Environmental Risk in American Indian Children, Including Cardiovascular and Hematologic Consequences of Cadmium Exposure: Possible Means of Mitigation
Abstract
1. Introduction
1.1. Toxic Metal Exposure as a Social Driver of Health
1.2. Introduction to American Indian Health Inequity
1.3. Cadmium Sources and Exposures
1.4. Cadmium Exposure in American Indian/Alaska Native People
2. Methods
3. Cardiovascular and Hematologic Consequences of Cadmium Exposure in Childhood
3.1. Association of Cadmium with Congenital Heart Disease and Cardiovascular Disease
3.2. Cadmium and Pediatric Hematologic Pathology
3.3. Other Health Consequences of Cadmium Exposure in Childhood
3.4. Cardiovascular and Hematologic Consequences of Cadmium Exposure Across the Lifespan
4. American Indian/Alaska Native Cadmium Exposure and Consequences
4.1. Cardiovascular Health and Cadmium Exposure in AI/AN People
4.2. Hematologic Health and Cadmium Exposure in AI/AN People
5. Strategies to Mitigate Consequences of Cadmium Exposure in AI/AN Children
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Rojas-Rueda, D.; Morales-Zamora, E.; Alsufyani, W.A.; Herbst, C.H.; AlBalawi, S.M.; Alsukait, R.; Alomran, M. Environmental Risk Factors and Health: An Umbrella Review of Meta-Analyses. Int. J. Environ. Res. Public Health 2021, 18, 704. [Google Scholar] [CrossRef]
- Lundin, K.K.; Qadeer, Y.K.; Wang, Z.; Virani, S.; Leischik, R.; Lavie, C.J.; Strauss, M.; Krittanawong, C. Contaminant Metals and Cardiovascular Health. J. Cardiovasc. Dev. Dis. 2023, 10, 450. [Google Scholar] [CrossRef] [PubMed]
- Lamas, G.A.; Bhatnagar, A.; Jones, M.R.; Mann, K.K.; Nasir, K.; Tellez-Plaza, M.; Ujueta, F.; Navas-Acien, A.; American Heart Association Council on Epidemiology and Prevention; Council on Cardiovascular and Stroke Nursing; et al. Contaminant Metals as Cardiovascular Risk Factors: A Scientific Statement From the American Heart Association. J. Am. Heart Assoc. 2023, 12, e029852. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Morata, I.; Sobel, M.; Tellez-Plaza, M.; Navas-Acien, A.; Howe, C.G.; Sanchez, T.R. A State-of-the-Science Review on Metal Biomarkers. Curr. Environ. Health Rep. 2023, 10, 215–249. [Google Scholar] [CrossRef] [PubMed]
- Morello-Frosch, R.; Zuk, M.; Jerrett, M.; Shamasunder, B.; Kyle, A.D. Understanding the cumulative impacts of inequalities in environmental health: Implications for policy. Health Aff. Proj. Hope 2011, 30, 879–887. [Google Scholar] [CrossRef]
- Sequist, T.D. Urgent action needed on health inequities among American Indians and Alaska Natives. Lancet 2017, 389, 1378–1379. [Google Scholar] [CrossRef]
- Empey, A.; Garcia, A.; Bell, S. American Indian/Alaska Native Child Health and Poverty. Acad. Pediatr. 2021, 21, S134–S139. [Google Scholar] [CrossRef]
- Burns, J.; Angelino, A.C.; Lewis, K.; Gotcsik, M.E.; Bell, R.A.; Bell, J.; Empey, A. Land Rights and Health Outcomes in American Indian/Alaska Native Children. Pediatrics 2021, 148, e2020041350. [Google Scholar] [CrossRef]
- Kim, K.; Melough, M.M.; Vance, T.M.; Noh, H.; Koo, S.I.; Chun, O.K. Dietary Cadmium Intake and Sources in the US. Nutrients 2018, 11, 2. [Google Scholar] [CrossRef]
- TatahMentan, M.; Nyachoti, S.; Godebo, T.R. Elemental composition of toxic and essential elements in rice-based baby foods from the United States and other countries: A probabilistic risk analysis. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2024, 188, 114677. [Google Scholar] [CrossRef]
- Padoan, E.; Hernandez Kath, A.; Vahl, L.C.; Ajmone-Marsan, F. Potential Release of Zinc and Cadmium From Mine-Affected Soils Under Flooding, a Mesocosm Study. Arch. Environ. Contam. Toxicol. 2020, 79, 421–434. [Google Scholar] [CrossRef]
- Kastury, F.; Besedin, J.; Betts, A.R.; Asamoah, R.; Herde, C.; Netherway, P.; Tully, J.; Scheckel, K.G.; Juhasz, A.L. Arsenic, cadmium, lead, antimony bioaccessibility and relative bioavailability in legacy gold mining waste. J. Hazard. Mater. 2024, 469, 133948. [Google Scholar] [CrossRef]
- Yabe, J.; Nakayama, S.M.M.; Ikenaka, Y.; Yohannes, Y.B.; Bortey-Sam, N.; Kabalo, A.N.; Ntapisha, J.; Mizukawa, H.; Umemura, T.; Ishizuka, M. Lead and cadmium excretion in feces and urine of children from polluted townships near a lead-zinc mine in Kabwe, Zambia. Chemosphere 2018, 202, 48–55. [Google Scholar] [CrossRef]
- Du, B.; Zhou, J.; Lu, B.; Zhang, C.; Li, D.; Zhou, J.; Jiao, S.; Zhao, K.; Zhang, H. Environmental and human health risks from cadmium exposure near an active lead-zinc mine and a copper smelter, China. Sci. Total Environ. 2020, 720, 137585. [Google Scholar] [CrossRef]
- Spungen, J.H. Children’s exposures to lead and cadmium: FDA total diet study 2014-16. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2019, 36, 893–903. [Google Scholar] [CrossRef] [PubMed]
- EFSA. Panel on Contaminants in the Food Chain (CONTAM). Statement on tolerable weekly intake for cadmium. EFSA J. 2011, 9, 1975. [Google Scholar] [CrossRef]
- Rafati Rahimzadeh, M.; Rafati Rahimzadeh, M.; Kazemi, S.; Moghadamnia, A.A. Cadmium toxicity and treatment: An update. Casp. J. Intern. Med. 2017, 8, 135–145. [Google Scholar] [CrossRef]
- Oliver-Williams, C.; Howard, A.G.; Navas-Acien, A.; Howard, B.V.; Tellez-Plaza, M.; Franceschini, N. Cadmium body burden, hypertension, and changes in blood pressure over time: Results from a prospective cohort study in American Indians. J. Am. Soc. Hypertens. JASH 2018, 12, 426–437.e9. [Google Scholar] [CrossRef]
- Suchy-Dicey, A.; Noonan, C.; Burduli, E.; Mateen, F.J.; Longstreth, W.T., Jr.; Buchwald, D.; Navas-Acien, A. Urinary Arsenic and Cadmium Associations with Findings from Cranial MRI in American Indians: Data from the Strong Heart Study. Environ. Health Perspect. 2020, 128, 127009. [Google Scholar] [CrossRef]
- NCHS. Percentage of Current Cigarette Smoking for Adults Aged 18 and over, United States. 2024. Available online: https://www.cdc.gov/tobacco/php/data-statistics/adult-data-cigarettes/index.html (accessed on 18 August 2025).
- Olmedo, P.; Grau-Perez, M.; Fretts, A.; Tellez-Plaza, M.; Gil, F.; Yeh, F.; Umans, J.G.; Francesconi, K.A.; Goessler, W.; Franceschini, N.; et al. Dietary determinants of cadmium exposure in the Strong Heart Family Study. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2017, 100, 239–246. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Jin, X.; Tian, X.; Liu, Z.; Hu, H.; Li, X.; Deng, Y.; Li, N.; Zhu, J. Maternal exposure to arsenic and cadmium and the risk of congenital heart defects in offspring. Reprod. Toxicol. 2016, 59, 109–116. [Google Scholar] [CrossRef]
- Li, S.; Wang, Q.; Luo, W.; Jia, S.; Liu, D.; Ma, W.; Gu, H.; Wei, X.; He, Y.; Cao, S.; et al. Relationship between maternal heavy metal exposure and congenital heart defects: A systematic review and meta-analysis. Environ. Sci. Pollut. Res. Int. 2022, 29, 55348–55366. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Mao, B.; Wu, Z.; Jiao, X.; Wang, Y.; Lu, Y.; Ma, X.; Liu, X.; Xu, X.; Cui, H.; et al. Relationship between maternal exposure to heavy metal titanium and offspring congenital heart defects in Lanzhou, China: A nested case-control study. Front. Public Health 2022, 10, 946439. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Yang, S.; Yang, J.; Deng, Y.; Li, S.; Li, N.; Chen, X.; Yu, P.; Liu, Z.; Zhu, J. Association between metal cobalt exposure and the risk of congenital heart defect occurrence in offspring: A multi-hospital case-control study. Environ. Health Prev. Med. 2020, 25, 38. [Google Scholar] [CrossRef] [PubMed]
- Schoeters, G.; Den Hond, E.; Zuurbier, M.; Naginiene, R.; Van Den Hazel, P.; Stilianakis, N.; Ronchetti, R.; Koppe, J.G. Cadmium and children: Exposure and health effects. Acta Paediatr. 2006, 95 (Suppl. 1992), 50–54. [Google Scholar] [CrossRef]
- Boyd, R.; McMullen, H.; Beqaj, H.; Kalfa, D. Environmental Exposures and Congenital Heart Disease. Pediatrics 2022, 149, e2021052151. [Google Scholar] [CrossRef]
- Nicoll, R. Environmental Contaminants and Congenital Heart Defects: A Re-Evaluation of the Evidence. Int. J. Environ. Res. Public Health 2018, 15, 2096. [Google Scholar] [CrossRef]
- Piasek, M.; Mikolić, A.; Sekovanić, A.; Sulimanec Grgec, A.; Jurasović, J. Cadmium in placenta- a valuable biomarker of exposure during pregnancy in biomedical research. J. Toxicol. Environ. Health Part A 2014, 77, 1071–1074. [Google Scholar] [CrossRef]
- Hudson, K.M.; Belcher, S.M.; Cowley, M. Maternal cadmium exposure in the mouse leads to increased heart weight at birth and programs susceptibility to hypertension in adulthood. Sci. Rep. 2019, 9, 13553. [Google Scholar] [CrossRef]
- Suter, M.K.; Enquobahrie, D.; Karr, C.; Sathyanarayana, S.; Flynn, J.T.; Lamadrid-Figueroa, H.; Hernandez-Avilla, M.; Peterson, K.; Hu, H.; Tellez-Rojo, M.M. Abstract P206: Prenatal Cadmium Burden, Birth Weight, And Offspring Adolescent Blood Pressure. Hypertension 2020, 76 (Suppl. 1), AP206. [Google Scholar] [CrossRef]
- Yao, B.; Lu, X.; Xu, L.; Wang, Y.; Qu, H.; Zhou, H. Relationship between low-level lead, cadmium and mercury exposures and blood pressure in children and adolescents aged 8–17 years: An exposure-response analysis of NHANES 2007-2016. Sci. Total Environ. 2020, 726, 138446. [Google Scholar] [CrossRef] [PubMed]
- Zheng, K.; Zeng, Z.; Tian, Q.; Huang, J.; Zhong, Q.; Huo, X. Epidemiological evidence for the effect of environmental heavy metal exposure on the immune system in children. Sci. Total Environ. 2023, 868, 161691. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Li, Q.; Yang, Z.; Shao, Y.; Xue, P.; Qu, W.; Jia, X.; Cheng, L.; He, M.; He, R.; et al. Cadmium Activates Noncanonical Wnt Signaling to Impair Hematopoietic Stem Cell Function in Mice. Toxicol. Sci. Off. J. Soc. Toxicol. 2018, 165, 254–266. [Google Scholar] [CrossRef] [PubMed]
- Horiguchi, H.; Oguma, E.; Kayama, F. Cadmium induces anemia through interdependent progress of hemolysis, body iron accumulation, and insufficient erythropoietin production in rats. Toxicol. Sci. Off. J. Soc. Toxicol. 2011, 122, 198–210. [Google Scholar] [CrossRef]
- Suljevic, D.; Corbic, A.; Islamagic, E.; Focak, M.; Filipic, F.; Alijagic, A. Impairments of bone marrow hematopoietic cells followed by the sever erythrocyte damage and necrotic liver as the outcome of chronic in vivo exposure to cadmium: Novel insights from quails. Environ. Toxicol. Pharmacol. 2019, 72, 103250. [Google Scholar] [CrossRef]
- Chwalba, A.; Orłowska, J.; Słota, M.; Jeziorska, M.; Filipecka, K.; Bellanti, F.; Dobrakowski, M.; Kasperczyk, A.; Zalejska-Fiolka, J.; Kasperczyk, S. Effect of Cadmium on Oxidative Stress Indices and Vitamin D Concentrations in Children. J. Clin. Med. 2023, 12, 1572. [Google Scholar] [CrossRef]
- Asenjo, S.; Nuñez, O.; Segú-Tell, J.; Pardo Romaguera, E.; Canete Nieto, A.; Martín-Méndez, I.; Bel-Lan, A.; García-Pérez, J.; Cárceles-Álvarez, A.; Ortega-García, J.A.; et al. Cadmium (Cd) and Lead (Pb) topsoil levels and incidence of childhood leukemias. Environ. Geochem. Health 2022, 44, 2341–2354. [Google Scholar] [CrossRef]
- Charkiewicz, A.E.; Omeljaniuk, W.J.; Nowak, K.; Garley, M.; Nikliński, J. Cadmium Toxicity and Health Effects-A Brief Summary. Molecules 2023, 28, 6620. [Google Scholar] [CrossRef]
- Järup, L.; Akesson, A. Current status of cadmium as an environmental health problem. Toxicol. Appl. Pharmacol. 2009, 238, 201–208. [Google Scholar] [CrossRef]
- Jean, J.; Sirot, V.; Hulin, M.; Le Calvez, E.; Zinck, J.; Noël, L.; Vasseur, P.; Nesslany, F.; Gorecki, S.; Guérin, T.; et al. Dietary exposure to cadmium and health risk assessment in children—Results of the French infant total diet study. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2018, 115, 358–364. [Google Scholar] [CrossRef]
- Kippler, M.; Tofail, F.; Hamadani, J.D.; Gardner, R.M.; Grantham-McGregor, S.M.; Bottai, M.; Vahter, M. Early-Life Cadmium Exposure and Child Development in 5-Year-Old Girls and Boys: A Cohort Study in Rural Bangladesh. Environ. Health Perspect. 2012, 120, 1462–1468. [Google Scholar] [CrossRef]
- Malin Igra, A.; Vahter, M.; Raqib, R.; Kippler, M. Early-Life Cadmium Exposure and Bone-Related Biomarkers: A Longitudinal Study in Children. Environ. Health Perspect. 2019, 127, 37003. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-López, E.; Tamayo-Ortiz, M.; Ariza, A.C.; Ortiz-Panozo, E.; Deierlein, A.L.; Pantic, I.; Tolentino, M.C.; Estrada-Gutiérrez, G.; Parra-Hernández, S.; Espejel-Núñez, A.; et al. Early-Life Dietary Cadmium Exposure and Kidney Function in 9-Year-Old Children from the PROGRESS Cohort. Toxics 2020, 8, 83. [Google Scholar] [CrossRef] [PubMed]
- Carroll, R.E. The relationship of cadmium in the air to cardiovascular disease death rates. JAMA 1966, 198, 267–269. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.C.; Hao, W.M.; Chu, P.H. Cadmium and cardiovascular disease: An overview of pathophysiology, epidemiology, therapy, and predictive value. Rev. Port. Cardiol. 2021, 40, 611–617. [Google Scholar] [CrossRef]
- Nawrot, T.S.; Van Hecke, E.; Thijs, L.; Richart, T.; Kuznetsova, T.; Jin, Y.; Vangronsveld, J.; Roels, H.A.; Staessen, J.A. Cadmium-related mortality and long-term secular trends in the cadmium body burden of an environmentally exposed population. Environ. Health Perspect. 2008, 116, 1620–1628. [Google Scholar] [CrossRef]
- Obeng-Gyasi, E. Chronic cadmium exposure and cardiovascular disease in adults. J. Environ. Sci. Health Part A Tox Hazard. Subst. Environ. Eng. 2020, 55, 726–729. [Google Scholar] [CrossRef]
- Tellez-Plaza, M.; Navas-Acien, A.; Menke, A.; Crainiceanu, C.M.; Pastor-Barriuso, R.; Guallar, E. Cadmium exposure and all-cause and cardiovascular mortality in the U.S. general population. Environ. Health Perspect. 2012, 120, 1017–1022. [Google Scholar] [CrossRef]
- Yang, W.Y.; Zhang, Z.Y.; Thijs, L.; Cauwenberghs, N.; Wei, F.F.; Jacobs, L.; Luttun, A.; Verhamme, P.; Kuznetsova, T.; Nawrot, T.S.; et al. Left Ventricular Structure and Function in Relation to Environmental Exposure to Lead and Cadmium. J. Am. Heart Assoc. 2017, 6, e004692. [Google Scholar] [CrossRef]
- Tellez-Plaza, M.; Jones, M.R.; Dominguez-Lucas, A.; Guallar, E.; Navas-Acien, A. Cadmium exposure and clinical cardiovascular disease: A systematic review. Curr. Atheroscler. Rep. 2013, 15, 356. [Google Scholar] [CrossRef] [PubMed]
- Horiguchi, H.; Sato, M.; Konno, N.; Fukushima, M. Long-term cadmium exposure induces anemia in rats through hypoinduction of erythropoietin in the kidneys. Arch. Toxicol. 1996, 71, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, S.; Saxena, R.K. Preferential Elimination of Older Erythrocytes in Circulation and Depressed Bone Marrow Erythropoietic Activity Contribute to Cadmium Induced Anemia in Mice. PLoS ONE 2015, 10, e0132697. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yu, X.; Sun, S.; Li, Q.; Xie, Y.; Li, Q.; Zhao, Y.; Pei, J.; Zhang, W.; Xue, P.; et al. Cadmium modulates hematopoietic stem and progenitor cells and skews toward myelopoiesis in mice. Toxicol. Appl. Pharmacol. 2016, 313, 24–34. [Google Scholar] [CrossRef]
- Franceschini, N.; Fry, R.C.; Balakrishnan, P.; Navas-Acien, A.; Oliver-Williams, C.; Howard, A.G.; Cole, S.A.; Haack, K.; Lange, E.M.; Howard, B.V.; et al. Cadmium body burden and increased blood pressure in middle-aged American Indians: The Strong Heart Study. J. Hum. Hypertens. 2017, 31, 225–230. [Google Scholar] [CrossRef]
- Tellez-Plaza, M.; Guallar, E.; Howard, B.V.; Umans, J.G.; Francesconi, K.A.; Goessler, W.; Silbergeld, E.K.; Devereux, R.B.; Navas-Acien, A. Cadmium exposure and incident cardiovascular disease. Epidemiol. Camb. Mass 2013, 24, 421–429. [Google Scholar] [CrossRef]
- Tellez-Plaza, M.; Guallar, E.; Fabsitz, R.R.; Howard, B.V.; Umans, J.G.; Francesconi, K.A.; Goessler, W.; Devereux, R.B.; Navas-Acien, A. Cadmium Exposure and Incident Peripheral Arterial Disease. Circ. Cardiovasc. Qual. Outcomes 2013, 6, 626–633. [Google Scholar] [CrossRef]
- Li, Z.; Lewin, M.; Ruiz, P.; Nigra, A.E.; Henderson, N.B.; Jarrett, J.M.; Ward, C.; Zhu, J.; Umans, J.G.; O’Leary, M.; et al. Blood cadmium, lead, manganese, mercury, and selenium levels in American Indian populations: The Strong Heart Study. Environ Res. 2022, 215 Pt 3, 114101. [Google Scholar] [CrossRef]
- Genchi, G.; Sinicropi, M.S.; Lauria, G.; Carocci, A.; Catalano, A. The Effects of Cadmium Toxicity. Int. J. Environ. Res. Public Health 2020, 17, 3782. [Google Scholar] [CrossRef]
- García-Esquinas, E.; Pollan, M.; Tellez-Plaza, M.; Francesconi, K.A.; Goessler, W.; Guallar, E.; Umans, J.G.; Yeh, J.; Best, L.G.; Navas-Acien, A. Cadmium exposure and cancer mortality in a prospective cohort: The strong heart study. Environ. Health Perspect. 2014, 122, 363–370. [Google Scholar] [CrossRef]
- Jiang, E.X.; Domingo-Relloso, A.; Abuawad, A.; Haack, K.; Tellez-Plaza, M.; Fallin, M.D.; Umans, J.G.; Best, L.G.; Zhang, Y.; Kupsco, A. Arsenic Exposure and Epigenetic Aging: The Association with Cardiovascular Disease and All-Cause Mortality in the Strong Heart Study. Environ. Health Perspect. 2023, 131, 127016. [Google Scholar] [CrossRef]
- Zachariah, J.P.; Jone, P.N.; Agbaje, A.O.; Ryan, H.H.; Trasande, L.; Perng, W.; Farzan, S.F. Environmental Exposures and Pediatric Cardiology: A Scientific Statement From the American Heart Association. Circulation 2024, 149, e1165–e1175. [Google Scholar] [CrossRef]
- Breathett, K.; Sims, M.; Gross, M.; Jackson, E.A.; Jones, E.J.; Navas-Acien, A.; Taylor, H.; Thomas, K.L.; Howard, B.V.; FAHA On behalf of the American Heart Association Council on Epidemiology and Prevention; et al. Cardiovascular Health in American Indians and Alaska Natives: A Scientific Statement From the American Heart Association. Circulation 2020, 141, e948–e959. [Google Scholar] [CrossRef]
- Lauder, J.; Chafe, O.; Godfrey, J. Cadmium Uptake and Growth of Three Native California Species Grown in Abandoned Mine Waste Rock. Ecol. Restor. 2017, 35, 210–213. [Google Scholar] [CrossRef]
- Phang, L.-Y.; Mingyuan, L.; Mohammadi, M.; Tee, C.-S.; Yuswan, M.H.; Cheng, W.-H.; Lai, K.-S. Phytoremediation as a viable ecological and socioeconomic management strategy. Environ. Sci. Pollut. Res. 2024, 31, 50126–50141. [Google Scholar] [CrossRef]
- EPA. Archived: Consumer Factsheet on Cadmium. 2025. Available online: https://archive.epa.gov/water/archive/web/pdf/archived-consumer-factsheet-on-cadmium.pdf (accessed on 18 June 2025).
- OSHA. 1910.1027-Cadmium. 2025. Available online: https://www.osha.gov/laws-regs/regulations/standardnumber/1910/1910.1027 (accessed on 18 June 2025).
- FDA. Cadmium in Food and Foodwares. 2025. Available online: https://www.fda.gov/food/environmental-contaminants-food/cadmium-food-and-foodwares (accessed on 18 June 2025).
- Friedman, L. Trump Administration Aims to Eliminate E.P.A.’s Scientific Research Arm—The New York Times. The New York Times. 17 March 2025. Available online: https://www.nytimes.com/2025/03/17/climate/trump-eliminates-epa-science.html (accessed on 18 June 2025).
- Daly, M. EPA Offers Industrial Polluters a Way to Avoid Rules on Toxic Chemicals|AP News; The Associated Press: New York, NY, USA, 2025; Available online: https://apnews.com/article/trump-epa-clean-air-exemption-mercury-13f009f79fdc84443e428618d2a01bba (accessed on 20 June 2025).
Research Title | Aim/Objective | Methodology | Study Model | Clinical Findings |
---|---|---|---|---|
Cadmium exposure and incident cardiovascular disease [57] | Evaluate the association between urine cadmium levels and cardiovascular disease incidence and mortality in AI cohorts. | Prospective cohort study of 3348 AI adults aged 45–74 years who participated in the Strong Heart Study in 1989–1991. Urine cadmium levels were measured, and the cohort was followed until 31 December 2008; CVD was assessed at follow-up. | Prospective cohort study | The overall median of urine cadmium concentrations at baseline was 0.92, and the geometric mean was 0.94 μg/g creatinine. Relative risk overall for CVD incidence, CHD incidence, stroke incidence, and heart failure incidence was 1.24 (1.11–1.38), 1.22 (1.08–1.38), 1.75 (1.17–2.59), and 1.39 (1.01–1.94), respectively. |
Cadmium exposure and incident peripheral arterial disease [58] | Evaluate the association of urine cadmium concentrations with incident peripheral arterial disease in the AI cohort. | Prospective cohort study with 2864 adults AI aged 45–74 years who participated in the Strong Heart Study from 1989 to 1991. Urine cadmium levels were measured, and PAD was defined at follow-up. | Prospective cohort study | The overall geometric mean of urine cadmium concentrations was 0.94 μg/g creatinine. Four hundred seventy cases of incident PAD were identified. Hazard ratio (comparing 80th percentile to 20th percentile of urinary cadmium): 1.41 (1.05–1.81) |
Cadmium body burden and increased blood pressure in middle-aged American Indians: the Strong Heart Study [56] | Evaluate the association between urinary cadmium concentrations and blood pressure in AI adults. | Cross-sectional analysis of urinary cadmium concentrations and blood pressure | Prospective cohort study | The overall geometric mean of urine cadmium concentrations was 0.94 μg/g creatinine. There is a “correlation between urinary Cd and smoking pack-year among ever-smokers” (r2 = 0.16, p < 0.00010). Cross-sectional analysis revealed that urinary in Cd was significantly associated with higher systolic blood pressure. Per 1 unit increase in Cd, there was +1.64 mmHg systolic BP (p = 0.002) overall. |
Cadmium body burden, hypertension, and changes in blood pressure over time: results from a prospective cohort study in American Indians [18] | Evaluate the association between urinary cadmium levels and their effect on blood pressure in AI communities. | Urine cadmium levels from 3047 Strong Heart Study participants were measured, and corresponding longitudinal changes in blood pressures from 1989 to 1999 were modeled. | Prospective cohort study | A one-unit increase in log(Cd) was correlated with a 10% higher risk of hypertension (95% CI: 1.01–1.20). For the upper quintile of urinary cadmium levels, the estimated change in systolic blood pressure per year was 0.62 mmHg (0.37–0.87) and the estimated change in diastolic blood pressure per year was 0.18 mmHg (0.05–0.31). |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burns, J.; Larancuent, C.E.; Jacob, C.L.; Heims-Waldron, D.A.; Lloyd, W.R.; Zachariah, J.P.; Haimed, A.; Navas-Acien, A.; Deen, J.F. Environmental Risk in American Indian Children, Including Cardiovascular and Hematologic Consequences of Cadmium Exposure: Possible Means of Mitigation. Int. J. Environ. Res. Public Health 2025, 22, 1437. https://doi.org/10.3390/ijerph22091437
Burns J, Larancuent CE, Jacob CL, Heims-Waldron DA, Lloyd WR, Zachariah JP, Haimed A, Navas-Acien A, Deen JF. Environmental Risk in American Indian Children, Including Cardiovascular and Hematologic Consequences of Cadmium Exposure: Possible Means of Mitigation. International Journal of Environmental Research and Public Health. 2025; 22(9):1437. https://doi.org/10.3390/ijerph22091437
Chicago/Turabian StyleBurns, Joseph, Cesar E. Larancuent, Cian L. Jacob, Danielle A. Heims-Waldron, Whitney R. Lloyd, Justin P. Zachariah, Abraham Haimed, Ana Navas-Acien, and Jason F. Deen. 2025. "Environmental Risk in American Indian Children, Including Cardiovascular and Hematologic Consequences of Cadmium Exposure: Possible Means of Mitigation" International Journal of Environmental Research and Public Health 22, no. 9: 1437. https://doi.org/10.3390/ijerph22091437
APA StyleBurns, J., Larancuent, C. E., Jacob, C. L., Heims-Waldron, D. A., Lloyd, W. R., Zachariah, J. P., Haimed, A., Navas-Acien, A., & Deen, J. F. (2025). Environmental Risk in American Indian Children, Including Cardiovascular and Hematologic Consequences of Cadmium Exposure: Possible Means of Mitigation. International Journal of Environmental Research and Public Health, 22(9), 1437. https://doi.org/10.3390/ijerph22091437