-acetyl cysteine and genistein prevent ultraviolet-light-induced signalling that lead to photoaging in human skin in vivo. J. Investig. Dermatol. 2003, 120, 835–841. [Google Scholar] [CrossRef]
- Cassidy, P.B.; Liu, T.; Florell, S.R.; Honeggar, M.; Leachman, S.A.; Boucher, K.M.; Grossman, D. A phase II randomized placebo-controlled trial of oral N-acetylcysteine for protection of melanocytic nevi against UV-induced oxidative stress in vivo. Cancer Prev. Res. 2017, 10, 36–44. [Google Scholar] [CrossRef]
- Nakai, K.; Yoneda, K.; Murakami, Y.; Koura, A.; Maeda, R.; Tamai, A.; Ishikawa, E.; Yokoi, I.; Moriue, J.; Moriue, T.; et al. Effects of Topical N-Acetylcysteine on Skin Hydration/Transepidermal Water Loss in Healthy Volunteers and Atopic Dermatitis Patients. Ann. Dermatol. 2015, 27, 450–451. [Google Scholar] [CrossRef] [PubMed]
- Lassus, A.; Jeskanen, L.; Happonen, H.P.; Santalahti, J. Imedeen for the treatment of degenerated skin in females. J. Int. Med. Res. 1991, 19, 147–152. [Google Scholar] [CrossRef]
- Kieffer, M.E.; Efsen, J. Imedeen in the treatment of photoaged skin: An efficacy and safety trial over 12 months. J. Eur. Acad. Dermatol. Venereol. 1998, 11, 129–136. [Google Scholar] [CrossRef]
- Birnbaum, J.E.; Zugerman, M.E.; Fowler, J.L.; Krathen, C.G.; Mettinger, M.P.; Grindel, B.A.; Tanghetti, E.; Aschoff, S.; Perez, C.O.; Leyden, J.J. A multicenter, placebo-controlled, double-blind clinical trial assessing the effects of a multicomponent nutritional supplement for treating photoaged skin in healthy women. J. Cosmet. Dermatol. 2016, 16, 120–131. [Google Scholar] [CrossRef]
- Eskelinen, A.; Santalahti, J. Natural cartilage polysaccharides for the treatment of sun-damaged skin in females: A double-blind comparison of vivida and imedeen. J. Int. Med. Res. 1992, 20, 227–233. [Google Scholar] [CrossRef]
- Skovgaard, G.R.; Jensen, A.S.; Sigler, M.L. Effect of a novel dietary supplement on skin aging in post-menopausal women. Eur. J. Clin. Nutr. 2006, 60, 1201–1206. [Google Scholar] [CrossRef] [PubMed]
- Stephens, T.J.; Sigler, M.L.; Hino, P.D.; Moigne, A.L.; Dispensa, L. A randomized, double-blind, placebo-controlled clinical trial evaluating an oral anti-aging skin care supplement for treating photo-damaged skin. J. Clin. Aesthet. Dermatol. 2016, 9, 25–32. [Google Scholar] [PubMed]
- Gibson, G.R.; Roberfroid, M.B. Dietary Modulation of the Human Colonic Microbiota: Introducing the Concept of Prebiotics. J. Nutr. 1995, 125, 1401–1412. [Google Scholar] [CrossRef]
- Omenn, G.S.; Goodman, G.E.; Thornquist, M.D.; Balmes, J.; Cullen, M.R.; Glass, A.; Keogh, J.P.; Meyskens, F.L.; Valanis, B.; Williams, J.H.; et al. Effects of a combination of beta carotene and vitamin A on lung cancer and cardiovascular disease. N. Engl. J. Med. 1996, 334, 1150–1155. [Google Scholar] [CrossRef]
- Duda-Chodak, A.; Tarko, T. Possible Side Effects of Polyphenols and Their Interactions with Medicines. Molecules 2023, 28, 2536. [Google Scholar] [CrossRef]
- Bundesinstitut für Risikobewertung. Die Einnahme von Nicotinsäure in überhöhter Dosierung Kann die Gesundheit Schädigen. Statement 2012, 018/2012 from the BfR on February 06 2012. Available online: https://mobil.bfr.bund.de/cm/343/die-einnahme-von-nicotinsaeure-in-ueberhoehter-dosierung-kann-die-gesundheit-schaedigen.pdf (accessed on 20 February 2025).
- Danby, F.W. Nutrition and aging skin: Sugar and glycation. Clin. Dermatol. 2010, 28, 409–411. [Google Scholar] [CrossRef]
Level I | Active ingredients with proven efficacy in vivo |
Level Ia | Efficacy proven in placebo-controlled double-blind studies (PCDB studies) |
Level Ib | Efficacy proven in other studies conducted with objectifiable methods (RCT or similar, no PCDB studies) |
Level II | Active ingredients with proven efficacy in vitro |
Level III | Other advertised active ingredients |
Nutraceutical/Ingredient | Reviews | Pre-Clinical Data | Clinical Data | RCT Substance-Related | RCT in Combination | Other | Evidence * | Comments | |
---|---|---|---|---|---|---|---|---|---|
Vitamins | Vitamin A HC | [1,10,13,16,38,39,40,41,42,43,44,45,46] | [47,48] | [49,50] | [51] | Ia 1 | see β-carotene | ||
Biotin HC (Vitamin B7 or Vitamin H) | [13,38,40,43,52,53,54,55] | [56] | [57] | [58] | Ia 2 | EFSA Health Claims, numerous reviews, one PCDB in combination, objectively measurable animal studies, (older) human studies, and studies on hair effects. Higher dosages: Medical product or drug | |||
Vitamin C HC | [1,3,4,7,8,10,13,14,16,32,38,40,43,46,59,60,61] | [62] | [63,64] | [65] | [66,67,68] | Ia | Few substance-related PCDB, but undeniable skin effects. EFSA Health Claim, efficacy enhancement in combination with vitamin E. | ||
Vitamin E | [3,4,8,10,13,14,16,38,40,43,46,58,59,69,70] | [71] | [63] | [67,68] | Many topical studies | Ib 2 | PCDB evidence of effectiveness only demonstrated in combination with vitamin C but supported by many other objectively measurable data. Studies required to determine the dose needed for maximum skin improvement. | ||
Fatty acids, Lipids | Omega-3 fatty acids (PUFA) | [1,2,3,4,7,13,16,43,72,73] | [74,75,76,77] | [63,78,79,80,81] | [82] | [83] | Ia | Numerous studies on various omega-3 fatty acids, often not involving the same substance but rather different PUFAs or fish or evening primrose oil. | |
Ceramides | [4,10,12,84,85,86] | [87] | [88,89] | [90] | [91,92] | Ia | Several PCDB, preclinical investigations, and coherent reviews. | ||
Collagen Peptides | Collagen peptides from cattle or pigs | [2,4,8,10,12,16,40,93,94,95,96,97,98,99,100,101,102,103,104,105] | [106,107,108,109,110,111,112,113,114,115,116,117] | [118,119,120,121,122,123,124,125,126,127,128] | [129,130,131,132,133,134,135,136,137,138] | [139,140,141,142,143,144,145,146,147] | [148] | Ia 1 | A large number of studies and meta-analyses, numerous double-blind RCTs, various collagen peptides (from pigs or cattle, e.g., Verisol®, Peptan®) with well-documented, product-specific PCDB, some combined with other nutrients (e.g., ELASTEN®). Verisol is also known as a component of various combination products. |
Marine/fish collagen peptides | [149,150,151,152] | [153] | [154,155,156,157] | [158] | Ia | (Marine) collagen peptides from fish, many studies, including substance-related PCDB. | |||
Chicken collagen peptides | [159] | [108,160,161] | [162,163] | [164,165] | Ia 2 | Not yet as well documented as other collagen peptides, but two PCDB with extracts and preclinical studies. Additional PCDB needed for effects on joints. | |||
Collagen-like peptides from non-animal sources | [166] | Ia | (Few) data available, one PCDB. | ||||||
Carotenoids | ß-carotene | [3,4,7,10,12,14,16,167,168,169] | [170,171,172] | [173] | [174] | Ia | Precursor for vitamin A, for which there are undeniable effects and an EFSA Health Claim. PCDB available. Further studies required to determine dosing and possible health risks; increased risk of lung cancer is discussed. | ||
Lutein, zeaxanthin, astaxanthin | [3,4,8,13,175,176,177,178] | [179] | [180,181,182,183] | [184] | Ia | Clinical evidence of skin improvement, particularly for astaxanthin (PCDB), meta-analysis. | |||
Lycopene | [2,3,16] | [185] | [183] | [174] | Ia | One substance-related PCDB, otherwise unconvincing studies; studies needed to determine the optimal dose. | |||
Plant and animal substances/extracts | Polyphenols: Pinus extract (maritime pine bark extract), flavonoids, resveratrol | [7,10,12,186,187,188,189,190,191,192,193,194] | [195,196] | [197,198,199,200] | [158,201,202,203] | Ia 2 | Studies partially with topical application or combination products, but alongside one PCDB in combination, many other objectively measurable studies. Bioavailability in humans remains an unresolved issue. | ||
Aloe vera gel | [2,3,12,204,205] | [206,207,208,209] | [210] | [211,212] | [213] | Ia | Substance-related PCDB. Studies required to determine the optimal daily dose and possible health risks; studies also show effects with topical application of the extract. | ||
Sea buckthorn oil | [214,215,216] | [217] | [218,219] | [220] | Ib | Numerous indications, some studies, currently one RCT evidence. | |||
Other extracts: Polypodium leucotomos, pomegranate, bilberry extract, liquorice root extract | [221,222,223,224,225] | [226,227,228,229,230,231] | [232,233] | Ia | Substance-related PCDB. | ||||
Hyaluronic acid | [12,214,234] | [235] | [236] | [237,238,239,240] | [241] | Ia 1 | Several PCDB and a meta-analysis, but some weak effects and critical assessments. Extensive evidence in the literature. |
Nutraceutical/Ingredient | Reviews | Pre-Clinical Data | Clinical Data | RCT Substance-Related | RCT in Combination | Other | Evidence * | Comments | |
---|---|---|---|---|---|---|---|---|---|
Minerals/trace elements | Zinc HC | [3,4,55,242,243] | [244] | [245] | II | Undisputed skin effects, EFSA Health Claim. But RCTs and studies to determine the dose required for maximum skin improvement are lacking. | |||
Manganese HC | [246,247] | [248] | II 2 | One RCT with a manganese-containing bitter melon extract shows strong photoprotective effects. EFSA Health Claim, but few literature data. | |||||
Amino acids | L-arginine, L-glutamine, L-leucine, etc. | [249] | [250] | [251] | [252] | Importance for the skin is undisputed, but no RCT or no substance-related clinical studies and only a few published data. | |||
Secondary natural products | Polyphenols: Catechins from green tea extract, grape seed/skin extract | [7,8,10,12,14] | [253,254,255,256,257] | [258] | II 1 | No significant results with catechins from green tea (GTC), probably due to underdosing of the GTC; Pinus extract, flavanol-rich cocoa: see herbal and animal substances/extracts. Grape extracts: studies currently only in combination or topical. | |||
Plant Extracts | Citrus/rosemary extracts | [259] | [260,261] | II | No RCT, or clinical studies only in combination and without placebo; additional studies required to verify the previous results. | ||||
Acerola extract | [262] | [263] | [264] | II | No RCT so far, positive effects rather in combination with other substances. Advantageous: High endogenous vitamin C content. | ||||
Probiotics and prebiotics | Probiotics (Lactobacillus, Bifido-bacterium) | [2,7,8,12,15,265,266,267,268,269,270] | [271,272] | [272] | II | Many studies in children and/or with topical application; beneficial effects for the skin despite divergent study quality and data often described, but only one RCT. | |||
Galacto-oligo-saccharides | [2,7,273] | [274] | [275,276] | II 2 | The available studies (in combination with bifidobacteria) suggest a significant improvement in skin properties (hydration and skin barrier function). Few literature references. | ||||
Other | Coenzym Q10 | [3,4,7,8] | [277] | [278] | [279] | II | Undisputed skin effects, EFSA Health Claim. But RCTs and studies to determine the dose required for maximum skin improvement are lacking. |
Nutraceutical/Ingredient | Reviews | Pre-Clinical Data | Clinical Data | RCT Substance-Related | RCT in Combination | Other | Evidence * | Comments | |
---|---|---|---|---|---|---|---|---|---|
Vitamins | Vitamins B1, B2 HC, B3 HC, B5, B6 | [1,10,280,281,282,283] | [284] | III | No conclusive clinical evidence so far, one RCT without significant results. EFSA Health Claims for B2 and B3. | ||||
Vitamin D | [285,286,287,288] | [289] | III | Few, mostly very old or unsuitable studies with limited data and findings | |||||
Minerals/trace elements | Copper HC | [3,290,291,292,293,294] | III | Insufficient clinical studies. EFSA Health Claim. | |||||
Selenium HC | [3,4,295] | [296] | III | RCTs and studies to determine the necessary dose are lacking, transition metal, higher doses are harmful (oxidative stress), EFSA Health Claims for connective tissue, skin and hair pigmentation. | |||||
Sec. natural products | Curcumin | [12,13,297,298,299] | III | Reviews, but no studies, EFSA Health Claims on hair and nails | |||||
Plant and animal substances | Phytosterols (except Aloe sterols) | [4,300,301,302] | III | No suitable studies to prove skin effects | |||||
Polysaccharides | [4,303,304,305] | III | No study so far to prove positive skin effects with oral application | ||||||
Serenoa repens | [3,306] | [307] | III | Only studies with multi-combination preparations; conclusions on individual substances problematic. | |||||
Pre-biotics | Other prebiotics | [2,15,303,304,305] | III | No sufficient evidence so far; existing studies with focus on hair loss | |||||
Other | N-acetylcysteine) | [3] | [308] | [250] | [309] | [310] | III | No scientific evidence/studies |
Nutraceutical/Ingredient | Examples | Review | Product-Related Proof | Evidence * | Comments | |
---|---|---|---|---|---|---|
Clinical | RCT | |||||
Bovine or porcine collagen peptides, vitamins, and others | ELASTEN® | [12,93,99,100,101,104] | [118,119,120,122,123] | [141,142] | Ia | Very well-documented, product-specific RCTs, meta-analyses, also visualization of the collagen network before/after using scanning electron microscopy |
Doppelherz® system KOLLAGEN BEAUTY | [144] | Ia | One product-specific PCDB study | |||
Pure Gold Collagen® | [40,100] | [124] | [139,140] | Ia | Product-specific studies, including 1 PCDB study | |
Fish collagen, Pinus, vitamins, carotenoids and others | Fish-derived collagen peptide (FUJIFILM) | [12,100] | [145] | Ia | One product-specific PCDB study | |
Evelle® | [201,202] | Ia | Several product-specific PCDB studies | |||
Vinh Wellness Collagen | [154] | Ia | One product-specific PCDB | |||
Cellergen® (Switzerland) | [158] | Ib | One single-blind RCT | |||
Proteins, polysaccharides, vitamins, and others | Imedeen® | [254,311] | [312] | [313,314,315,316] | Ia | Well-documented, several product-specific PCDB studies |
Vivida® | [313] | One product-specific study | ||||
Hyaluronic acid, plant concentrates, biotin, vitamins, and others | Regulat-pro® Hyaluron | [236] | [239] | Ia | Several studies, including 1 PCDB study | |
Amino acids, vitamins, minerals | Fermented papaya fruit extract (Carica papaya L.) | [64] | Ib | Product-specific double-blind study vs. active control (antioxidants), but not against placebo | ||
Citrus extract, rosemary extract | Nutroxsun® | [260] | Ib | One RCT on UVA and UVB protection | ||
Licorice root extract, grape seed extract, grape pomace extract, vitamin C | Belight2®, SkinMedica® | [232,233] | Ib | Two product-specific RCTs on skin lightening | ||
Various vitamins, zinc, niacin, biotin | Vitamin Haut&Haare (and many more in varying compositions) | [55] | III | No significant studies available to date |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Streker, M.; Proksch, E.; Kattenstroth, J.-C.; Poeggeler, B.; Lemmnitz, G. Comparative Assessment of Nutraceuticals for Supporting Skin Health. Nutraceuticals 2025, 5, 13. https://doi.org/10.3390/nutraceuticals5020013
Streker M, Proksch E, Kattenstroth J-C, Poeggeler B, Lemmnitz G. Comparative Assessment of Nutraceuticals for Supporting Skin Health. Nutraceuticals. 2025; 5(2):13. https://doi.org/10.3390/nutraceuticals5020013
Chicago/Turabian StyleStreker, Meike, Ehrhardt Proksch, Jan-Christoph Kattenstroth, Burkhard Poeggeler, and Gunter Lemmnitz. 2025. "Comparative Assessment of Nutraceuticals for Supporting Skin Health" Nutraceuticals 5, no. 2: 13. https://doi.org/10.3390/nutraceuticals5020013
APA StyleStreker, M., Proksch, E., Kattenstroth, J.-C., Poeggeler, B., & Lemmnitz, G. (2025). Comparative Assessment of Nutraceuticals for Supporting Skin Health. Nutraceuticals, 5(2), 13. https://doi.org/10.3390/nutraceuticals5020013