Cardiovascular and Functional Consequences of Lung Function Impairment in Northern Thai Agricultural Workers
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Ethical Approval and Consent
2.3. Data Collection Procedures
2.3.1. Anthropometric and Hemodynamic Measurements
2.3.2. Spirometry Procedure
2.3.3. Six-Minute Walk Test
2.4. Data Analysis
3. Results
3.1. Demographic Characteristics and Hemodynamic Parameters
3.2. Correlations Between Hemodynamic Parameters and Spirometry Results
3.3. Logistic Regression Analysis of Lung Function and Walking Distance
4. Discussion
4.1. Walking Distance and Respiratory Function
4.2. Hemodynamic Responses and Clinical Implications
4.3. Cardiovascular Adaptation to Exercise and Lung Function
4.4. Limitations and Future Work
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Omotayo, O.; Maduka, C.P.; Muonde, M.; Olorunsogo, T.O.; Ogugua, J.O. The Rise of Non-Communicable Diseases: A Global Health Review of Challenges and Prevention Strategies. Int. Med. Sci. Res. J. 2024, 4, 74–88. [Google Scholar] [CrossRef]
- Chada, A.; Suleiman, A.J.; Chanyalew, Z.; Hassell, L.; Woldeab, B.B.; Yeabo, G.; Razzano, D. Global Pathology: A Snapshot of the Problems, the Progress, and the Potential. Arch. Pathol. Lab. Med. 2024, 149, 607–612. [Google Scholar] [CrossRef] [PubMed]
- Intarakamhang, U.; Sriprasertpap, K.; Chiangkhong, A.; Srisawasdi, N.; Wongchan, S.; Boocha, P. Effects of Digital Health Literacy Program on Sufficient Health Behavior Among Thai Working-Age People with Risk Factors for Noncommunicable Diseases. Health Lit. Res. Pract. 2024, 8, e93–e101. [Google Scholar] [CrossRef] [PubMed]
- Wongsanuphat, S.; Praekunatham, H.; Jitpeera, C.; Thammawijaya, P. Association between Air Pollution Relating to Agricultural Residue Burning and Morbidity of Acute Cardiopulmonary Diseases in Upper Northern Thailand. Outbreak Surveill. Investig. Response J. 2024, 17, 9–19. [Google Scholar] [CrossRef]
- Forté, C.A.; Colacino, J.; Polemi, K.; Guytingco, A.; Peraino, N.J.; Jindaphong, S.; Kaviya, T.; Westrick, J.; Neitzel, R.; Nambunmee, K. Pesticide exposure and adverse health effects associated with farmwork in Northern Thailand. J. Occup. Health 2021, 63, e12222. [Google Scholar] [CrossRef]
- Noomnual, S.; Konthonbut, P.; Kongtip, P.; Woskie, S.R. Mental Health Disorders Among Thai Farmers: Occupational and Non-Occupational Stressors. Hum. Ecol. Risk Assess. 2024, 30, 180–200. [Google Scholar] [CrossRef]
- Chow, J.C.; Watson, J.G.; Mauderly, J.L.; Costa, D.L.; Wyzga, R.E.; Vedal, S.; Hidy, G.M.; Altshuler, S.L.; Marrack, D.; Heuss, J.M.; et al. Health Effects of Fine Particulate Air Pollution: Lines that Connect. J. Air Waste Manag. Assoc. 2006, 56, 1368–1380. [Google Scholar] [CrossRef]
- Sapbamrer, P.; Assavanopakun, P.; Panumasvivat, J. Decadal Trends in Ambient Air Pollutants and Their Association with COPD and Lung Cancer in Upper Northern Thailand: 2013–2022. Toxics 2024, 12, 321. [Google Scholar] [CrossRef]
- Pollution Control Department, Thailand. Action Plan for Managing Wildfires, Haze, and Particulate Matter Pollution, 2025. Pollution Control Department Website. 2025. Available online: https://www.pcd.go.th/airandsound/ (accessed on 8 July 2025).
- Kirkhorn, S.R.; Garry, V.F. Agricultural lung diseases. Environ. Health Perspect. 2000, 108 (Suppl. S4), 705–712. [Google Scholar] [CrossRef]
- Wijaya, K.; Suputra, P. Exposure to Particulate Matter Affects Lung Function and Performance: A Literature Review. Int. J. Multidiscip. Res. Anal. 2024, 7, 3115–3121. [Google Scholar] [CrossRef]
- Zejda, J.E.; Dosman, J.A. Respiratory disorders in agriculture. Tubercle Lung Dis. 1993, 74, 74–86. [Google Scholar] [CrossRef] [PubMed]
- Hernández, A.F.; Casado, I.; Pena, G.; Gil, F.; Villanueva, E.; Pla, A. Low Level of Exposure to Pesticides Leads to Lung Dysfunction in Occupationally Exposed Subjects. Inhal. Toxicol. 2008, 20, 839–849. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, T.; Shinde, M.A.; Kawale, S.N.; Kumar, S.; D’Souza, A.S. Six-Minute Walk Test among Obese and Nonobese Subjects: A Comparative Analysis Among Apparently Healthy Volunteers. Ann. Med. Sci. Res. 2024, 3, 109–117. [Google Scholar] [CrossRef]
- American Thoracic Society. ATS Statement: Guidelines for the Six-Minute Walk Test. Am. J. Respir. Crit. Care Med. 2002, 166, 111–117. [Google Scholar] [CrossRef]
- Sreenivasan, V. Six-Minute Walk Test (6MWT): A Contemporary Tool for Assessing COPD Severity in a Clinical Setting. Int. J. Sci. Res. 2024, 13, 72–73. [Google Scholar] [CrossRef]
- Hernandes, N.A.; Wouters, E.F.; Meijer, K.; Annegarn, J.; Pitta, F.; Spruit, M.A. Reproducibility of 6-minute walking test in patients with COPD. Eur. Respir. J. 2011, 38, 261–267. [Google Scholar] [CrossRef]
- Torres-Castro, R.; Gimeno-Santos, E.; Blanco, I. Use of six-minute walking test to predict peak oxygen consumption in pulmonary vascular disease. Pulm. Circ. 2022, 12, e12129. [Google Scholar] [CrossRef]
- Punta, P.; Boonyathee, S.; Ong-artborirak, P.; Tonchoy, P.; Kantow, S.; Bootsikeaw, S.; Auttama, N.; Choowanthanapakorn, M.; Seangpraw, K.; Dokpuang, D. Lipid Profile in Relation to Body Mass Index among Agricultural Workers of Various Ethnicities in Thai Border. J. Health Res. 2024, 38, 3. [Google Scholar] [CrossRef]
- Hemphill, J. Interpreting the Magnitude of Correlation Coefficients. Am. Psychol. 2003, 58, 78–79. [Google Scholar] [CrossRef]
- Mitkin, N.; Drachev, S.; Krieger, E.; Postoev, V.; Grjibovski, A. Sample size calculation for cross-sectional studies. Ekol. Cheloveka (Hum. Ecol.) 2023, 30, 509–522. [Google Scholar] [CrossRef]
- Gupta, P.; Meena, K.; Gupta, A.; Gavli, J. Predictive Superiority of Abdominal Obesity Measures Over Body Mass Index in Indian Hypertensive Adults. Asian J. Med. Sci. 2024, 15, 84–89. [Google Scholar] [CrossRef]
- Yigit, S.; Akinci, B.; Eksi, B.; Calikoglu, F.; Satman, I. Double Product Reserve Is Associated with Waist Circumference but Not Body Mass Index in Overweight or Obese Individuals. Eur. J. Prev. Cardiol. 2024, 31 (Suppl. S1), zwae175.049. [Google Scholar] [CrossRef]
- Schiavi, E.; Ryu, M.H.; Martini, L.; Balasubramanian, A.; McCormack, M.C.; Fortis, S.; Regan, E.A.; Bonini, M.; Hersh, C.P. Application of the European Respiratory Society/American Thoracic Society Spirometry Standards and Race-Neutral Equations in the COPDGene Study. Am. J. Respir. Crit. Care Med. 2024, 210, 1317–1328. [Google Scholar] [CrossRef] [PubMed]
- Dejsomritrutai, W.; Nana, A.; Maranetra, K.N.; Chuaychoo, B.; Maneechotesuwan, K.; Wongsurakiat, P.; Chierakul, N.; Charoenratanakul, S.; Tscheikuna, J.; Juengprasert, W.; et al. Reference Spirometric Values for Healthy Lifetime Nonsmokers in Thailand. J. Med. Assoc. Thail. 2000, 83, 457–466. [Google Scholar]
- Djebaili, R.; Righi, N.; Benbouza, A.; Chiboub, B. Factors Limiting Exercise Capacity in COPD Patients. Int. J. Med. 2024, 12, 23–25. [Google Scholar] [CrossRef]
- Hu, Z.-W.; Gao, L.; Yu, Q.; Jin, Z.; Liu, J.-H.; Lian, Y.-Y.; Que, C.-L. Use of 6-minute walk test for assessing severity of interstitial lung disease: An Observational Study. Sarcoidosis Vasc. Diffus. Lung Dis. 2023, 40, e2023013. [Google Scholar] [CrossRef]
- Rasekaba, T.; Lee, A.L.; Naughton, M.T.; Williams, T.J.; Holland, A.E. The Six-Minute Walk Test: A Useful Metric for the Cardiopulmonary Patient. Intern. Med. J. 2009, 39, 495–501. [Google Scholar] [CrossRef]
- Rodrigues, G.; Velloso, M.; Gomes da Silva, D.J.V.; Pitta, F.; Mesquita, R. Classification of People with Chronic Respiratory Disease into Preserved or Reduced Functional Exercise Capacity: A Retrospective Analysis of Associated Factors Considering Baseline Characteristics and Responses to Pulmonary Rehabilitation. Physiother. Can. 2024, 76, e20230068. [Google Scholar] [CrossRef]
- Polkey, M.I.; Spruit, M.A.; Edwards, L.D.; Watkins, M.L.; Pinto-Plata, V.; Vestbo, J.; Calverley, P.M.; Tal-Singer, R.; Agustí, A.; Bakke, P.S.; et al. Six-Minute Walk Test in Chronic Obstructive Pulmonary Disease: Minimal Clinically Important Difference for Death or Hospitalization. Am. J. Respir. Crit. Care Med. 2013, 187, 382–386. [Google Scholar] [CrossRef]
- Naghshin, R.; Zaker, M.M.; Ehteshami Afshar, A. Association between Six-Minute Walk Test and Expiratory Spirometry Parameters in Chronic Obstructive Pulmonary Disease. Iran. Heart J. 2005, 6, 59–63. [Google Scholar]
- Cuttica, M.J.; Colangelo, L.A.; Dransfield, M.T.; Bhatt, S.P.; Rana, J.S.; Jacobs, D.R.; Thyagarajan, B.; Sidney, S.; Lewis, C.E.; Liu, K.; et al. Lung Function in Young Adults and Risk of Cardiovascular Events Over 29 Years: The CARDIA Study. J. Am. Heart Assoc. 2018, 7, e010672. [Google Scholar] [CrossRef]
- Mehri, A.; Zabihi, F.; Sharafian, T.; Kabiri, M.; Rezaei, R. Walking or Breathing: Comparing the 6-Minute Walking Distance Test to the Pulmonary Function Test for Lung Resection Candidates. J. Cardiovasc. Thorac. Res. 2024, 16, 97–101. [Google Scholar] [CrossRef]
- Noh, S.R.; Kwon, M.H.; Pak, Y.S.; Paek, D.M. Validity of 6-Minute Walk Test in Coal Workers’ Pneumoconiosis Evaluations. Epidemiology 2009, 20, S221. [Google Scholar] [CrossRef]
- Arunachala, S.; Devapal, S.; Swamy, D.S.N.; Greeshma, M.V.; Ul Hussain, I.; Siddaiah, J.B.; Christopher, D.J.; Malamardi, S.; Ullah, M.K.; Saeed, M.; et al. Factors Affecting Survival in Severe and Very Severe COPD after Admission in ICUs of Tertiary Care Centers of India (FAST COPD): Study Protocol for a Multicentric Cohort Study. Indian J. Crit. Care Med. 2024, 28, 552–560. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Dai, H.; van der Kleij, R.M.J.; Li, R.; Wu, H.; Hallensleben, C.; Willems, S.H.; Chavannes, N.H. Digital Health Education for Chronic Lung Disease: Scoping Review. J. Med. Internet Res. 2025, 27, e53142. [Google Scholar] [CrossRef] [PubMed]
- Hart, E.C.J.; Charkoudian, N. Sympathetic Neural Regulation of Blood Pressure: Influences of Sex and Aging. Physiology 2014, 29, 8–15. [Google Scholar] [CrossRef]
- Someya, F.; Mugii, N.; Oohata, S. Cardiac Hemodynamic Response to the 6-Minute Walk Test in Young Adults and the Elderly. BMC Res. Notes 2015, 8, 355. [Google Scholar] [CrossRef]
- Parati, G.; Faini, A.; Valentini, M. Blood Pressure Variability: Its Measurement and Significance in Hypertension. Curr. Hypertens. Rep. 2006, 8, 199–204. [Google Scholar] [CrossRef]
- Chobanian, A.V.; Bakris, G.L.; Black, H.R.; Cushman, W.C.; Green, L.A.; Izzo, J.L., Jr.; Jones, D.W.; Materson, B.J.; Oparil, S.; Wright, J.T., Jr.; et al. Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension 2003, 42, 1206–1252. [Google Scholar] [CrossRef]
- Obiorah, O.; Meludu, C.; Onah, E.; Okeke, C.; Ogbodo, C.; Akaeme, C.; Agwaraonye, K. Assessment of Cardiac Function in Farmers Occupationally Exposed to Pesticides in Gboko Local Government Area, Benue State. Int. J. Clin. Biochem. Res. 2024, 11, 32–38. [Google Scholar] [CrossRef]
- Araújo, J.A.; Novelli, F.I.; Arsa, G.; Cambri, L.T. Obesity Does Not Impair Time-Course of Cardiac Autonomic Recovery Post-Exercise in Young Men. Sci. Sports 2023, 38, 708–716. [Google Scholar] [CrossRef]
- Nedeljkovic, I.; Nedeljkovic Arsenovic, O.; Ostojic, M.M.; Djordjevic Dikic, A.; Giga, V.; Banovic, M.; Boskovic, N.; Dedic, S.; Polovina, S.; Micic, D.; et al. Obesity and Its Impact on Functional Capacity: Understanding the Interplay for Health Management. Eur. Heart J. 2024, 45 (Suppl. S1), ehae666-2900. [Google Scholar] [CrossRef]
- Course, C.; Kotecha, S.; Cousins, M.; Hart, K.; Watkins, J.; Kotecha, S. Cardiovascular Response to Exercise in Preterm-Born Children with and without Low Lung Function. Eur. Respir. J. 2022, 60 (Suppl. S66), 792. [Google Scholar] [CrossRef]
Characteristics | Gender | Age Range, Years | Occupation | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Male | Female | p-Value | ≤60 | >60 | p-Value | Farmworker | Non-Farmworker | p-Value | ||
Frequency, n (%) | 30 (21.9%) | 107 (78.1%) | 72 (52.6%) | 65 (47.4%) | 36 (26.3%) | 101 (73.7%) | ||||
Hemodynamic parameters, median (IQR) | ||||||||||
SBP, mmHg | Pre | 134.5 (123.2–141.8) | 132.0 (123.0–142.0) | 0.668 | 132.0 (124.2–141.0) | 132.0 (121.5–142.0) | 0.947 | 135.5 (123.2–145.5) | 130.0 (122.5–141.0) | 0.222 |
Post | 140.5 (132.8–156.5) | 133.0 (122.0–149.0) | 0.070 | 135.0 (122.8–148.8) | 133.0 (124.5–150.5) | 0.955 | 136.0 (127.0–147.5) | 134.0 (122.0–150.5) | 0.466 | |
DBP, mmHg | Pre | 85.5 (79.0–92.2) | 78.0 (71.0–85.0) | <0.001 ** | 81.0 (73.2–89.8) | 77.0 (71.0–82.5) | 0.007 ** | 80.5 (73.0–91.0) | 79.0 (72.0–86.0) | 0.239 |
Post | 87.5 (80.0–92.2) | 78.0 (70.0–85.0) | <0.001 ** | 82.0 (74.0–90.8) | 78.0 (68.0–84.0) | 0.003 ** | 84.0 (74.0–89.5) | 78.0 (71.0–86.5) | 0.034 | |
HR, bpm | Pre | 79.0 (68.8–86.2) | 77.0 (71.0–86.0) | 0.898 | 74.0 (69.2–82.0) | 81.0 (73.0–89.5) | 0.006 ** | 77.0 (69.0–83.8) | 77.0 (71.0–87.5) | 0.523 |
Post | 84.0 (76.0–92.2) | 83.0 (76.0–90.0) | 0.932 | 83.0 (76.2–89.0) | 83.0 (76.5–94.5) | 0.486 | 83.5 (74.0–89.8) | 83.0 (77.0–91.5) | 0.739 | |
RPP, mmHg x bpm | Pre | 10,115 (9084–11,854) | 10285 (8960–11390) | 0.849 | 9885 (8684–11082) | 10530 (9533–11917) | 0.036 * | 10392 (9034–11826) | 10062 (8960–11618) | 0.625 |
Post | 11,450 (10,057–13,685) | 10,944 (9462–12,780) | 0.304 | 10,932 (9523–12,659) | 11,424 (9420–13,373) | 0.538 | 11,188 (10,022–13,275) | 11,180 (9489–12,836) | 0.854 | |
SatO2 | Pre | 98.0 (96.0–99.0) | 98.0 (96.0–99.0) | 0.992 | 98.0 (97.0–99.0) | 98.0 (96.0–99.0) | 0.259 | 98.0 (96.0–99.0) | 98.0 (97.0–99.0) | 0.708 |
Post | 97.5 (96.0–98.2) | 98.0 (96.0–99.0) | 0.142 | 98.0 (97.0–99.0) | 98.0 (96.0–99.0) | 0.132 | 98.0 (97.0–99.0) | 98.0 (96.0–99.0) | 0.550 | |
Walking distance, meters | 444.5 (411.5–482.5) | 424.0 (367.0–495.0) | 0.368 | 450.0 (401.2–511.2) | 412.0 (352.5–453.0) | 0.004 ** | 416.0 (366.2–470.5) | 440.0 (373.5–516.5) | 0.120 |
Characteristics | Obesity | Lung Function Impairment | |||||
---|---|---|---|---|---|---|---|
Normal | Overweight/Obese | p-Value | Normal | Impaired | p-Value | ||
Frequency, n (%) | 127 (92.7%) | 10 (7.3%) | 118 (86.1%) | 19 (13.9%) | |||
Hemodynamic parameters, median (IQR) | |||||||
SBP, mmHg | Pre | 132.0 (122.0–141.0) | 140.5 (130.8–153.5) | 0.029 * | 132.0 (123.0–141.0) | 138.0 (121.0–146.0) | 0.397 |
Post | 133.0 (122.0–148.0) | 149.5 (143.0–159.0) | 0.012 * | 134.5 (123.5–149.2) | 141.0 (125.0–157.0) | 0.667 | |
DBP, mmHg | Pre | 79.0 (72.0–86.0) | 88.5 (73.8–95.5) | 0.057 | 79.0 (72.8–87.2) | 74.0 (70.0–84.0) | 0.116 |
Post | 79.0 (71.0–87.0) | 87.0 (78.8–93.0) | 0.036 * | 80.0 (72.0–87.0) | 73.0 (68.0–89.0) | 0.405 | |
HR, bpm | Pre | 77.0 (70.0–86.0) | 77.0 (72.5–79.2) | 0.529 | 76.5 (70.0–86.0) | 82.0 (74.0–91.0) | 0.128 |
Post | 83.0 (76.0–90.0) | 84.5 (78.0–94.5) | 0.634 | 83.0 (76.0–89.0) | 89.0 (78.0–100.0) | 0.089 | |
RPP, mmHg x bpm | Pre | 10,140 (8946–11,620) | 10,712 (9830–11,597) | 0.325 | 10,071 (8936–11,617) | 10,530 (9600–11,972) | 0.190 |
Post | 11,160 (9460–12,825) | 127,73 (10,848–13,891) | 0.071 | 11,124 (9502–12,791) | 11,808 (9568–14,500) | 0.229 | |
SatO2 | Pre | 98.0 (96.0–99.0) | 97.5 (94.5–99.0) | 0.817 | 98.0 (97.0–99.0) | 97.0 (95.0–99.0) | 0.322 |
Post | 98.0 (96.0–99.0) | 99.0 (97.8–99.2) | 0.055 | 98.0 (96.0–99.0) | 98.0 (96.0–99.0) | 0.654 | |
Walking distance, meters | 437.0 (375.0–495.0) | 382.0 (350.0–452.5) | 0.163 | 440.0 (383.8–507.8) | 389.0 (326.0–420.0) | 0.004 ** |
Parameters | Spirometry Result | ||
---|---|---|---|
FVC | FEV1 | FEV1% | |
Walking distance | 0.168 * | 0.219 ** | 0.071 |
Post-6MWT hemodynamic measurements | |||
SBP | 0.064 | 0.115 | 0.020 |
z-SBP | 0.064 | 0.115 | 0.020 |
DBP | 0.206 * | 0.155 | −0.097 |
z-DBP | 0.306 ** | 0.252 ** | −0.162 |
HR | −0.031 | −0.103 | −0.077 |
RPP | 0.006 | 0.000 | −0.019 |
SatO2 | −0.035 | 0.034 | 0.049 |
Delta (Post–Pre-6MWT) hemodynamic measurements | |||
Delta PAS | 0.213 * | 0.184 * | −0.013 |
Delta PAD | 0.071 | 0.064 | 0.028 |
Delta HR | 0.089 | 0.004 | −0.071 |
Delta RPP | 0.175 * | 0.113 | −0.055 |
Delta SatO2 | −0.062 | 0.025 | 0.077 |
Variable | Lung Function Impairment | |
---|---|---|
OR (95% CI) | #aOR (95% CI) | |
Walking distance | 0.993 (0.938–0.999)* | 0.995 (0.989–1.000)* |
Sex | 1.415 (0.365–5.489) | |
Age | 2.906(0.947–8.915) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wongta, A.; Samar, M.; Kyi, N.E.M.M.; Pintakham, T.; Sawarng, N.; Hongsibsong, S. Cardiovascular and Functional Consequences of Lung Function Impairment in Northern Thai Agricultural Workers. Int. J. Environ. Res. Public Health 2025, 22, 1168. https://doi.org/10.3390/ijerph22081168
Wongta A, Samar M, Kyi NEMM, Pintakham T, Sawarng N, Hongsibsong S. Cardiovascular and Functional Consequences of Lung Function Impairment in Northern Thai Agricultural Workers. International Journal of Environmental Research and Public Health. 2025; 22(8):1168. https://doi.org/10.3390/ijerph22081168
Chicago/Turabian StyleWongta, Anurak, Muhammad Samar, Nan Ei Moh Moh Kyi, Tipsuda Pintakham, Nootchakarn Sawarng, and Surat Hongsibsong. 2025. "Cardiovascular and Functional Consequences of Lung Function Impairment in Northern Thai Agricultural Workers" International Journal of Environmental Research and Public Health 22, no. 8: 1168. https://doi.org/10.3390/ijerph22081168
APA StyleWongta, A., Samar, M., Kyi, N. E. M. M., Pintakham, T., Sawarng, N., & Hongsibsong, S. (2025). Cardiovascular and Functional Consequences of Lung Function Impairment in Northern Thai Agricultural Workers. International Journal of Environmental Research and Public Health, 22(8), 1168. https://doi.org/10.3390/ijerph22081168