Ground Water Chemistry Changes before Major Earthquakes and Possible Effects on Animals
Abstract
:1. Introduction
- Low to ultralow frequency electromagnetic emissions from the ground,
- Luminous phenomena, often called earthquake lights, prior to many seismic events,
- Enhanced infrared emission from the epicentral region as seen in satellite images,
- Changes in the atmosphere near the ground and at altitudes up to about 12,000 m,
- Perturbations in the ionosphere 100–600 km above the Earth’s surface,
- Changes in the ocean water and ground or spring water chemistry, etc.
2. Laboratory and Field Observations
2.1. Positive Hole Charge Carriers in Rocks
2.2. Oxidation of Water to Hydrogen Peroxide
2.3. Open Circuit versus Closed Circuit
2.4. Electrocorrosion of Rocks
2.5. Other Oxidation Reactions at the Rock-Water Interface
2.6. Unusual Animal Behavior before Earthquakes
3. Discussion
Acknowledgments
References
- Tributsch, H. When the Snakes Awake: Animals and Earthquake Prediction; MIT Press: Cambridge, MA, USA, 1984; p. 264. [Google Scholar]
- Freund, FT. Toward a unified solid state theory for pre-earthquake signals. Acta Geophys 2010, 58, 719–766. [Google Scholar]
- Freund, FT; Takeuchi, A; Lau, BW. Electric currents streaming out of stressed igneous rocks—A step towards understanding pre-earthquake low frequency EM emissions. Phys. Chem. Earth 2006, 31, 389–396. [Google Scholar]
- Freund, F. Charge generation and propagation in rocks. J. Geodyn 2002, 33, 545–572. [Google Scholar]
- Griscom, DL. Electron spin resonance. Glass Sci. Technol 1990, 48, 151–251. [Google Scholar]
- Shluger, AL; Heifets, EN; Gale, JD; Catlow, CRA. Theoretical simulation of localized holes in MgO. J. Phys. Condens. Matter 1992, 4, 5711–5722. [Google Scholar]
- Kushwah, V; Singh, B; Hayakawa, M. Ultra low frequency (ULF) magnetic field anomalies observed at Agra and their relation to moderate seismic activity in Indian region. J. Atmos. Sol.-Terr. Phys 2005, 67, 992–1001. [Google Scholar]
- Fraser-Smith, AC. Ultralow-frequency magnetic fields preceding large earthquakes. EOS 2008, 89, 211. [Google Scholar]
- Bleier, T; Dunson, C; Maniscalco, M; Bryant, N; Bambery, R; Freund, FT. Investigation of ULF magnetic pulsations, air conductivity changes, and infra red signatures associated with the 30 October 2007 Alum Rock M5.4 earthquake. Nat. Hazards Earth Syst. Sci 2009, 9, 585–603. [Google Scholar]
- Freund, FT; Takeuchi, A; Lau, BWS; Al-Manaseer, A; Fu, CC; Bryant, NA; Ouzounov, D. Stimulated thermal IR emission from rocks: Assessing a stress indicator. eEarth 2007, 2, 1–10. [Google Scholar]
- Tramutoli, V; Cuomob, V; Filizzolab, C; Pergolab, N; Pietrapertosa, C. Assessing the potential of thermal infrared satellite surveys for monitoring seismically active areas: The case of Kocaeli (Izmit) earthquake, August 17, 1999. Remote Sens. Environ 2005, 96, 409–426. [Google Scholar]
- Ouzounov, D; Freund, FT. Mid-infrared emission prior to strong earthquakes analyzed by remote sensing data. Adv. Space Res 2004, 33, 268–273. [Google Scholar]
- Tronin, AA; Molchanov, OA; Biagi, PF. Thermal anomalies and well observations in Kamchatka. Int. J. Remote Sens 2004, 25, 2649–2655. [Google Scholar]
- Freund, FT; Kulahci, I; Cyr, G; Ling, J; Winnick, M; Tregloan-Reed, J; Freund, MM. Air ionization at rock surface and pre-earthquake signals. J. Atmos. Sol.-Terr. Phys 2009, 71, 1824–1834. [Google Scholar]
- Araiza-Quijano, MR; Hernández-del-Valle, G. Some observations of atmospheric luminosity as a possible earthquake precursor. Geofis. Int 1996, 35, 403–408. [Google Scholar]
- Kolvankar, VG. Report BARC-2001/E/006: Earthquake sequence of 1991 from Valsad Region, Guajrat; BARC-2001/E/006; Bhabha Atomic Research Centre, Seismology Div: Mumbai, India, 2001; p. 68. [Google Scholar]
- Pulinets, S; Boyarchuk, K. Ionospheric Precursors of Earthquakes; Springer: Heidelberg, Germany, 2004; p. 350. [Google Scholar]
- Liu, JY; Chen, CH; Chen, YI; Yen, HY; Hattori, K; Yumoto, K. Seismo-geomagnetic anomalies and M5.0 earthquakes observed in Taiwan during 1988–2001. Phys. Chem. Earth 2006, 31, 215–222. [Google Scholar]
- Nemec, F; Santolík, O; Parrot, M; Berthelier, JJ. Spacecraft observations of electromagnetic perturbations connected with seismic activity. Geophys Res Lett 2008, 35, L05109. [Google Scholar] [CrossRef]
- Rozhnoi, AM; Solovieva, OM; Schwingenschuh, K; Boudjada, M; Biagi, PF; Maggipinto, T; Castellana, L; Ermini, A; Hayakawa, M. Anomalies in VLF radio signals prior the Abruzzo earthquake (M = 6.3) on 6 April 2009. Nat. Hazards Earth Syst. Sci 2009, 9, 1727–1732. [Google Scholar]
- Kasahara, Y; Muto, F; Horie, T; Yoshida, M; Hayakawa, M; Ohta, K; Rozhnoi, A; Solovieva, M; Molchanov, OA. On the statistical correlation between the ionospheric perturbations as detected by subionospheric VLF/LF propagation anomalies and earthquakes. Nat. Hazards Earth Syst. Sci 2008, 8, 653–656. [Google Scholar]
- Hayakawa, M. Electromagnetic phenomena associated with earthquakes: A frontier in terrestrial electromagnetic noise environment. Recent Res. Dev. Geophys 2004, 6, 81–112. [Google Scholar]
- Krueger, AP; Reed, EJ. Biological impact of small air ions. Science 1976, 193, 1209–1213. [Google Scholar]
- Logan, JM. Animal behavior and earthquake prediction. Nature 1977, 265, 404–405. [Google Scholar]
- Kirschvink, JL. Earthquake prediction by animals: Evolution and sensory perception. Bull. Seismol. Soc. Am 2000, 90, 312–323. [Google Scholar]
- Morton, IL. Headaches prior to earthquakes. Int. J. Biometeorol 1988, 32, 147–148. [Google Scholar]
- Rose, MS; Verhoef, MJ; Ramcharan, S. The relationship between chinook conditions and women’s illness-related behaviours. Int. J. Biometeorol 1995, 38, 156–160. [Google Scholar]
- Piorecky, J; Becker, WJ; Rose, MS. Effect of chinook winds on the probability of migraine headache occurrence. Headache 1997, 37, 153–158. [Google Scholar]
- Balk, M; Bose, M; Ertem, G; Rogoff, DA; Rothschild, LJ; Freund, FT. Oxidation of water to hydrogen peroxide at the rock-water interface due to stress-activated electric currents in rocks. Earth Planet. Sci. Lett 2009, 283, 87–92. [Google Scholar]
- İnan, ST; Akgül, C; Seyis, R; Saatçılar, S; Baykut, S; Ergintav, S; Baş, M. Geochemical monitoring in the Marmara region (NW Turkey): A search for precursors of seismic activity. J Geophys Res 2008, 113, B03401. [Google Scholar] [CrossRef]
- Pérez, NM; Hernández-del-Valle, G; Igarashi, G; Trujillo, I; Nakai, S; Sumino, H; Wakita, H. Searching and detecting earthquake geochemical precursors in CO2-rich groundwaters from Galicia, Spain. Geochem. J 2008, 42, 75–83. [Google Scholar]
- Biagi, PF; Piccolo, R; Ermini, A; Fujinawa, Y; Kingsley, SP; Khatkevich, YM; Gordeev, EI. Hydrogeochemical precursors of strong earthquakes in Kamchatka: further analysis. Nat. Hazards Earth Syst. Sci 2001, 1, 9–14. [Google Scholar]
- Balderer, W; Leuenberger, F. Effects of the Cinarcik-Ismit August 17, 1999 earthquake on the composition of thermal and mineral waters as revealed by chemical and isotope investigations. Geophys. Int 2002, 41, 385–391. [Google Scholar]
- Balderer, W; Leuenberger, F. Observation of Fluorescence Spectra of Ground Water in Areas of Tectonic Activity: Could It Act as a Precursor? In Geochemical Precursors for Earthquakes; Sen, P, Das, NK, Eds.; McMillan: Kolkata, India, 2006; pp. 22–30. [Google Scholar]
- Michetti, AM. Active tectonics and seismic hazard in the Central Western Southern Alps: A review. Geophys. Rese. Abstr 2005, 7, 10830. [Google Scholar]
- Saran, M; Summer, KH. Assaying for hydroxyl radicals: Hydroxylated terephthalate is a superior fluorescence marker than hydroxylated benzoate. Free Radic. Res 1999, 31, 429–436. [Google Scholar]
- Singh, RP; Kumar, JS; Zlotnicki, J; Kafatos, M. Satellite detection of carbon monoxide emission prior to the gujarat earthquake of 26 January 2001. Appl. Geochem 2010, 25, 585–580. [Google Scholar]
- Milne, J; Lee, AW. Earthquakes and Other Earth Movements, 7th ed; Kegan Paul, Trench, Trubner & Co: London, UK, 1939; p. 242. [Google Scholar]
- Turcotte, DL. Earthquake prediction. Annu. Rev. Earth Planet. Sci 1991, 19, 263–281. [Google Scholar]
- Ikeya, M; Furuta, H; Kajiwara, N; Anzai, H. Ground electric field effects on rats and sparrows: Seismic anomalous animal behaviors (SAABs). Jpn. J. Appl. Phys 1996, 35, 4587–4594. [Google Scholar]
- Wang, K; Chen, QF; Sun, S; Wang, A. Predicting the 1975 Haicheng Earthquake. Bull. Seismol. Soc. Am 2006, 96, 757–795. [Google Scholar]
- Zhu, F; Wu, G. Haicheng Earthquake; Seismological Press: Beijing, China, 1982; p. 220. (in Chinese) [Google Scholar]
- Grant, RA; Halliday, T. Predicting the unpredictable: Evidence of pre-seismic anticipatory behaviour in the common toad. J. Zool 2010, 281, 263–271. [Google Scholar]
- Gittins, SP; Parker, AG; Slater, FM. Population characteristics of the common toad (Bufo bufo) visiting a breeding site in mid-Wales. J. Anim. Ecol 1980, 49, 161–173. [Google Scholar]
- Fidani, C. The earthquake lights (EQL) of the 6 April 2009 Aquila earthquake in Central Italy. Nat. Hazards Earth Syst. Sci 2010, 10, 967–978. [Google Scholar]
- Serpieri, A. Nuove osservazioni sul terremoto avvenuto in Italia il 12 marzo 1873 e riflessioni sul presentimento degli animali per i terremoti. Rendiconti del R. Istituto lombardo 1873, 6, 25–33. [Google Scholar]
- Reading, CJ; Clarke, RT. Male breeding behaviour and mate acquisition in the common toad, Bufo bufo. J. Zool 1983, 201, 237–246. [Google Scholar]
- Liu, JY; Chuo, YJ; Shan, SJ; Tsai, YB; Chen, YI; Pulinets, SA; Yu, SB. Pre-earthquake ionospheric anomalies. Ann. Geophys 2004, 22, 1585–1593. [Google Scholar]
- Chen, YI; Liu, JY; Tsai, YB; Chen, CS. Statistical test for pre-earthquake ionospheric anomaly. Terr. Atmo. Ocean. Sci 2004, 15, 385–396. [Google Scholar]
- Hayakawa, M; Kasahara, Y; Nakamura, T; Muto, F; Horie, T; MAekawa, S; Hobara, Y; Rozhnoi, AA; Solivieva, M; Molchanov, OA. A statistical study on the correlation between lower ionospheric perturbations as seen by subionospheric VLF/LF propagation and earthquakes. J. Geophys. Res 2010, 115, A09305. [Google Scholar]
- Hayakawa, M; Kasahara, Y; Hobara, TNY; Rozhnoi, A; Solovieva, M; Molchanov, OA. On the correlation between ionospheric perturbations as detected by subionospheric VLF/LF signals and earthquakes as characterized by seismic intensity. J. Atmos. Sol.-Terr. Phys 2010, 72, 982–987. [Google Scholar]
- Tsolis, GS; Xenos, TD. A qualitative study of the seismo-ionospheric precursors prior to the 6 April 2009 earthquake in L’Aquila, Italy. Nat. Hazards Earth Syst. Sci 2010, 10, 133–137. [Google Scholar]
- Eftaxias, K; Balasis, G; Contoyiannis, Y; Papadimitriou, C; Kalimeri, M; Athanasopoulou, L; Nikolopoulos, S; Kopanas, J; Antonopoulos, G; Nomicos, C. Unfolding the procedure of characterizing recorded ultra low frequency, kHZ and MHz electromagetic anomalies prior to the L’Aquila earthquake as pre-seismic ones—Part II. Nat. Hazards Earth Syst. Sci 2010, 10, 275–294. [Google Scholar]
- Eftaxias, K; Athanasopoulou, L; Balasis, G; Kalimeri, M; Nikolopoulos, S; Contoyiannis, Y; Kopanas, J; Antonopoulos, G; Nomicos, C. Unfolding the procedure of characterizing recorded ultra low frequency, kHZ and MHz electromagetic anomalies prior to the L’Aquila earthquake as pre-seismic ones—Part I. Nat. Hazards Earth Syst. Sci 2009, 9, 1953–1971. [Google Scholar]
- Fidani, C. Electromagnetic Signals Recorded by Perugia and S. Procolo (Fermo) Stations before the Aquila Earthquakes; GNGTS-Gruppo Nazionale di Geofisica della Terra Solida: Trieste, Italy, 2009; pp. 370–373. [Google Scholar]
- Derr, JS; St-Laurent, F; Freund, FT; Thériault, R. Earthquake Lights. In Encyclopedia of Solid Earth Geophysics; Gupta, H, Ed.; Springer: Dordrecht, The Netherlands, 2010. [Google Scholar]
- Derr, JS. Earthquake lights: A review of observations and present theories. Bull. Seismol. Soc. Am 1973, 63, 2177–2187. [Google Scholar]
- Buskirk, RE; Frohlich, CL; Latham, GV. Unusual animal behavior before earthquakes: A review of possible sensory mechanisms. Rev. Geophys 1981, 19, 247–270. [Google Scholar]
- Ikeya, M. Earthquakes and Animals: From Folk Legends to Science; World Scientific: London, UK, 2004; p. 295. [Google Scholar]
- Ikeya, M; Yamanaka, C; Mattsuda, T; Sasaoka, H; Ochiai, H; Huang, Q; Ohtani, N; Komuranani, T; Ohta, M; Ohno, Y; Nakagawa, T. Electromagnetic pulses generated by compression of granitic rocks and animal behavior. Episodes 2000, 23, 262–265. [Google Scholar]
- Witze, A. The sleeping dragon. Nature 2009, 459, 153–157. [Google Scholar]
- World Stress Map Project. Available online: http://dc-app3-14.gfz-potsdam.de/ (accessed on 1 June 2011).
- King, BV; Freund, F. Surface charges and subsurface space charge distribution in magnesium oxide containing dissolved traces of water. Phys. Rev 1984, 29B, 5814–5824. [Google Scholar]
- Hayakawa, M; Hattori, K; Ohta, K. Monitoring of ULF (ultra-low-frequency) geomagnetic variations associated with earthquakes. Sensors 2007, 7, 1108–1122. [Google Scholar]
- Molchanov, OA; Schekotovm, A; Federov, E; Belyaev, G; Gordeev, EI. Preseismic ULF electromagnetic effect from observation at Kamchatka. Nat. Hazards Earth Syst. Sci 2003, 3, 203–209. [Google Scholar]
- Hayakawa, M; Ito, T; Hattori, K; Yumoto, K. ULF electromagnetic precursors for an earthquake at Biak, Indonesia on February 17, 1996. Geophys. Res. Lett 2000, 27, 1531–1534. [Google Scholar]
- Rycroft, MJ; Harrison, RG; Nicoll, KA; Mareev, EA. An overview of earth’s global electric circuit and atmospheric conductivity. Space Sci. Rev 2008, 137, 83–105. [Google Scholar]
- Zhao, B; Wang, M; Yu, T; Guirong, X; Wan, W; Liu, L. Ionospheric total electron content variations prior to the 2008 Wenchuan Earthquake. Int. J. Remote Sens 2010, 31, 3545–3557. [Google Scholar]
- Liu, JY; Chen, CH; Chen, YI; Yang, WH; Oyama, KI; Kuo, KW. A statistical study of ionospheric earthquake precursors monitored by using equatorial ionization anomaly of GPS TEC in Taiwan during 2001–2007. J. Asian Earth Sci 2010, 39, 76–80. [Google Scholar]
- Liu, JY; Chuo, Y; Shan, S; Tsai, Y; Chen, Y; Pulinets, S; Yu, SB. Pre-earthquake ionospheric anomalies registered by continuous GPS TEC measurements. Ann. Geophys 2004, 22, 1585–1593. [Google Scholar]
- Livingstone, DR. Oxidative stress in aquatic organisms in relation to pollution and aquaculture. Revue Méd. Vét 2003, 154, 427–430. [Google Scholar]
- Lushchack, VI. Environmentally induced oxidative stress in aquatic animals. Aquat. Toxicol 2011, 101, 13–30. [Google Scholar]
- Fridovich, I. Superoxide radical and superoxide dismutases. Annu. Rev. Biochem 1995, 64, 97–112. [Google Scholar]
- Davies, KJ; Delsignore, ME. Protein damage and degradation by oxygen radicals. III. Modification of secondary and tertiary structure. J. Biol. Chem 1987, 262, 9908–9913. [Google Scholar]
- Imlay, JA; Linn, S. DNA damage and oxygen radical toxicity. Science 1988, 240, 1302–1309. [Google Scholar]
- Michaelidis, B; Ouzounis, C; Paleras, A; Pörtner, HO. Effects of long-term moderate hypercapnia on acid-base balance and growth rate in marine mussels Mytilus galloprovincialis. Mar. Ecol. Prog. Ser 2005, 293, 109–118. [Google Scholar]
- Reid, SD; Dockray, JJ; Linton, TK; McDonald, DG; Wood, CM. Effects of chronic environmental acidification and a summer global warming scenario: Protein synthesis in juvenile rainbow trout (Oncorhynchus mykiss). Can. J. Fish. Aquat. Sci 1997, 54, 2014–2024. [Google Scholar]
- Amitai, Y; Zlotogorski, Z; Golan-Katzav, V; Wexler, A; Gross, D. Neuropsychological impairment from acute low-level exposure to carbon monoxide. Arch. Neurol 1998, 55, 845–848. [Google Scholar]
- Feder, ME; Burggren, WW. Environmental Physiology of the Amphibians; University of Chicago Press: Chicago, IL, USA, 1992. [Google Scholar]
- Vitt, LJ; Caldwell, JP; Wilbur, HM; Smith, DC. Amphibians as harbingers of decay. BioScience 1990, 40, 418. [Google Scholar]
- Valko, M; Morris, H; Cronin, MT. Metal, toxicity and oxidative stress. Curr. Med. Chem 2005, 12, 1161–1208. [Google Scholar]
- Mahapatra, PK; Mohanty-Hejmadi, P; Chainy, GB. Specific limb abnormalities induced by hydrogen peroxide in tadpoles of Indian jumping frog, Polypedates maculatus. Indian J. Exp. Biol 2001, 39, 1103–1106. [Google Scholar]
- Sadinski, WJ; Dunson, WA. A multilevel study of effects of low pH on amphibians of temporary ponds. J. Herpetol 1992, 26, 413–422. [Google Scholar]
- Alvarado, RH; Cox, TC. Action of polyvalent cations on sodium transport across skin of larval and adult Rana catesbeiana. J. Exp. Zool 1985, 236, 127–136. [Google Scholar]
- Dobrovolsky, IP; Zubkov, SI; Miachkin, VI. Estimation of the size of earthquake preparation zones. Pure Appl. Geophys 1979, 117, 1025–1044. [Google Scholar]
© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Grant, R.A.; Halliday, T.; Balderer, W.P.; Leuenberger, F.; Newcomer, M.; Cyr, G.; Freund, F.T. Ground Water Chemistry Changes before Major Earthquakes and Possible Effects on Animals. Int. J. Environ. Res. Public Health 2011, 8, 1936-1956. https://doi.org/10.3390/ijerph8061936
Grant RA, Halliday T, Balderer WP, Leuenberger F, Newcomer M, Cyr G, Freund FT. Ground Water Chemistry Changes before Major Earthquakes and Possible Effects on Animals. International Journal of Environmental Research and Public Health. 2011; 8(6):1936-1956. https://doi.org/10.3390/ijerph8061936
Chicago/Turabian StyleGrant, Rachel A., Tim Halliday, Werner P. Balderer, Fanny Leuenberger, Michelle Newcomer, Gary Cyr, and Friedemann T. Freund. 2011. "Ground Water Chemistry Changes before Major Earthquakes and Possible Effects on Animals" International Journal of Environmental Research and Public Health 8, no. 6: 1936-1956. https://doi.org/10.3390/ijerph8061936