Caffeine in Aging Brains: Cognitive Enhancement, Neurodegeneration, and Emerging Concerns About Addiction
Abstract
1. Introduction
2. Review Results
2.1. Effects of Caffeine on the Brain: Pharmacokinetics and Pharmacodynamics
2.2. Neurobiological Mechanisms of Caffeine Dependence: From Neurotransmitter Systems to Motor and Cognitive Circuits
- Headache: Adenosine acts as a vasodilator; caffeine’s vasoconstrictive effect contributes to headaches upon discontinuation due to sudden vasodilation.
- Fatigue and drowsiness: Without caffeine’s antagonism, adenosine binds to its receptors, promoting sleepiness and impaired concentration.
- Irritability, anxiety, and depressive symptoms: Caffeine elevates dopamine and other mood-related neurotransmitter levels; withdrawal can cause a chemical imbalance, resulting in symptoms of mood and anxiety disorders.
- Cognitive difficulties and psychomotor slowing: Caffeine enhances alertness and cognitive functions; withdrawal reduces these capabilities, leading to concentration deficits and slowed processing.
- Prefrontal cortex (PFC): The PFC is critical for executive functions, working memory, decision making, and attention. The PFC shows increased activity initially with caffeine due to elevated levels of dopamine and acetylcholine. Chronic use, however, can lead to dopamine receptor down-regulation, impairing cognitive efficiency, reducing cognitive flexibility, and increasing impulsivity.
- Hippocampus: Essential for episodic memory formation and learning, caffeine’s acute effects may enhance short-term memory; however, long-term intake can interfere with synaptic plasticity, which is necessary for long-term memory consolidation, potentially impairing learning and memory retention.
- Amygdala: Involved in emotion regulation, particularly fear and anxiety, caffeine may augment amygdala activity, heightening stress responses and anxiety, especially in predisposed individuals. Chronic use may contribute to hyperactivity of this region, exacerbating anxiety and irritability, notably during caffeine withdrawal.
- Striatum: Caffeine influences motor control primarily through antagonism of A2Areceptors in the striatum, a pivotal structure in voluntary movement regulation [102,103,104,105,106]. Persistent caffeine intake can cause desensitization of dopaminergic receptors in the striatum, diminishing its initial positive effects on motor coordination. Manifestations may include decreased movement precision, tremors, impaired coordination, and slowed reaction times.
- Cerebellum: This structure, integral for fine motor coordination, balance, and motor learning, may also be affected indirectly by caffeine-induced dopaminergic alterations, potentially contributing to deficits in balance and coordination. Although direct studies are limited, the neuroadaptive changes in dopaminergic pathways suggest that long-term caffeine consumption could subtly impair motor functions.
2.3. Caffeine and Movement Disorders
- Frontal cortical areas: Caffeine may increase cortical excitability, potentially affecting the planning and initiation of voluntary movements.
- Basal ganglia: The blockade of adenosine A2Areceptors within the striatum, part of the basal ganglia circuitry, influences dopamine release, which is crucial for motor control.
- Cerebellum: Although direct effects are less clearly established, caffeine might indirectly modulate cerebellar function, a region involved in coordination and motor learning.
- Adenosine Antagonism: Caffeine acts as an antagonist at adenosine receptors, a neurotransmitter system that typically inhibits dopamine release and promotes relaxation and sleep. The adenosine theory of RLS posits that a deficiency of adenosine or dysfunction of its receptors within the central nervous system could contribute to the pathogenesis of RLS [146]. Because dopamine plays a crucial role in regulating movement and its imbalance is believed to be involved in RLS, the increased dopaminergic activity stimulated by caffeine might worsen symptoms in some individuals. By blocking adenosine receptors, caffeine could potentially exacerbate this imbalance, thereby intensifying symptoms.
- Sleep Disruption: As a well-known central nervous system stimulant, caffeine can interfere with sleep quality and duration. Given that RLS symptoms tend to intensify during evening and nocturnal hours, sleep deprivation caused by caffeine consumption may further aggravate the disorder [147].
- Iron Bioavailability: Iron deficiency is a recognized risk factor for RLS [148]. Although there is no conclusive evidence that caffeine directly impairs iron absorption, some studies suggest that high caffeine intake may interfere with intestinal iron uptake [149]. While the exact mechanism remains unclear, this interaction could contribute to worsening symptoms in predisposed individuals or those with latent iron deficiency [150].
2.4. Caffeine and Cognitive Domains
2.5. Caffeine and Degenerative Diseases
2.5.1. Caffeine and Alzheimer’s Disease
2.5.2. Caffeine and Amyotrophic Lateral Sclerosis
2.5.3. Vascular Dementia and Chronic Caffeine Use
- (a)
- Vasoconstriction: Caffeine is a well-known vasoconstrictor, meaning it can narrow blood vessels and temporarily elevate blood pressure. This effect is primarily mediated through antagonism of adenosine receptors–neurotransmitter receptors that normally promote vasodilation.
- (b)
- Blood pressure elevation: Several studies have demonstrated that caffeine intake can induce transient increases in both systolic and diastolic blood pressure.
- (c)
- Effects on endothelial function: The endothelium, the inner lining of blood vessels, plays a crucial role in regulating blood flow and arterial pressure. Some research suggests that caffeine may exert both beneficial and detrimental effects on endothelial function, depending on the dosage and duration of exposure.
2.5.4. Caffeine and Frontotemporal Dementia
2.5.5. Caffeine and Lewy Body Dementia
3. Discussion
Limitations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Massey, L.K. Caffeine and the Elderly. Drugs Aging 1998, 13, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Temple, J.L.; Bernard, C.; Lipshultz, S.E.; Czachor, J.D.; Westphal, J.A.; Mestre, M.A. The Safety of Ingested Caffeine: A Comprehensive Review. Front. Psychiatry 2017, 8, 80. [Google Scholar] [CrossRef]
- Rodak, K.; Kokot, I.; Kratz, E.M. Caffeine as a Factor Influencing the Functioning of the Human Body—Friend or Foe? Nutrients 2021, 13, 3088. [Google Scholar] [CrossRef]
- Giontella, A.; de La Harpe, R.; Cronje, H.T.; Zagkos, L.; Woolf, B.; Larsson, S.C.; Gill, D. Caffeine Intake, Plasma Caffeine Level, and Kidney Function: A Mendelian Randomization Study. Nutrients 2023, 15, 4422. [Google Scholar] [CrossRef]
- Fujii, R.; Nakatochi, M.; Del Greco, M.F. Coffee Intake, Plasma Caffeine Levels, and Kidney Function: Two-Sample Mendelian Randomization Among East Asian and European Ancestries. Kidney Int. Rep. 2024, 9, 1083–1092. [Google Scholar] [CrossRef]
- Gao, P.; Ji, X.; Wang, W.; Chen, Y.; Gao, Z.; Yu, Z. Association between coffee and caffeine consumption and chronic kidney disease. Sci. Rep. 2025, 15, 25228. [Google Scholar] [CrossRef]
- Fiani, B.; Zhu, L.; Musch, B.L.; Briceno, S.; Andel, R.; Sadeq, N.; Ansari, A.Z. The Neurophysiology of Caffeine as a Central Nervous System Stimulant and the Resultant Effects on Cognitive Function. Cureus 2021, 13, e15032. [Google Scholar] [CrossRef]
- Panza, F.; Solfrizzi, V.; Barulli, M.R.; Bonfiglio, C.; Guerra, V.; Osella, A.; Seripa, D.; Sabbà, C.; Pilotto, A.; Logroscino, G. Coffee, tea, and caffeine consumption and prevention of late-life cognitive decline and dementia: A systematic review. J. Nutr. Health Aging 2015, 19, 313–328. [Google Scholar] [CrossRef]
- Glade, M.J. Caffeine—Not just a stimulant. Nutrition 2010, 26, 932–938. [Google Scholar] [CrossRef] [PubMed]
- Evans, J.; Richards, J.R.; Battisti, A.S. Caffeine. Available online: https://www.ncbi.nlm.nih.gov/books/NBK519490/ (accessed on 10 January 2025).
- Reddy, V.S.; Shiva, S.; Manikantan, S.; Ramakrishna, S. Pharmacology of caffeine and its effects on the human body. Eur. J. Med. Chem. Rep. 2024, 10, 100138. [Google Scholar] [CrossRef]
- Antonioli, L.; Haskó, G. Caffeine and Bones: If Less Is Good, More May Not Be Better. J. Caffeine Adenosine Res. 2019, 9, 38–39. [Google Scholar] [CrossRef] [PubMed]
- Campagna, R.; Vignini, A. The Role of Xenobiotic Caffeine on Cardiovascular Health: Promises and Challenges. J. Xenobiot. 2025, 15, 51. [Google Scholar] [CrossRef] [PubMed]
- Roehrs, T.; Roth, T. Caffeine: Sleep and daytime sleepiness. Sleep. Med. Rev. 2008, 12, 153–162. [Google Scholar] [CrossRef]
- Clark, I.; Landolt, H.P. Coffee, caffeine, and sleep: A systematic review of epidemiological studies and randomized controlled trials. Sleep. Med. Rev. 2017, 31, 70–78. [Google Scholar] [CrossRef]
- Shah, B.M.; Hajjar, E.R. Polypharmacy, adverse drug reactions, and geriatric syndromes. Clin. Geriatr. Med. 2012, 28, 173–186. [Google Scholar] [CrossRef]
- Drenth-van Maanen, A.C.; Wilting, I.; Jansen, P.A.F. Prescribing medicines to older people-How to consider the impact of ageing on human organ and body functions. Br. J. Clin. Pharmacol. 2020, 86, 1921–1930. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, J.; Liu, N.; Liu, W.; Xi, R.; Wang, P. Association between polypharmacy and chronic kidney disease among community-dwelling older people: A longitudinal study in southern China. BMC Nephrol. 2024, 25, 169. [Google Scholar] [CrossRef]
- Sajadi-Ernazarova, K.R.; Hamilton, R.J. Caffeine Withdrawal. Available online: https://www.ncbi.nlm.nih.gov/books/NBK430790/ (accessed on 10 January 2025).
- Juliano, L.; Griffiths, R. A critical review of caffeine withdrawal: Empirical validation of symptoms and signs, incidence, severity, and associated features. Psychopharmacology 2004, 176, 1–29. [Google Scholar] [CrossRef]
- Meredith, S.E.; Juliano, L.M.; Hughes, J.R.; Griffiths, R.R. Caffeine Use Disorder: A Comprehensive Review and Research Agenda. J. Caffeine Res. 2013, 3, 114–130. [Google Scholar] [CrossRef]
- Čižmárová, B.; Kraus, V.; Birková, A. Caffeinated Beverages—Unveiling Their Impact on Human Health. Beverages 2025, 11, 18. [Google Scholar] [CrossRef]
- Carman, A.J.; Dacks, P.A.; Lane, R.F.; Shineman, D.W.; Fillit, H.M. Current evidence for the use of coffee and caffeine to prevent age-related cognitive decline and Alzheimer’s disease. J. Nutr. Health Aging 2014, 18, 383–392. [Google Scholar] [CrossRef]
- dePaula, J.; Farah, A. Caffeine Consumption through Coffee: Content in the Beverage, Metabolism, Health Benefits and Risks. Beverages 2019, 5, 37. [Google Scholar] [CrossRef]
- National Sleep Foundation Caffeine in America. Available online: https://www.thensf.org (accessed on 3 March 2025).
- Mazeaud, S.; Castellana, F.; Coelho-Junior, H.J.; Panza, F.; Rondanelli, M.; Fassio, F.; De Pergola, G.; Zupo, R.; Sardone, R. Coffee Drinking and Adverse Physical Outcomes in the Aging Adult Population: A Systematic Review. Metabolites 2022, 12, 654. [Google Scholar] [CrossRef]
- Fulgoni, V.L., 3rd; Keast, D.R.; Lieberman, H.R. Trends in intake and sources of caffeine in the diets of US adults: 2001-2010. Am. J. Clin. Nutr. 2015, 101, 1081–1087. [Google Scholar] [CrossRef]
- Evatt, D.P.; Griffiths, R.R. Caffeine. In Encyclopedia of Human Nutrition, 3rd ed.; Caballero, B., Ed.; Academic Press: Waltham, MA, USA, 2013; pp. 221–227. [Google Scholar] [CrossRef]
- Thölke, P.; Arcand-Lavigne, M.; Lajnef, T.; Frenette, S.; Carrier, J.; Jerbi, K. Caffeine induces age-dependent increases in brain complexity and criticality during sleep. bioRxiv 2024. [Google Scholar] [CrossRef]
- Addicott, M.A. Caffeine Use Disorder: A Review of the Evidence and Future Implications. Curr. Addict. Rep. 2014, 1, 186–192. [Google Scholar] [CrossRef]
- Lee, C.-H.; Oh, s. Changes of Coffee Intake according to the Sociodemographic Characteristics of the People over 50 and the Elderly in Korea: Analysis of data from the 2001/2011 Korea National Health and Nutrition Examination Surveys. Culi Sci. Hos Res. 2014, 20, 64–79. [Google Scholar] [CrossRef]
- West, R.K.; Ravona-Springer, R.; Livny, A.; Heymann, A.; Shahar, D.; Leroith, D.; Preiss, R.; Zukran, R.; Silverman, J.M.; Schnaider-Beeri, M. Age Modulates the Association of Caffeine Intake With Cognition and With Gray Matter in Elderly Diabetics. J. Gerontol. A Biol. Sci. Med. Sci. 2019, 74, 683–688. [Google Scholar] [CrossRef] [PubMed]
- Tallis, J.; James, R.S.; Cox, V.M.; Duncan, M.J. Is the ergogenicity of caffeine affected by increasing age? The direct effect of a physiological concentration of caffeine on the power output of maximally stimulated edl and diaphragm muscle isolated from the mouse. J. Nutr. Health Aging 2017, 21, 440–448. [Google Scholar] [CrossRef] [PubMed]
- Solfrizzi, V.; Panza, F.; Imbimbo, B.P.; D’Introno, A.; Galluzzo, L.; Gandin, C.; Misciagna, G.; Guerra, V.; Osella, A.; Baldereschi, M.; et al. Coffee Consumption Habits and the Risk of Mild Cognitive Impairment: The Italian Longitudinal Study on Aging. J. Alzheimers Dis. 2015, 47, 889–899. [Google Scholar] [CrossRef]
- Istituto Nazionale di Statistica Rapporto Annuale. La Situazione del Paese. Comportamenti Legati al Consumo di Caffeina. Available online: https://www.siml.it/post/pubblicazione-rapporto-annuale-istat-2020 (accessed on 18 May 2024).
- Samoggia, A.; Landuzzi, P.; Vicién, C.E. Market Expansion of Caffeine-Containing Products: Italian and Argentinian Yerba Mate Consumer Behavior and Health Perception. Int. J. Environ. Res. Public Health 2021, 18, 8117. [Google Scholar] [CrossRef]
- Reyes, C.M.; Cornelis, M.C. Caffeine in the Diet: Country-Level Consumption and Guidelines. Nutrients 2018, 10, 1772. [Google Scholar] [CrossRef] [PubMed]
- Ciapparelli, A.; Paggini, R.; Carmassi, C.; Taponecco, C.; Consoli, G.; Ciampa, G.; Ramacciotti, C.E.; Marazziti, D.; Dell’Osso, L. Patterns of caffeine consumption in psychiatric patients. An Italian study. Eur. Psychiatry 2010, 25, 230–235. [Google Scholar] [CrossRef] [PubMed]
- Aschieri, F.; Durosini, I.; Bondioli, S.; Bramaschi, M. Are Italian Adults More Dependent than Their American Counterparts? A Study on Oral Dependency Language Validity in Italy. Available online: https://www.researchgate.net/publication/320046675_Are_italian_adults_more_dependent_than_their_american_counterparts_A_study_on_oral_dependency_language_validity_in_Italy (accessed on 20 February 2025).
- Penolazzi, B.; Natale, V.; Leone, L.; Russo, P.M. Individual differences affecting caffeine intake. Analysis of consumption behaviours for different times of day and caffeine sources. Appetite 2012, 58, 971–977. [Google Scholar] [CrossRef] [PubMed]
- Navas-Martín, M.Á.; Cuerdo-Vilches, T.; López-Bueno, J.A.; Díaz, J.; Linares, C.; Sánchez-Martínez, G. Human adaptation to heat in the context of climate change: A conceptual framework. Environ. Res. 2024, 252, 118803. [Google Scholar] [CrossRef]
- Johnson, R.J.; Stenvinkel, P.; Jensen, T.; Lanaspa, M.A.; Roncal, C.; Song, Z.; Bankir, L.; Sánchez-Lozada, L.G. Metabolic and Kidney Diseases in the Setting of Climate Change, Water Shortage, and Survival Factors. J. Am. Soc. Nephrol. 2016, 27, 2247–2256. [Google Scholar] [CrossRef]
- Mahdavi, S.; Palatini, P.; El-Sohemy, A. CYP1A2 Genetic Variation, Coffee Intake, and Kidney Dysfunction. JAMA Netw. Open 2023, 6, e2247868. [Google Scholar] [CrossRef]
- Womack, C.J.; Saunders, M.J.; Bechtel, M.K.; Bolton, D.J.; Martin, M.; Luden, N.D.; Dunham, W.; Hancock, M. The influence of a CYP1A2 polymorphism on the ergogenic effects of caffeine. J. Int. Soc. Sports Nutr. 2012, 9, 7. [Google Scholar] [CrossRef]
- Kazan, H.H.; Bulgay, C.; Zorba, E.; Dalip, M.; Ceylan, H.İ.; Semenova, E.A.; Larin, A.K.; Kulemin, N.A.; Generozov, E.V.; Ahmetov, I.I.; et al. Exploring the relationship between caffeine metabolism-related CYP1A2 rs762551 polymorphism and team sport athlete status and training adaptations. Mol. Biol. Rep. 2024, 51, 841. [Google Scholar] [CrossRef]
- Grzegorzewski, J.; Bartsch , F.; Köller, A.; König, M. Pharmacokinetics of Caffeine: A Systematic Analysis of Reported Data for Application in Metabolic Phenotyping and Liver Function Testing. Front. Pharmacol. 2022, 12, 752826. [Google Scholar] [CrossRef]
- Alsabri, S.; Mari, W.; Younes, S.; Elsadawi, M.; Oroszi, T. Kinetic and Dynamic Description of Caffeine. J. Caffeine Adenosine Res. 2018, 8, 3–9. [Google Scholar] [CrossRef]
- Truong, J.; Abu-Suriya, N.; Tory, D.; Bahho, R.; Ismaiel, A.; Nguyen, T.; Mansour, A.; Nand, V.; Saponja, J.; Dua, K.; et al. An Exploration of the Interplay Between Caffeine and Antidepressants Through the Lens of Pharmacokinetics and Pharmacodynamics. Eur. J. Drug Metab. Pharmacokinet. 2025, 50, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Aranda, J.V.; Beharry, K.D. Pharmacokinetics, pharmacodynamics and metabolism of caffeine in newborns. Semin. Fetal Neonatal Med. 2020, 25, 101183. [Google Scholar] [CrossRef]
- Nehlig, A. Interindividual Differences in Caffeine Metabolism and Factors Driving Caffeine Consumption. Pharmacol. Rev. 2018, 70, 384–411. [Google Scholar] [CrossRef]
- Hilmer, S.N.; Shenfield, G.M.; Le Couteur, D.G. Clinical implications of changes in hepatic drug metabolism in older people. Ther. Clin. Risk Manag. 2005, 1, 151–156. [Google Scholar] [CrossRef]
- Konstandi, M.; Johnson, E.O. Age-related modifications in CYP-dependent drug metabolism: Role of stress. Front. Endocrinol. 2023, 14, 1143835. [Google Scholar] [CrossRef]
- Mangoni, A.A.; Jackson, S.H. Age-related changes in pharmacokinetics and pharmacodynamics: Basic principles and practical applications. Br. J. Clin. Pharmacol. 2004, 57, 6–14. [Google Scholar] [CrossRef]
- Antonio, J.; Newmire, D.E.; Stout, J.R.; Antonio, B.; Gibbons, M.; Lowery, L.M.; Harper, J.; Willoughby, D.; Evans, C.; Anderson, D.; et al. Common questions and misconceptions about caffeine supplementation: What does the scientific evidence really show? J. Int. Soc. Sports Nutr. 2024, 21, 2323919. [Google Scholar] [CrossRef]
- Low, J.J.-L.; Tan, B.J.-W.; Yi, L.-X.; Zhou, Z.-D.; Tan, E.-K. Genetic susceptibility to caffeine intake and metabolism: A systematic review. J. Transl. Med. 2024, 22, 961. [Google Scholar] [CrossRef]
- Nehlig, A. Effects of coffee/caffeine on brain health and disease: What should I tell my patients? Pract. Neurol. 2016, 16, 89–95. [Google Scholar] [CrossRef]
- James, J.E. Maternal caffeine consumption and pregnancy outcomes: A narrative review with implications for advice to mothers and mothers-to-be. BMJ Evid. Based Med. 2021, 26, 114–115. [Google Scholar] [CrossRef] [PubMed]
- Ngcobo, N.N. Influence of Ageing on the Pharmacodynamics and Pharmacokinetics of Chronically Administered Medicines in Geriatric Patients: A Review. Clin. Pharmacokinet. 2025, 64, 335–367. [Google Scholar] [CrossRef] [PubMed]
- Costenla, A.R.; Cunha, R.A.; de Mendonça, A. Caffeine, adenosine receptors, and synaptic plasticity. J. Alzheimers Dis. 2010, 20 (Suppl. 1), S25–S34. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, J.A.; Sebastião, A.M. Caffeine and adenosine. J. Alzheimers Dis. 2010, 20 (Suppl. 1), S3–S15. [Google Scholar] [CrossRef]
- Lopes, J.P.; Pliássova, A.; Cunha, R.A. The physiological effects of caffeine on synaptic transmission and plasticity in the mouse hippocampus selectively depend on adenosine A(1) and A(2A) receptors. Biochem. Pharmacol. 2019, 166, 313–321. [Google Scholar] [CrossRef]
- Martín, E.D.; Buño, W. Caffeine-mediated presynaptic long-term potentiation in hippocampal CA1 pyramidal neurons. J. Neurophysiol. 2003, 89, 3029–3038. [Google Scholar] [CrossRef]
- Quarta, D.; Borycz, J.; Solinas, M.; Patkar, K.; Hockemeyer, J.; Ciruela, F.; Lluis, C.; Franco, R.; Woods, A.S.; Goldberg, S.R.; et al. Adenosine receptor-mediated modulation of dopamine release in the nucleus accumbens depends on glutamate neurotransmission and N-methyl-D-aspartate receptor stimulation. J. Neurochem. 2004, 91, 873–880. [Google Scholar] [CrossRef]
- Cunha, R.A.; Agostinho, P.M. Chronic caffeine consumption prevents memory disturbance in different animal models of memory decline. J. Alzheimers Dis. 2010, 20 (Suppl. 1), S95–S116. [Google Scholar] [CrossRef]
- McLellan, T.M.; Caldwell, J.A.; Lieberman, H.R. A review of caffeine’s effects on cognitive, physical and occupational performance. Neurosci. Biobehav. Rev. 2016, 71, 294–312. [Google Scholar] [CrossRef]
- Cappelletti, S.; Piacentino, D.; Sani, G.; Aromatario, M. Caffeine: Cognitive and physical performance enhancer or psychoactive drug? Curr. Neuropharmacol. 2015, 13, 71–88. [Google Scholar] [CrossRef]
- Kolahdouzan, M.; Hamadeh, M.J. The neuroprotective effects of caffeine in neurodegenerative diseases. CNS Neurosci. Ther. 2017, 23, 272–290. [Google Scholar] [CrossRef]
- Chen, J.F.; Schwarzschild, M.A. Do caffeine and more selective adenosine A(2A) receptor antagonists protect against dopaminergic neurodegeneration in Parkinson’s disease? Parkinsonism Relat. Disord. 2020, 80 (Suppl. 1), S45–S53. [Google Scholar] [CrossRef]
- Dall’Igna, O.P.; Porciúncula, L.O.; Souza, D.O.; Cunha, R.A.; Lara, D.R. Neuroprotection by caffeine and adenosine A2A receptor blockade of beta-amyloid neurotoxicity. Br. J. Pharmacol. 2003, 138, 1207–1209. [Google Scholar] [CrossRef]
- Vázquez, J.C.; Martin de la Torre, O.; López Palomé, J.; Redolar-Ripoll, D. Effects of Caffeine Consumption on Attention Deficit Hyperactivity Disorder (ADHD) Treatment: A Systematic Review of Animal Studies. Nutrients 2022, 14, 739. [Google Scholar] [CrossRef] [PubMed]
- Roelands, B.; Meeusen, R. Caffeine, dopamine and thermoregulation. Eur. J. Appl. Physiol. 2012, 112, 1979–1980. [Google Scholar] [CrossRef] [PubMed]
- Becker, M.; Repantis, D.; Dresler, M.; Kühn, S. Cognitive enhancement: Effects of methylphenidate, modafinil, and caffeine on latent memory and resting state functional connectivity in healthy adults. Hum. Brain Mapp. 2022, 43, 4225–4238. [Google Scholar] [CrossRef]
- Garrett, B.E.; Griffiths, R.R. The role of dopamine in the behavioral effects of caffeine in animals and humans. Pharmacol. Biochem. Behav. 1997, 57, 533–541. [Google Scholar] [CrossRef]
- Fabiani, C.; Murray, A.P.; Corradi, J.; Antollini, S.S. A novel pharmacological activity of caffeine in the cholinergic system. Neuropharmacol. 2018, 135, 464–473. [Google Scholar] [CrossRef]
- Alasmari, F. Caffeine induces neurobehavioral effects through modulating neurotransmitters. Saudi Pharm. J. 2020, 28, 445–451. [Google Scholar] [CrossRef]
- Pohanka, M. The effects of caffeine on the cholinergic system. Mini Rev. Med. Chem. 2014, 14, 543–549. [Google Scholar] [CrossRef]
- Lorenzo Calvo, J.; Fei, X.; Domínguez, R.; Pareja-Galeano, H. Caffeine and Cognitive Functions in Sports: A Systematic Review and Meta-Analysis. Nutrients 2021, 13, 868. [Google Scholar] [CrossRef]
- Dong, X.; Li, S.; Sun, J.; Li, Y.; Zhang, D. Association of Coffee, Decaffeinated Coffee and Caffeine Intake from Coffee with Cognitive Performance in Older Adults: National Health and Nutrition Examination Survey (NHANES) 2011–2014. Nutrients 2020, 12, 840. [Google Scholar] [CrossRef]
- Watson, J.; Deary, I.; Kerr, D. Central and peripheral effects of sustained caffeine use: Tolerance is incomplete. Br. J. Clin. Pharmacol. 2002, 54, 400–406. [Google Scholar] [CrossRef]
- Batalha, V.L.; Ferreira, D.G.; Coelho, J.E.; Valadas, J.S.; Gomes, R.; Temido-Ferreira, M.; Shmidt, T.; Baqi, Y.; Buée, L.; Müller, C.E.; et al. The caffeine-binding adenosine A2A receptor induces age-like HPA-axis dysfunction by targeting glucocorticoid receptor function. Sci. Rep. 2016, 6, 31493. [Google Scholar] [CrossRef] [PubMed]
- López-Cruz, L.; Salamone, J.D.; Correa, M. Caffeine and Selective Adenosine Receptor Antagonists as New Therapeutic Tools for the Motivational Symptoms of Depression. Front. Pharmacol. 2018, 9, 526. [Google Scholar] [CrossRef] [PubMed]
- Lemes Dos Santos Sanna, P.; Bernardes Carvalho, L.; Cristina Dos Santos Afonso, C.; de Carvalho, K.; Aires, R.; Souza, J.; Rodrigues Ferreira, M.; Birbrair, A.; Martha Bernardi, M.; Latini, A.; et al. Adora2A downregulation promotes caffeine neuroprotective effect against LPS-induced neuroinflammation in the hippocampus. Brain Res. 2024, 1833, 148866. [Google Scholar] [CrossRef] [PubMed]
- Caffeine. Available online: https://www.sciencedirect.com/science/article/pii/B9780444537171004327 (accessed on 10 May 2025).
- Nowaczewska, M.; Wiciński, M.; Kaźmierczak, W. The Ambiguous Role of Caffeine in Migraine Headache: From Trigger to Treatment. Nutrients 2020, 12, 2259. [Google Scholar] [CrossRef]
- Bodur, M.; Kaya, S.; Ilhan-Esgin, M.; Çakiroğlu, F.P.; Özçelik, A. The caffeine dilemma: Unraveling the intricate relationship between caffeine use disorder, caffeine withdrawal symptoms and mental well-being in adults. Public Health Nutr. 2024, 27, e57. [Google Scholar] [CrossRef]
- Weibel, J.; Lin, Y.S.; Landolt, H.P.; Kistler, J.; Rehm, S.; Rentsch, K.M.; Slawik, H.; Borgwardt, S.; Cajochen, C.; Reichert, C.F. The impact of daily caffeine intake on nighttime sleep in young adult men. Sci. Rep. 2021, 11, 4668. [Google Scholar] [CrossRef]
- Davoudi, M.; Abdoli, F.; Momeni, F.; Asgarabad, M.H. Network analysis of caffeine use disorder, withdrawal symptoms, and psychiatric symptoms. BMC Psychiatry 2025, 25, 66. [Google Scholar] [CrossRef]
- Zhou, A.; Hyppönen, E. Long-term coffee consumption, caffeine metabolism genetics, and risk of cardiovascular disease: A prospective analysis of up to 347,077 individuals and 8368 cases. Am. J. Clin. Nutr. 2019, 109, 509–516. [Google Scholar] [CrossRef]
- Preston, J.; Biddell, B. The physiology of ageing and how these changes affect older people. Medicine 2021, 49, 1–5. [Google Scholar] [CrossRef]
- Maisel, P.; Baum, E.; Donner-Banzhoff, N. Fatigue as the Chief Complaint–Epidemiology, Causes, Diagnosis, and Treatment. Dtsch. Arztebl. Int. 2021, 118, 566–576. [Google Scholar] [CrossRef] [PubMed]
- Ashina, S.; Terwindt, G.M.; Steiner, T.J.; Lee, M.J.; Porreca, F.; Tassorelli, C.; Schwedt, T.J.; Jensen, R.H.; Diener, H.-C.; Lipton, R.B. Medication overuse headache. Nat. Rev. Dis. Prim. 2023, 9, 5. [Google Scholar] [CrossRef] [PubMed]
- Kaniecki, R.G.; Levin, A.D. Chapter 28—Headache in the elderly. In Handbook of Clinical Neurology; Dekosky, S.T., Asthana, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; Volume 167, pp. 511–528. [Google Scholar] [CrossRef]
- Pless, A.; Ware, D.; Saggu, S.; Rehman, H.; Morgan, J.; Wang, Q. Understanding neuropsychiatric symptoms in Alzheimer’s disease: Challenges and advances in diagnosis and treatment. Front. Neurosci. 2023, 17, 1263771. [Google Scholar] [CrossRef] [PubMed]
- Showraki, M.; Showraki, T. GAD: Over-reactive and unstable mood. J. Affect. Disord. Rep. 2021, 6, 100265. [Google Scholar] [CrossRef]
- Ágoston, C.; Urbán, R.; Richman, M.J.; Demetrovics, Z. Caffeine use disorder: An item-response theory analysis of proposed DSM-5 criteria. Addict. Behav. 2018, 81, 109–116. [Google Scholar] [CrossRef]
- Sağlam, B.; Tural, E.; Dayan, A. Exploring the link between physicians’ caffeine use disorders with sleep quality and professional burnout: A cross-sectional study. BMC Health Serv. Res. 2024, 24, 909. [Google Scholar] [CrossRef]
- Buckley, G.; Murphy, C.; O’Sullivan, N.; Spriggs, R. An Investigation into Caffeine Consumption and Self-Reported Dependency in the Republic of Ireland. Int. Undergrad. J. Health Sci. 2021, 1, 9. [Google Scholar] [CrossRef]
- Evatt, D.P.; Juliano, L.M.; Griffiths, R.R. A brief manualized treatment for problematic caffeine use: A randomized control trial. J. Consult. Clin. Psychol. 2016, 84, 113–121. [Google Scholar] [CrossRef]
- Rikitake, M.; Notake, S.; Kurokawa, K.; Hata, J.; Seki, F.; Komaki, Y.; Oshiro, H.; Kawaguchi, N.; Haga, Y.; Yoshimaru, D.; et al. Effects of chronic caffeine intake and withdrawal on neural activity assessed via resting-state functional magnetic resonance imaging in mice. Heliyon 2022, 8, e11714. [Google Scholar] [CrossRef]
- Bagwath Persad, L. Energy Drinks and the Neurophysiological Impact of Caffeine. Front. Neurosci. 2011, 5, 116. [Google Scholar] [CrossRef]
- Ricupero, S.; Ritter, F.E. Caffeine and cognition: A cognitive architecture-based review. Theor. Issues Ergon. Sci. 2024, 25, 655–679. [Google Scholar] [CrossRef]
- Olopade, F.E.; Femi-Akinlosotu, O.M.; Adekanmbi, A.J.; Ighogboja, O.O.; Shokunbi, M.T. Chronic Caffeine Ingestion Improves Motor Function and Increases Dendritic Length and Arborization in the Motor Cortex, Striatum, and Cerebellum. J. Caffeine Adenosine Res. 2021, 11, 3–14. [Google Scholar] [CrossRef]
- Jacobson, B.H.; Thurman-Lacey, S.R. Effect of caffeine on motor performance by caffeine-naive and -familiar subjects. Percept. Mot. Skills 1992, 74, 151–157. [Google Scholar] [CrossRef]
- Tucha, O.; Walitza, S.; Mecklinger, L.; Stasik, D.; Sontag, T.-A.; Lange, K.W. The effect of caffeine on handwriting movements in skilled writers. Hum. Mov. Sci. 2006, 25, 523–535. [Google Scholar] [CrossRef]
- Laatar, R.; Ben Waer, F.; Rebai, H.; Sahli, S. Caffeine consumption improves motor and cognitive performances during dual tasking in middle-aged women. Behav. Brain Res. 2021, 412, 113437. [Google Scholar] [CrossRef] [PubMed]
- Olopade, F.; Femi-Akinlosotu, O.M.; Adekanmbi, A.J.; Ighogboja, O.O.; Shokunbi, M.T. Chronic caffeine ingestion improves memory and learning and increases neuronal population and dendritic length in the hippocampus of adult mice. Niger. J. Physiol. Sci. 2021, 36, 165–172. [Google Scholar] [CrossRef]
- Ren, X.; Chen, J.-F. Caffeine and Parkinson’s disease: Multiple benefits and emerging mechanisms. Front. Neurosci. 2020, 14, 602697. [Google Scholar] [CrossRef] [PubMed]
- Nehlig, A.; Daval, J.L.; Debry, G. Caffeine and the central nervous system: Mechanisms of action, biochemical, metabolic and psychostimulant effects. Brain Res. Brain Res. Rev. 1992, 17, 139–170. [Google Scholar] [CrossRef] [PubMed]
- Roshan, M.H.; Tambo, A.; Pace, N.P. Potential Role of Caffeine in the Treatment of Parkinson’s Disease. Open Neurol. J. 2016, 10, 42–58. [Google Scholar] [CrossRef]
- Ishibashi, K.; Miura, Y.; Wagatsuma, K.; Toyohara, J.; Ishiwata, K.; Ishii, K. Adenosine A2A Receptor Occupancy by Caffeine After Coffee Intake in Parkinson’s Disease. Mov. Disord. 2022, 37, 853–857. [Google Scholar] [CrossRef] [PubMed]
- Sebastião, A.M.; Ribeiro, J.A. Adjusting the brakes to adjust neuronal activity: Adenosinergic modulation of GABAergic transmission. Neuropharmacol. 2023, 236, 109600. [Google Scholar] [CrossRef] [PubMed]
- Prasad, K.; de Vries, E.F.J.; van der Meiden, E.; Moraga-Amaro, R.; Vazquez-Matias, D.A.; Barazzuol, L.; Dierckx, R.A.J.O.; van Waarde, A. Effects of the adenosine A2A receptor antagonist KW6002 on the dopaminergic system, motor performance, and neuroinflammation in a rat model of Parkinson’s disease. Neuropharmacol. 2024, 247, 109862. [Google Scholar] [CrossRef] [PubMed]
- Prediger, R.D. Effects of caffeine in Parkinson’s disease: From neuroprotection to the management of motor and non-motor symptoms. J. Alzheimers Dis. 2010, 20 (Suppl. 1), S205–S220. [Google Scholar] [CrossRef]
- Waheeb, T.S.; Abdulkader, M.A.; Ghareeb, D.A.; Moustafa, M.E. Neuroprotective efficacy of berberine and caffeine against rotenone-induced neuroinflammatory and oxidative disturbances associated with Parkinson’s disease via inhibiting α-synuclein aggregation and boosting dopamine release. Inflammopharmacology 2025, 33, 2129–2150. [Google Scholar] [CrossRef]
- Zhong, Z.; Dong, H.; Zhou, S.; Lin, C.; Huang, P.; Li, X.; Zhang, J.; Xie, J.; Wu, Y.; Li, P. Caffeine’s Neuroprotective Effect on Memory Impairment: Suppression of Adenosine A(2)A Receptor and Enhancement of Tyrosine Hydroxylase in Dopaminergic Neurons Under Hypobaric Hypoxia Conditions. CNS Neurosci. Ther. 2024, 30, e70134. [Google Scholar] [CrossRef]
- Asuku, A.O.; Ayinla, M.T.; Olajide, T.S.; Oyerinde, T.O.; Yusuf, J.A.; Bayo-Olugbami, A.A.; Fajemidagba, G.A. Coffee and Parkinson’s disease. Prog. Brain Res. 2024, 289, 1–19. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhou, Y.G.; Chen, J.F. Targeting the adenosine A(2A) receptor for neuroprotection and cognitive improvement in traumatic brain injury and Parkinson’s disease. Chin. J. Traumatol. 2024, 27, 125–133. [Google Scholar] [CrossRef]
- Bagga, P.; Chugani, A.N.; Patel, A.B. Neuroprotective effects of caffeine in MPTP model of Parkinson’s disease: A 13C NMR study. Neurochem. Int. 2016, 92, 25–34. [Google Scholar] [CrossRef]
- Saarinen, E.K.; Kuusimäki, T.; Lindholm, K.; Niemi, K.; Honkanen, E.A.; Noponen, T.; Seppänen, M.; Ihalainen, T.; Murtomäki, K.; Mertsalmi, T.; et al. Dietary Caffeine and Brain Dopaminergic Function in Parkinson Disease. Ann. Neurol. 2024, 96, 262–275. [Google Scholar] [CrossRef]
- Ong, Y.-L.; Deng, X.; Li, H.-H.; Narasimhalu, K.; Chan, L.-L.; Prakash, K.M.; Au, W.-L.; Ratnagopal, P.; Tan, L.C.S.; Tan, E.-K. Caffeine intake interacts with Asian gene variants in Parkinson’s disease: A study in 4488 subjects. Lancet Reg. Health West. Pac. 2023, 40, 100877. [Google Scholar] [CrossRef]
- Yang, Y.; Zhou, Z.D.; Yi, L.; Tan, B.J.-W.; Tan, E.-K. Interaction between caffeine consumption & genetic susceptibility in Parkinson’s disease: A systematic review. Ageing Res. Rev. 2024, 99, 102381. [Google Scholar] [CrossRef]
- Zhao, Y.; Lai, Y.; Konijnenberg, H.; Huerta, J.M.; Vinagre-Aragon, A.; Sabin, J.A.; Hansen, J.; Petrova, D.; Sacerdote, C.; Zamora-Ros, R.; et al. Association of Coffee Consumption and Prediagnostic Caffeine Metabolites With Incident Parkinson Disease in a Population-Based Cohort. Neurology 2024, 102, e209201. [Google Scholar] [CrossRef]
- Zhang, T.; Song, J.; Shen, Z.; Yin, K.; Yang, F.; Yang, H.; Ma, Z.; Chen, L.; Lu, Y.; Xia, Y. Associations between different coffee types, neurodegenerative diseases, and related mortality: Findings from a large prospective cohort study. Am. J. Clin. Nutr. 2024, 120, 918–926. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.; Xu, Y.H.; Chen, J.F.; Schwarzschild, M.A. Neuroprotection by caffeine: Time course and role of its metabolites in the MPTP model of Parkinson’s disease. Neuroscience 2010, 167, 475–481. [Google Scholar] [CrossRef] [PubMed]
- Yinghao, W.; Wenyuan, P.; Chunfeng, L.; Jingning, Y.; Jun, S.; Chengting, Z.; Xiaoyun, W. Caffeine Promotes Adipocyte Autophagy Through the AMPK/SIRT1 Signaling Pathway and Improves High-Fat Diet–Induced Obesity and Leptin Resistance. J. Food Biochem. 2025, 2025, 8864899. [Google Scholar] [CrossRef]
- Luan, Y.; Ren, X.; Zheng, W.; Zeng, Z.; Guo, Y.; Hou, Z.; Guo, W.; Chen, X.; Li, F.; Chen, J.-F. Chronic Caffeine Treatment Protects Against α-Synucleinopathy by Reestablishing Autophagy Activity in the Mouse Striatum. Front. Neurosci. 2018, 12, 301. [Google Scholar] [CrossRef]
- Wang, L.; Wang, L. From Clinical to Basic Research: The Neuroprotective Effects and Mechanisms of Caffeine. Health Metab. 2025, 1. [Google Scholar] [CrossRef]
- Simões, J.L.B.; Braga, G.d.C.; Fontana, M.; Assmann, C.E.; Bagatini, M.D. The Neuroprotective Role of A2A Adenosine Purinoceptor Modulation as a Strategy Against Glioblastoma. Brain Sci. 2024, 14, 1286. [Google Scholar] [CrossRef]
- Schepici, G.; Silvestro, S.; Bramanti, P.; Mazzon, E. Caffeine: An Overview of Its Beneficial Effects in Experimental Models and Clinical Trials of Parkinson’s Disease. Int. J. Mol. Sci. 2020, 21, 4766. [Google Scholar] [CrossRef]
- Hamdan, M.; Suharto, A.P.; Nugraha, P.; Islamiyah, W.R. Motor improvement in Parkinson’s disease patients receiving caffeine adjuvants: A double-blind randomized controlled trial in Indonesia. Narra J. 2024, 4, e826. [Google Scholar] [CrossRef]
- Mursaleen, L.R.; Stamford, J.A. Drugs of abuse and Parkinson’s disease. Prog. Neuropsychopharmacol. Biol. Psychiatry 2016, 64, 209–217. [Google Scholar] [CrossRef]
- Leodori, G.; De Bartolo, M.I.; Belvisi, D.; Ciogli, A.; Fabbrini, A.; Costanzo, M.; Manetto, S.; Conte, A.; Villani, C.; Fabbrini, G.; et al. Salivary caffeine in Parkinson’s disease. Sci. Rep. 2021, 11, 9823. [Google Scholar] [CrossRef] [PubMed]
- Hong, C.T.; Chan, L.; Bai, C.-H. The Effect of Caffeine on the Risk and Progression of Parkinson’s Disease: A Meta-Analysis. Nutrients 2020, 12, 1860. [Google Scholar] [CrossRef] [PubMed]
- Munoz, D.G.; Fujioka, S. Caffeine and Parkinson disease. Neurology 2018, 90, 205–206. [Google Scholar] [CrossRef] [PubMed]
- Moccia, M.; Erro, R.; Picillo, M.; Vitale, C.; Longo, K.; Amboni, M.; Pellecchia, M.T.; Barone, P. Caffeine consumption and the 4-year progression of de novo Parkinson’s disease. Park. Relat. Disord. 2016, 32, 116–119. [Google Scholar] [CrossRef]
- Hedström, A.; Mowry, E.; Gianfrancesco, M.; Shao, X.; Schaefer, C.; Shen, L.; Olsson, T.; Barcellos, L.; Alfredsson, L. High consumption of coffee is associated with decreased multiple sclerosis risk; results from two independent studies. J. Neurol. Neurosurg. Psychiatry 2016, 87, 454–460. [Google Scholar] [CrossRef]
- Pasquini, S.; Contri, C.; Borea, P.A.; Vincenzi, F.; Varani, K. Adenosine and Inflammation: Here, There and Everywhere. Int. J. Mol. Sci. 2021, 22, 7685. [Google Scholar] [CrossRef]
- Dadvar, A.; Jameie, M.; Azizmohammad Looha, M.; Parsaei, M.; Bujani, M.; Amanollahi, M.; Babaei, M.; Khosravi, A.; Amirifard, H. Potential efficacy of caffeine ingestion on balance and mobility in patients with multiple sclerosis: Preliminary evidence from a single-arm pilot clinical trial. PLoS ONE 2024, 19, e0297235. [Google Scholar] [CrossRef]
- Duarte-Silva, E.; Ulrich, H.; Giacomelli, Á.; Hartung, H.-P.; Meuth, S.; Peixoto, C. The adenosinergic signaling in the pathogenesis and treatment of multiple sclerosis. Front. Immunol. 2022, 13, 946698. [Google Scholar] [CrossRef]
- Herden, L.; Weissert, R. The Impact of Coffee and Caffeine on Multiple Sclerosis Compared to Other Neurodegenerative Diseases. Front. Nutr. 2018, 5, 133. [Google Scholar] [CrossRef]
- Smith, A. Effects of caffeine on human behavior. Food Chem. Toxicol. 2002, 40, 1243–1255. [Google Scholar] [CrossRef]
- Prakash, K.M.; Fook-Choong, S.; Yuen, Y.; Tan, E.K. Exploring the relationship between caffeine intake and essential tremor. J. Neurol. Sci. 2006, 251, 98–101. [Google Scholar] [CrossRef]
- Cho, B.-H.; Choi, S.-M.; Kim, B.C. Gender-dependent effect of coffee consumption on tremor severity in de novo Parkinson’s disease. BMC Neurol. 2019, 19, 194. [Google Scholar] [CrossRef]
- Louis, E.D.; Meyers, J.H.; Cristal, A.D.; Factor-Litvak, P. Caffeine Consumption in First-Degree Relatives of Essential Tremor Cases: Evidence of Dietary Modification Before Disease Onset. Neuroepidemiology 2018, 51, 64–70. [Google Scholar] [CrossRef]
- Louis, E.D.; Jurewicz, E.C.; Applegate, L.; Luchsinger, J.A.; Factor-Litvak, P.; Parides, M. Semiquantitative study of current coffee, caffeine, and ethanol intake in essential tremor cases and controls. Mov. Disord. 2004, 19, 499–504. [Google Scholar] [CrossRef] [PubMed]
- Ferré, S. The Adenosine Hypothesis of Restless Legs Syndrome. J. Caffeine Adenosine Res. 2019, 9, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Pamu, S.; Thakkalapally, L.; Badugu, V.; Deepak, P. Caffeine Induced Restless Legs Syndrome. IOSR J. Pharm. Biol. Sci. 2017, 7, 50–52. [Google Scholar]
- Trotti, L.M.; Becker, L.A. Iron for the treatment of restless legs syndrome. Cochrane Database Syst. Rev. 2019, 1, CD007834. [Google Scholar] [CrossRef]
- Kumera, G.; Haile, K.; Abebe, N.; Marie, T.; Eshete, T. Anemia and its association with coffee consumption and hookworm infection among pregnant women attending antenatal care at Debre Markos Referral Hospital, Northwest Ethiopia. PLoS ONE 2018, 13, e0206880. [Google Scholar] [CrossRef]
- Batool-Anwar, S.; Li, Y.; De Vito, K.; Malhotra, A.; Winkelman, J.; Gao, X. Lifestyle Factors and Risk of Restless Legs Syndrome: Prospective Cohort Study. J. Clin. Sleep. Med. 2016, 12, 187–194. [Google Scholar] [CrossRef]
- Winkelman, J.W.; Berkowski, J.A.; DelRosso, L.M.; Koo, B.B.; Scharf, M.T.; Sharon, D.; Zak, R.S.; Kazmi, U.; Falck-Ytter, Y.; Shelgikar, A.V.; et al. Treatment of restless legs syndrome and periodic limb movement disorder: An American Academy of Sleep Medicine clinical practice guideline. J. Clin. Sleep. Med. 2025, 21, 137–152. [Google Scholar] [CrossRef]
- Kim, K.W.; Jhoo, J.H.; Lee, S.B.; Lee, S.D.; Kim, T.H.; Kim, S.E.; Kim, Y.K.; Yoon, I.Y. Increased striatal dopamine transporter density in moderately severe old restless legs syndrome patients. Eur. J. Neurol. 2012, 19, 1213–1218. [Google Scholar] [CrossRef] [PubMed]
- Santini, E.; Sgambato-Faure, V.; Li, Q.; Savasta, M.; Dovero, S.; Fisone, G.; Bezard, E. Distinct changes in cAMP and extracellular signal-regulated protein kinase signalling in L-DOPA-induced dyskinesia. PLoS ONE 2010, 5, e12322. [Google Scholar] [CrossRef]
- Méneret, A.; Gras, D.; McGovern, E.; Roze, E. Caffeine and the Dyskinesia Related to Mutations in the ADCY5 Gene. Ann. Intern. Med. 2019, 171, 439. [Google Scholar] [CrossRef] [PubMed]
- Méneret, A.; Mohammad, S.; Cif, L.; Doummar, D.; DeGusmao, C.; Anheim, M.; Barth, M.; Damier, P.; Demonceau, N.; Friedman, J.; et al. Efficacy of Caffeine in ADCY5-Related Dyskinesia: A Retrospective Study. Mov. Disord. 2022, 37, 1294–1298. [Google Scholar] [CrossRef] [PubMed]
- Wills, A.M.; Eberly, S.; Tennis, M.; Lang, A.E.; Messing, S.; Togasaki, D.; Tanner, C.M.; Kamp, C.; Chen, J.F.; Oakes, D.; et al. Caffeine consumption and risk of dyskinesia in CALM-PD. Mov. Disord. 2013, 28, 380–383. [Google Scholar] [CrossRef]
- Müller-Vahl, K.R.; Buddensiek, N.; Geomelas, M.; Emrich, H.M. The influence of different food and drink on tics in Tourette syndrome. Acta Paediatr. 2008, 97, 442–446. [Google Scholar] [CrossRef]
- Ludlow, A.K.; Rogers, S.L. Understanding the impact of diet and nutrition on symptoms of Tourette syndrome: A scoping review. J. Child. Health Care 2017, 22, 68–83. [Google Scholar] [CrossRef]
- Lin, Y.-S.; Weibel, J.; Landolt, H.-P.; Santini, F.; Meyer, M.; Borgwardt, S.; Cajochen, C.; Reichert, C. Caffeine-induced Plasticity of Grey Matter Volume in Healthy Brains: A placebo-controlled multimodal within-subject study. Cereb. Cortex 2019, 31, 3096–3106. [Google Scholar] [CrossRef] [PubMed]
- Eskelinen, M.H.; Kivipelto, M. Caffeine as a protective factor in dementia and Alzheimer’s disease. J. Alzheimers Dis. 2010, 20 (Suppl. 1), S167–S174. [Google Scholar] [CrossRef] [PubMed]
- Koppelstaetter, F.; Poeppel, T.D.; Siedentopf, C.M.; Ischebeck, A.; Kolbitsch, C.; Mottaghy, F.M.; Felber, S.R.; Jaschke, W.R.; Krause, B.J. Caffeine and cognition in functional magnetic resonance imaging. J. Alzheimers Dis. 2010, 20 (Suppl. 1), S71–S84. [Google Scholar] [CrossRef]
- Yang, H.S.; Liang, Z.; Yao, J.F.; Shen, X.; Frederick, B.D.; Tong, Y. Vascular effects of caffeine found in BOLD fMRI. J. Neurosci. Res. 2019, 97, 456–466. [Google Scholar] [CrossRef]
- Haller, S.; Rodriguez, C.; Moser, D.; Toma, S.; Hofmeister, J.; Sinanaj, I.; Van De Ville, D.; Giannakopoulos, P.; Lovblad, K.O. Acute caffeine administration impact on working memory-related brain activation and functional connectivity in the elderly: A BOLD and perfusion MRI study. Neuroscience 2013, 250, 364–371. [Google Scholar] [CrossRef]
- Driscoll, I.; Shumaker, S.A.; Snively, B.M.; Margolis, K.L.; Manson, J.E.; Vitolins, M.Z.; Rossom, R.C.; Espeland, M.A. Relationships Between Caffeine Intake and Risk for Probable Dementia or Global Cognitive Impairment: The Women’s Health Initiative Memory Study. J. Gerontol. A Biol. Sci. Med. Sci. 2016, 71, 1596–1602. [Google Scholar] [CrossRef]
- Ritchie, K.; Artero, S.; Portet, F.; Brickman, A.; Muraskin, J.; Beanino, E.; Ancelin, M.L.; Carrière, I. Caffeine, cognitive functioning, and white matter lesions in the elderly: Establishing causality from epidemiological evidence. J. Alzheimers Dis. 2010, 20 (Suppl. 1), S161–S166. [Google Scholar] [CrossRef]
- Maia, L.; de Mendonça, A. Does caffeine intake protect from Alzheimer’s disease? Eur. J. Neurol. 2002, 9, 377–382. [Google Scholar] [CrossRef]
- M Yelanchezian, Y.M.; Waldvogel, H.J.; Faull, R.L.M.; Kwakowsky, A. Neuroprotective Effect of Caffeine in Alzheimer’s Disease. Molecules 2022, 27, 3737. [Google Scholar] [CrossRef]
- Warman, R.S.; Iqbal, M.; Triyandi, R. The neuroprotective effects of Robusta coffee (Coffea canephora) on neurodegenerative diseases. Pharm. Rep. 2025, 4, 83. [Google Scholar] [CrossRef]
- Blum, D.; Cailliau, E.; Béhal, H.; Vidal, J.-S.; Delaby, C.; Buée, L.; Allinquant, B.; Gabelle, A.; Bombois, S.; Lehmann, S.; et al. Association of caffeine consumption with cerebrospinal fluid biomarkers in mild cognitive impairment and Alzheimer’s disease: A BALTAZAR cohort study. Alzheimer’s Dement. 2024, 20, 6948–6959. [Google Scholar] [CrossRef]
- Wang, X.; Li, M.; Zhang, M. Caffeine Intake and Cognitive Function Among US Adults Aged 60+: Insights From NHANES 2011−2014. J. Hum. Nutr. Diet. 2025, 38, e70090. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Liu, X.; Jiang, B.; Li, X.; Wang, Y.; Chen, X.; Su, Y.; Wang, X.; Luo, J.; Chen, L.; et al. Tea, coffee, and caffeine intake and risk of dementia and Alzheimer’s disease: A systematic review and meta-analysis of cohort studies. Food Funct. 2024, 15, 8330–8344. [Google Scholar] [CrossRef] [PubMed]
- Londzin, P.; Zamora, M.; Kąkol, B.; Taborek, A.; Folwarczna, J. Potential of Caffeine in Alzheimer’s Disease—A Review of Experimental Studies. Nutrients 2021, 13, 537. [Google Scholar] [CrossRef] [PubMed]
- Haskó, G.; Cronstein, B. Regulation of inflammation by adenosine. Front. Immunol. 2013, 4, 85. [Google Scholar] [CrossRef]
- Matos, M.; Augusto, E.; Machado, N.J.; dos Santos-Rodrigues, A.; Cunha, R.A.; Agostinho, P. Astrocytic adenosine A2A receptors control the amyloid-β peptide-induced decrease of glutamate uptake. J. Alzheimers Dis. 2012, 31, 555–567. [Google Scholar] [CrossRef]
- Nehlig, A. Is caffeine a cognitive enhancer? J. Alzheimers Dis. 2010, 20 (Suppl. 1), S85–S94. [Google Scholar] [CrossRef]
- Gardener, S.L.; Rainey-Smith, S.R.; Villemagne, V.L.; Fripp, J.; Doré, V.; Bourgeat, P.; Taddei, K.; Fowler, C.; Masters, C.L.; Maruff, P.; et al. Higher Coffee Consumption Is Associated With Slower Cognitive Decline and Less Cerebral Aβ-Amyloid Accumulation Over 126 Months: Data From the Australian Imaging, Biomarkers, and Lifestyle Study. Front. Aging Neurosci. 2021, 13, 744872. [Google Scholar] [CrossRef]
- Ishida, K.; Yamamoto, M.; Misawa, K.; Nishimura, H.; Misawa, K.; Ota, N.; Shimotoyodome, A. Coffee polyphenols prevent cognitive dysfunction and suppress amyloid β plaques in APP/PS2 transgenic mouse. Neurosci. Res. 2020, 154, 35–44. [Google Scholar] [CrossRef]
- Schreiner, T.G.; Popescu, B.O. Impact of Caffeine on Alzheimer’s Disease Pathogenesis-Protective or Risk Factor? Life 2022, 12, 330. [Google Scholar] [CrossRef]
- Cao, C.; Cirrito, J.R.; Lin, X.; Wang, L.; Verges, D.K.; Dickson, A.; Mamcarz, M.; Zhang, C.; Mori, T.; Arendash, G.W.; et al. Caffeine suppresses amyloid-beta levels in plasma and brain of Alzheimer’s disease transgenic mice. J. Alzheimers Dis. 2009, 17, 681–697. [Google Scholar] [CrossRef]
- Zheng, Y.B.; Sun, J.; Shi, L.; Su, S.Z.; Chen, X.; Wang, Q.W.; Huang, Y.T.; Wang, Y.J.; Zhu, X.M.; Que, J.Y.; et al. Association of Caffeine Consumption and Brain Amyloid Positivity in Cognitively Normal Older Adults. J. Alzheimers Dis. 2023, 93, 483–493. [Google Scholar] [CrossRef]
- Kim, J.W.; Byun, M.S.; Yi, D.; Lee, J.H.; Jeon, S.Y.; Jung, G.; Lee, H.N.; Sohn, B.K.; Lee, J.-Y.; Kim, Y.K.; et al. Coffee intake and decreased amyloid pathology in human brain. Transl. Psychiatry 2019, 9, 270. [Google Scholar] [CrossRef]
- Petimar, J.; O’Reilly, É.; Adami, H.O.; van den Brandt, P.A.; Buring, J.; English, D.R.; Freedman, D.M.; Giles, G.G.; Håkansson, N.; Kurth, T.; et al. Coffee, tea, and caffeine intake and amyotrophic lateral sclerosis mortality in a pooled analysis of eight prospective cohort studies. Eur. J. Neurol. 2019, 26, 468–475. [Google Scholar] [CrossRef]
- Fondell, E.; O’Reilly, É.I.; Fitzgerald, K.C.; Falcone, G.J.; Kolonel, L.N.; Park, Y.; Gapstur, S.M.; Ascherio, A. Intakes of caffeine, coffee and tea and risk of amyotrophic lateral sclerosis: Results from five cohort studies. Am. J. Epidemiol. 2015, 16, 366–371. [Google Scholar] [CrossRef] [PubMed]
- Beghi, E.; Pupillo, E.; Messina, P.; Giussani, G.; Chiò, A.; Zoccolella, S.; Moglia, C.; Corbo, M.; Logroscino, G.; EURALS Group. Coffee and Amyotrophic Lateral Sclerosis: A Possible Preventive Role. Am. J. Epidemiol. 2011, 174, 1002–1008. [Google Scholar] [CrossRef] [PubMed]
- Cucovici, A.; Ivashynka, A.; Fontana, A.; Russo, S.; Mazzini, L.; Mandrioli, J.; Lisnic, V.; Muresanu, D.F.; Leone, M.A. Coffee and Tea Consumption Impact on Amyotrophic Lateral Sclerosis Progression: A Multicenter Cross-Sectional Study. Front. Neurol. 2021, 12, 637939. [Google Scholar] [CrossRef]
- Mendoza, M.F.; Sulague, R.M.; Posas-Mendoza, T.; Lavie, C.J. Impact of Coffee Consumption on Cardiovascular Health. Ochsner J. 2023, 23, 152–158. [Google Scholar] [CrossRef]
- Ashfaq, Z.; Younas, Z.; Nathaniel, E.; Rehman, A.; Siddiqi, A.; Rasool, N.; Amir, M. Association Between Caffeine Intake and Alzheimer’s Disease Progression: A Systematic Review. Cureus 2025, 17, e80923. [Google Scholar] [CrossRef]
- Fisicaro, F.; Lanza, G.; Pennisi, M.; Vagli, C.; Cantone, M.; Pennisi, G.; Ferri, R.; Bella, R. Moderate Mocha Coffee Consumption Is Associated with Higher Cognitive and Mood Status in a Non-Demented Elderly Population with Subcortical Ischemic Vascular Disease. Nutrients 2021, 13, 536. [Google Scholar] [CrossRef]
- Liu, Q.-P.; Wu, Y.-F.; Cheng, H.-Y.; Xia, T.; Ding, H.; Wang, H.; Wang, Z.-M.; Xu, Y. Habitual coffee consumption and risk of cognitive decline/dementia: A systematic review and meta-analysis of prospective cohort studies. Nutrition 2015, 32, 628–636. [Google Scholar] [CrossRef] [PubMed]
- Rai, S.P.; Ansari, A.H.; Singh, D.; Singh, S. Coffee, antioxidants, and brain inflammation. Prog. Brain Res. 2024, 289, 123–150. [Google Scholar] [CrossRef] [PubMed]
- Castaldo, L.; Toriello, M.; Sessa, R.; Izzo, L.; Lombardi, S.; Narváez, A.; Ritieni, A.; Grosso, M. Antioxidant and Anti-Inflammatory Activity of Coffee Brew Evaluated after Simulated Gastrointestinal Digestion. Nutrients 2021, 13, 4368. [Google Scholar] [CrossRef] [PubMed]
- Kobylińska, Z.; Biesiadecki, M.; Kuna, E.; Galiniak, S.; Mołoń, M. Coffee as a Source of Antioxidants and an Elixir of Youth. Antioxidants 2025, 14, 285. [Google Scholar] [CrossRef]
- Ősz, B.-E.; Jîtcă, G.; Ștefănescu, R.-E.; Pușcaș, A.; Tero-Vescan, A.; Vari, C.-E. Caffeine and Its Antioxidant Properties—It Is All about Dose and Source. Int. J. Mol. Sci. 2022, 23, 13074. [Google Scholar] [CrossRef]
- Kromhout, M.A.; Jongerling, J.; Achterberg, W.P. Relation between caffeine and behavioral symptoms in elderly patients with dementia: An observational study. J. Nutr. Health Aging 2014, 18, 407–410. [Google Scholar] [CrossRef]
- Santos, C.; Costa, J.; Santos, J.; Vaz-Carneiro, A.; Lunet, N. Caffeine intake and dementia: Systematic review and meta-analysis. J. Alzheimers Dis. 2010, 20 (Suppl. 1), S187–S204. [Google Scholar] [CrossRef]
- Cornelis, M.C.; Bennett, D.A.; Weintraub, S.; Schneider, J.A.; Morris, M.C. Caffeine Consumption and Dementia: Are Lewy Bodies the Link? Ann. Neurol. 2022, 91, 834–846. [Google Scholar] [CrossRef]
- Ruggiero, M.; Calvello, R.; Porro, C.; Messina, G.; Cianciulli, A.; Panaro, M.A. Neurodegenerative Diseases: Can Caffeine Be a Powerful Ally to Weaken Neuroinflammation? Int. J. Mol. Sci. 2022, 23, 12958. [Google Scholar] [CrossRef]
Neuroprotective Potential | Neurological Risks |
---|---|
Reduced risk of Parkinson’s disease [107,133] | Increased anxiety and sleep disturbances [14,15] |
Possible delay in onset of Alzheimer’s disease [160,176] | Potential worsening of essential tremor and restless legs syndrome [142,146] |
Modulation of adenosine receptors contributing to cognitive enhancement [174,175] | Possible reduction in gray matter volume with high intake [21,159] |
Anti-inflammatory and antioxidant effects potentially beneficial in dementia [137,178] | Risk of tolerance and withdrawal symptoms, such as headache, irritability, and fatigue [20,21] |
Improved attention and vigilance [65] | Potential glutamatergic excitotoxicity in frontotemporal dementia [169,195] |
Aspect | Young Adults | Older Adults | References |
---|---|---|---|
Caffeine half-life | 3–5 h | 6–10+ h | [3] |
Enzyme activity (CYP1A2) | Normal | Reduced | [47] |
Renal clearance | Efficient | Often reduced | [17] |
Central sensitivity | Moderate | Increased | [10] |
Condition | Effect | Direction | References |
---|---|---|---|
Parkinson’s Disease | Protective | ↓ Risk | [107,133] |
Lewy Body Dementia | Possibly protective | ↓ Pathology | [196] |
Alzheimer’s Disease | Inconclusive | ? | [160] |
Restless Legs Syndrome | Exacerbating | ↑ Symptoms | [146] |
Frontotemporal Dementia | Potentially harmful | ↑ Excitotoxicity | [195] |
Symptom | Description | References |
---|---|---|
Headache | Due to vasodilation rebound; misattributed to migraine/hypertension | [20] |
Fatigue | Adenosine rebound activity; can mimic chronic fatigue | [21] |
Irritability | Dopaminergic imbalance; may resemble depression | [19] |
Sleepiness | Unopposed adenosine; often confused with aging effects | [14] |
Recommendation | Rationale | Risk Profile |
---|---|---|
Limit intake to <300 mg/day | To reduce insomnia, anxiety, withdrawal | All elderly |
Avoid caffeine in the evening | To improve sleep quality | Insomniacs, RLS patients |
Monitor for signs of dependence | Headaches, fatigue, tolerance | Chronic consumers |
Consider genetics and comorbidities | CYP1A2 polymorphisms, polypharmacy | Frail elderly |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carbone, M.G.; Pagni, G.; Tagliarini, C.; Maremmani, I.; Maremmani, A.G.I. Caffeine in Aging Brains: Cognitive Enhancement, Neurodegeneration, and Emerging Concerns About Addiction. Int. J. Environ. Res. Public Health 2025, 22, 1171. https://doi.org/10.3390/ijerph22081171
Carbone MG, Pagni G, Tagliarini C, Maremmani I, Maremmani AGI. Caffeine in Aging Brains: Cognitive Enhancement, Neurodegeneration, and Emerging Concerns About Addiction. International Journal of Environmental Research and Public Health. 2025; 22(8):1171. https://doi.org/10.3390/ijerph22081171
Chicago/Turabian StyleCarbone, Manuel Glauco, Giovanni Pagni, Claudia Tagliarini, Icro Maremmani, and Angelo Giovanni Icro Maremmani. 2025. "Caffeine in Aging Brains: Cognitive Enhancement, Neurodegeneration, and Emerging Concerns About Addiction" International Journal of Environmental Research and Public Health 22, no. 8: 1171. https://doi.org/10.3390/ijerph22081171
APA StyleCarbone, M. G., Pagni, G., Tagliarini, C., Maremmani, I., & Maremmani, A. G. I. (2025). Caffeine in Aging Brains: Cognitive Enhancement, Neurodegeneration, and Emerging Concerns About Addiction. International Journal of Environmental Research and Public Health, 22(8), 1171. https://doi.org/10.3390/ijerph22081171